Age | Commit message (Collapse) | Author |
|
|
|
Call test_lib:recompile/1 from init_per_suite/1 instead of
from all/0. That makes it easy to find the log from the
compilation in the log file for the init_per_suite/1 test
case.
|
|
|
|
The new Dbgi chunk returns data in the following format:
{debug_info_v1, Backend, Data}
This allows compilers to store the debug info in different
formats. In order to retrieve a particular format, for
instance, Erlang Abstract Format, one may invoke:
Backend:debug_info(erlang_v1, Module, Data, Opts)
Besides introducing the chunk above, this commit also:
* Changes beam_lib:chunk(Beam, [:abstract_code]) to
read from the new Dbgi chunk while keeping backwards
compatibility with old .beams
* Adds the {debug_info, {Backend, Data}} option to
compile:file/2 and friends that are stored in the
Dbgi chunk. This allows the debug info encryption
mechanism to work across compilers
* Improves dialyzer to work directly on Core Erlang,
allowing languages that do not have the Erlang
Abstract Format to be dialyzer as long as they emit
the new chunk and their backend implementation is
available
Backwards compatibility is kept across the board except
for those calling beam_lib:chunk(Beam, ["Abst"]), as the
old chunk is no longer available. Note however the "Abst"
chunk has always been optional.
Future OTP versions may remove parsing the "Abst" chunk
altogether from beam_lib once Erlang 19 and earlier is no
longer supported.
The current Dialyzer implementation still supports earlier
.beam files and such may also be removed in future versions.
|
|
With 'export_all' it is easy to add a new test case function
and forget to add its name to the list of test cases to run.
While we are it, remove unused functions and add the forgotten
test case on_load_inline/1.
|
|
It has not been used for ages.
|
|
|
|
|
|
|
|
long_string/1 was written to test that long string were handled
efficiently in beam_asm. Strings used to be stored in the string
table chunk, but are currently literals.
There does not seem that this test case is likely to find any bugs.
|
|
|
|
beam_utils_SUITE didn't exist when the two test cases were written.
|
|
|
|
Obsoleted by guard_SUITE (especially literal_type_tests/1).
|
|
|
|
We used to put code that would crash the compiler into
compilation_SUITE_data. That way we would have a failing test case to
remind us to fix a bug.
Nowadays, we generally fix the bug and write the test case at the same
time. Therefore it makes more sense to put the test code directly into
a test suite.
Move out bin_syntax_1 through bin_syntax_5 test cases. Scrap
bin_syntax_6 because it does not longer seems to be relevant.
While we are it, rename the fun_shadow/1 test to size_shadow/1. Also
make sure that the code produces the correct result.
|
|
|
|
|
|
|
|
|
|
|
|
Those clause are obsolete and never used by common_test.
|
|
The macro ?t is deprecated. Replace its use with 'test_server'.
|
|
|
|
?config is ugly and not recommended. Use proplists:get_value/2
instead.
|
|
Either rely on the default 30 minutes timetrap, or set the timeout
using the supported methods in common_test.
|
|
As a first step to removing the test_server application as
as its own separate application, change the inclusion of
test_server.hrl to an inclusion of ct.hrl and remove the
inclusion of test_server_line.hrl.
|
|
|
|
|
|
It is not necessary to compile the compile three times. After the
second compilation, we compare the generated .beam files with the
.beam files that were used when compiling them. Doing one more
round will not find more bugs.
While we are it, remove the ?line macros and the unused make_current/1
function.
|
|
Don't unload modules using BIFs; use the code server to ensure
that code:all_loaded/0 only lists code that is actually loaded.
|
|
I originally decided that in 'value' context, rewriting a let statement
where the variables were not in the body to a sequence was not worth
it, because the variables would be unused in only one let in a
thousand lets (roughly).
I have reconsidered.
The main reason is that if we do the rewrite, core_lib:is_var_used/2
will be used much more frequently, which will help us to find bugs
in it sooner.
Another reason is that the way letify/2 is currently implemented
with its own calls to core_lib:is_var_used/2 is only safe as long
as all the bindings are independent of each other. We could make
letify/2 smarter, but if we introduce this new optimization there
is no need.
Measuring compilation speed, I have not seen any significant slowdown.
It seems that although core_lib:is_var_used/2 is called much more
frequently, most calls will be fast because is_var_used/2 will quickly
find a use of the variable.
Also add a test case to cover a line opt_guard_try/1 that was
no longer covered.
|
|
|
|
re needs unicode option
|
|
|
|
Before running a test case named testcase/1, common_test will call
testcase/0 (the info function). Exceptions and illegal return values
would be silently ignored. In a planned update to common_test, errors
will instead cause the test case to fail.
The test case otp_8949_a/1 has a helper function called otp_8949_a/0.
Rename it to do_otp_8949_a/0.
While at it, also fix a copy and paste bug in the list of test cases.
otp_8949_a was run twice; otp_8949_b was never run.
|
|
|
|
Commits 53bd4974a101 and 726f6e4c7afe simplified the handling of
match_fail (used to generated exceptions such as 'function_clause')
by first rewriting them to a call to erlang/error{1,2} and later
rewriting them to specialized BEAM instructions (to reduce the
code size).
There was one flaw, though, which only was exposed when more
aggressive optimizations were added in c3b60f86c622. Here is an
example to explain it:
t(V) ->
fun(get) -> V end.
The following BEAM code will be initially generated for the fun:
{function, '-t/1-fun-0-', 2, 5}.
{label,1}.
{line,[{location,"t.erl",5}]}.
{func_info,{atom,t},{atom,'-t/1-fun-0-'},2}.
{label,2}.
{test,is_eq_exact,{f,2},[{x,0},{atom,get}]}.
{move,{x,1},{x,0}}.
return.
{label,2}.
{test_heap,2,1}.
{put_list,{x,0},nil,{x,1}}.
{move,{atom,function_clause},{x,0}}.
{line,[{location,"t.erl",5}]}.
{call_ext_only,2,{extfunc,erlang,error,2}}.
Translating back to Erlang code, that would be roughly:
'-t/1-fun-0-'(get, V) -> V;
'-t/1-fun-0-'(Arg1, _) -> erlang:error(function_clause, [Arg1]).
Note that the second argument (the free variable V) is not included
in the call to erlang:error/2.
The beam_except pass will simplify the code to:
{function, '-t/1-fun-0-', 2, 8}.
{label,1}.
{line,[{location,"t.erl",5}]}.
{func_info,{atom,t},{atom,'-t/1-fun-0-'},2}.
{label,2}.
{test,is_eq_exact,{f,1},[{x,0},{atom,get}]}.
{move,{x,1},{x,0}}.
return.
The code has been shortened by jumping to the func_info/3 instruction.
Translating back to Erlang:
'-t/1-fun-0-'(get, V) -> V;
'-t/1-fun-0-'(Arg1, Arg2) -> erlang:error(function_clause, [Arg1,Arg2]).
it is clear that both arguments are now included in the
'function_clause' exception, even though the initially generated
code only included the first argument.
That is no problem in this particular case, but for some more complex
funs, optimizing the first version based on variable usage could make
the second version unsafe.
I rejected the following potential solutions:
- Including the free arguments in the call to erlang:error/2:
'-t/1-fun-0-'(get, V) -> V;
'-t/1-fun-0-'(Arg1, Arg2) -> erlang:error(function_clause, [Arg1,Arg2]).
Unfortunately, that is tricky. The free variables are only known
after the second pass in v3_kernel when variable usage has been
calculated. We would need to add a third pass (only for funs) that
would the free arguments to the second argument for erlang:error/2
*and* update the variable usage information.
- Calling beam_except earlier, from within beam_block before any
optimizations based on variable usages are done. But means that the
problem could reappear in some other form in the future when other
updates are done to the code generator and/or optimization passes.
The solution I have chosen is to modify beam_except to only replace
a call to erlang:error(function_class, Args) if the length of Args
is the same as the arity in the func_info/3 instruction. The code
will be slightly larger. Also, the free variables for funs and list
comprehensions will no longer be included in the function_clause
exception (that could be less confusing, but it also means less
information during debugging).
|
|
|
|
Run testcases in parallel will make the test suite run slightly
faster. Another reason for this change is that we want more testing
of parallel testcase support in common_test.
|
|
The bs_match_string instruction is used to speed up matching of
binary literals. For example, given this source code:
foo1(<<1,2,3>>) -> ok.
The matching part of the code will look like:
{test,bs_start_match2,{f,1},1,[{x,0},0],{x,0}}.
{test,bs_match_string,{f,3},[{x,0},24,{string,[1,2,3]}]}.
{test,bs_test_tail2,{f,3},[{x,0},0]}.
Nice. However, if we do a simple change to the source code:
foo2(<<1,2,3>>) -> ok;
foo2(<<>>) -> error.
the resulting matching code will look like (sligthly simplified):
{test,bs_start_match2,{f,4},1,[{x,0},0],{x,0}}.
{test,bs_get_integer2,{f,7},1,[{x,0},{integer,8},1,Flags],{x,1}}.
{test,is_eq_exact,{f,8},[{x,1},{integer,1}]}.
{test,bs_match_string,{f,6},[{x,0},16,{string,[2,3]}]}.
{test,bs_test_tail2,{f,6},[{x,0},0]}.
{move,{atom,ok},{x,0}}.
return.
{label,6}.
{bs_restore2,{x,0},{atom,start}}.
{label,7}.
{test,bs_test_tail2,{f,8},[{x,0},0]}.
That is, matching of the first byte is not combined into the
bs_match_string instruction that follows.
Fix this problem by allowing a bs_match_string instruction to be
used if all clauses will match either the same integer literal or
the empty binary.
|
|
|
|
The inliner was ignorant of on_load functions and would discard them
(unless they were exported or referenced).
Noticed-by: Yiannis Tsiouris <[email protected]>
|
|
On my Mac Pro with 8 cores, this change make self_compile/1 more
than twice as fast, and self_compile_old_inliner/1 more than 4 times
faster.
|
|
In the self compilation test cases, the compiler compiles itself
and runs the newly compiled version on a slave node. Having the
cover server starting on the slave node defeats the purpose of
the test, since it will load the SAME cover-compiled code on the
slave node. (It will also be slower, but will not improve coverage
since it compiles the same source files again.)
Use a shielded node to prevent the cover server from getting
started on the slave node.
|
|
In the v3_life pass, it is assumed that a 'match_fail' primop
only occur at the top-level and at the end of a function.
But this code:
do_split_cases(A) ->
case A of
x ->
Z = dummy1;
_ ->
Z = dummy2,
a=b
end,
Z.
will be optimized by sys_core_fold to the following code:
'split_cases'/1 =
fun (_cor0) ->
let <_cor7,Z> =
case _cor0 of
<'x'> when 'true' ->
< 'dummy1','dummy1' >
<_cor6> when 'true' ->
%% Here follows a 'match_fail' primop inside
%% multiple return values:
< primop 'match_fail'({'badmatch','b'}),'dummy2' >
end
in
Z
moving the 'match_fail' primop into a "values" construction.
In the future, we would like to get rid of the v3_life pass (it is
there for historical reasons), so in the mean-time we prefer to not
add more code to it by generalizing the handling of 'match_fail'.
Since the 'match_fail' primop can be simulated by erlang:error/{1,2},
the simplest solution is to translate 'match_fail' to a call to
erlang:error/{1,2} in v3_kernel and remove the handling of
'match_fail' in v3_life and v3_codegen.
It is tempting to get rid of 'match_fail' also in the Core Erlang
format, but there are two issues:
- Removing the support for 'match_fail' completely may break tools
that generate Core Erlang code. We should not do that in a minor
release.
- There is no easy way to generate a 'function_clause' exception
that will remain correct if it will be inlined into another
function. (Calling "erlang:error(function_clause, Args)" is
fine only if it is not inlined into another function.) A good
solution probably involves introducing new instructions, which
is better done in a major release.
Noticed-by: Håkan Matsson
Minimized-test-case-by: Erik Søe Sørensen
|
|
In 3d0f4a3085f11389e5b22d10f96f0cbf08c9337f (an update to conform
with common_test), in all test_lib:recompile(?MODULE) calls, ?MODULE
was changed to the actual name of the module. That would cause
test_lib:recompile/1 to compile the module with the incorrect
compiler options in cloned modules such as record_no_opt_SUITE,
causing worse coverage.
|
|
|
|
|
|
|