Age | Commit message (Collapse) | Author |
|
|
|
* henrik/update-copyrightyear:
update copyright-year
|
|
Remove the unreachable instructions after a 'raise' instruction
(e.g. a 'jump' or 'deallocate', 'return') to decrease code size.
|
|
|
|
|
|
The actual bs_match_string instruction has four operands:
bs_match_string {f,Lbl} Ctxt NumBits {string,ListOfBytes}
However, v3_codegen emits a more compact representation where
the bits to match are packaged in a bitstring:
bs_match_string {f,Lbl} Ctxt Bitstring
Currently, beam_clean:clean_labels/1 will rewrite the compact
representation to the final representation. That is unfortunate
since clean_labels/1 is called by beam_dead, which means that
the less compact representation will be introduced long before
it is actually needed by beam_asm. It will also complicate any
optimizations that we might want to do.
Move the rewriting of bs_match_string from beam_clean:clean_labels/1
to the beam_z pass, which is the last pass executed before
beam_validator and beam_asm.
|
|
It was a workaround for a bug that has been fixed.
|
|
|
|
* Combine multiple get values with one instruction
* Combine multiple check keys with one instruction
|
|
|
|
Somewhat reduce the code bloat by eliminating special cases.
|
|
Somewhat reduce code bloat.
|
|
Eliminate some code bloat.
|
|
Rewrite the five binary creation instructions to a bs_init
instruction, in order to somewhat reduce code bloat.
|
|
We can remove some code bloat by handling the special instructions
as BIF instructions in the optimization passes. Also note that
bs_utf*_size was not handled by beam_utils:check_liveness/3
(meaning the conservative answer instead of the correct answer
would be returned).
|
|
Seven bs_put_* instructions can be combined into one generic bs_put
instruction to avoid some code bloat. That will also improve some
optimizations (such as beam_trim) that did not handle all bs_put*
variants.
|
|
Introduce the mandary beam_a pass that will be run directly after code
generation, and the mandatory beam_z pass that will be run just before
beam_asm. Since these passes surround the optimizations, beam_a can
(for example) do instruction renaming to simplify the optimization
passes and beam_z can undo those renamings.
|