Age | Commit message (Collapse) | Author |
|
Starting in e12b7d5331c58b41db06cadfa4af75b78b62a2b1,
sys_core_fold:eval_case/2 will crash on handwritten but legal
Core Erlang programs such as:
case let <Var> = Arg in {'x',Var} of
{x,X} -> X
end
The problem is that the only clause *is* guaranteed to match, but
cerl_clauses:match_list/2 does not understand that; all it can say is
that the clause *may* match. In those circumstances, we will need to
keep the case.
Also make sure that we keep the case if the guard is something else
than 'true'. That is not strictly necessary, because in a legal Core
Erlang program the guard in the last clause in a case must always
evaluate to 'true', so removing the guard test would still leave the
program correct. Keeping the guard, however, will make it somewhat
easier to debug an incorrect Core Erlang program. (The unsafe_case
test case has guard test in the only clause in a case, so we don't
need to write a new test case to test that.)
Reported-by: Anthony Ramine
|
|
|
|
* hsv/using_lists_droplast:
lib/mnesia/test/ - Replace reverse(tl(reverse(L))) with lists:droplast/1
lib/ssh - Replace reverse(tl(reverse(L))) with lists:droplast/1
lib/wx - Replace reverse(tl(reverse(L))) with lists:droplast/1
Use lists:droplast/1 in orber/orber_interceptors.erl
Import and use lists:droplast/1 in v3_core/v3_kernel
OTP-11678
OTP-11677
|
|
* bjorn/compiler/applying-binary-crash/OTP-11672:
beam_bsm: Eliminate emulator crash when a binary is called
beam_validator: Validate the "fun" argument for a call_fun/1 instruction
|
|
* bjorn/compiler/optimizations/OTP-11584:
sys_core_fold: Prevent case expressions from being evaluated twice
sys_core_fold_SUITE: For cleanliness, move id/1 to the end
|
|
We must not do the delayed binary creation optimization if the
code attempts to call the matched out binary. Calling a matchstate
will crash the run-time system.
Reported-by: Loïc Hoguin
|
|
The fun argument for a call_fun/1 instruction was not validated.
|
|
* bjorn/eep37/OTP-11537:
Issue a warning when a named fun is constructed but not used
|
|
In e12b7d5331c58b41db06cadfa4af75b78b62a2b1, a bug was introduced
that would cause case expressions to be evaluated more than once
if there were aliases in the pattern. Example:
X = Y = io:put_chars("some chars"),
{X,Y}
That would be rewritten to code similar to (but in Core Erlang):
X = io:put_chars("some chars"),
X = io:put_chars("some chars"),
{X,Y}
Make sure that we only evalute the expression once by doing a
transformation similar to (but in Core Erlang):
NewVar = io:put_chars("some chars"),
X = NewVar,
Y = NewVar,
{X,Y}
Reported-by: José Valim
Reported-by: Anthony Ramine
|
|
|
|
|
|
|
|
|
|
|
|
Simplify compiler internals and parsing of core format.
|
|
Simplify compiler internals for kernel passes.
|
|
|
|
|
|
|
|
|
|
|
|
Make map update expressions safe, i.e. (foo())#{ k1 := 1 }
|
|
The instruction get_map_element has a faillabel so you may not
use the instruction within a allocate/deallocate block.
|
|
|
|
|
|
|
|
With the => and := operators for updating maps, this optimization is
no longer valid.
|
|
The syntax is handled upto v3_kernel where it is reduced to
previous behaviour for construction and updates. Meaning,
the ':=' operator is handled exactly as '=>' operator.
|
|
|
|
Update erlang lint and syntax expand for #{ K := V }
|
|
To add a type-testing guard BIF, the following steps are needed:
* The BIF itself is added to bif.tab (note that it should be declared
using "ubif", not "bif"), and its implementation to erl_bif_op.c.
* erl_internal must be modified in 3 places: The type test must be
recognized as guard BIF, as a type test, and it must be auto-imported.
* There must be an instruction that implements the same type test as
the BIF (it will be used in guards). beam_utils:bif_to_test/3 must
be updated to recognize the new guard BIF.
|
|
All pairs in a Map needs to be in strict ascending key order.
|
|
|
|
If a literal key already is present in a Map update the latter should be used.
Warn for previous duplicates in the Map.
|
|
|
|
|
|
Can now handle {list [reg()]} elements in instructions.
|
|
To make it possible to build the entire OTP system, also define
dummys for the instructions in ops.tab.
|
|
|
|
|
|
Also imported lists:last/1, and removed the local definition.
|
|
Code such as:
bar(X) ->
case {X+1} of
1 -> ok
end.
would crash the beam_except pass of the compiler.
The reason for the crash is that the '+' operator would add a line/1
instruction that the beam_except pass was not prepared to handle.
Reported-by: Erik Søe Sørensen
|
|
* bjorn/compiler/optimizations/OTP-11584:
Generalize optimizations of case statements
Ignore warnings when running sys_core_fold after inlining
|
|
* bjorn/fix-line-number-in-bs-exception/OTP-11572:
compiler: Correct line number in exception from binary construction
|
|
Because 26940a8c0c lifted code in the 'after' clause of 'try' to
a new function, Dialyzer could produce false warnings for code such
as:
try
...
after
file:close(F)
end.
Mark the the call to the generated function as 'compiler_generated'
to silence the warning.
|
|
Case expressions such as:
case {Expr1,Expr} of
{V1,V2} -> ...
end
are already optimized to not actually build the tuple. Generalize
the optimization to avoid building any kind of composite term,
such as:
case {ok,[A,B]} of
{ok,[X,Y]} -> ...
end
We don't expect programmers to write such code directly, but
inlining can produce such code.
We need to be careful about the warnings we produce. If the case
expression is a literal, it is expected that no warnings should be
produced for clauses that don't match. We must make sure that we
continue to suppress those warnings.
|
|
Reported-by: Stanislav Seletskiy
|
|
The new inliner (cerl_inline) does not mark inlined code as compiler
generated. Therefore, when sys_core_fold is run after inlining, it
may generate spurious warnings.
The easiest way out (for now, at least) is to discard all warnings
found when running sys_core_fold after inlining.
|
|
Compiling programs with very many uses of the "dot notation"
for extracting a record element could be very slow. The reason
is that each extraction of a record element (R#r.a) would first be
transformed to code like this:
case R of
{r,rec0,_,_} -> rec0;
_ -> error({badrecord,r})
end
In Core Erlang, each '_' would be become a new variable. The
resulting code would be optimized by sys_core_fold, but the
optimization process could be very slow.
Profiling shows that sub_del_var/2 was the worst bottleneck, and the
sub_is_val/2 the second worst bottleneck. In both cases, the culprit
is the linear traversal of a very long list (the list of variable
substitutions). Fortunately, there already is a gb_set (the scope)
which contains all variables that are currently live. If a variable is
not known to be live, it is no point in doing the linear operation on
the list.
|
|
erlc is wired to treat *.S files as assembler and build them as
compile:file(File, [from_asm]), but this is not documented. There's also
a documented compile:file/2 option called 'asm' (mapping to 'from_asm'),
but the wording discourages its use. All of this has been in place and
in use for a long time. Therefore, it should be supported officially.
To fix that, make the following changes:
* document erlc handling of *.core files
* un-document 'asm' and document 'from_asm' instead
* deprecate 'asm'
While at it, fix a minor typo in the test suite.
|