Age | Commit message (Collapse) | Author |
|
The put_map_assoc and put_map_exact instructions in the run-time
system will support that the target register is the same as one of
the source registers. Teach the code generator to take advantage
of that.
The disadvantages of not reusing register when possible is that the
garbage collector may retain dead terms longer than necessary.
|
|
|
|
get_ianno/1 would retrieve either a bare annotation or an
annotation wrapped in an #a{} record. In both cases, it would
return a wrapped annotation.
We can replace the calls to get_ianno/1 with calls to get_anno/1,
because the argument is always an #iclause{} and all iclause records
are always initialized with a wrapped annotation.
|
|
If we have a sequence of put_map_* instructions operating on the
same map, it will be more efficient if we can have one is_map/2
instruction before put_map_* instructions, so that each put_map_*
does not need to test whether the argument is a map.
|
|
When calculating the number of live registers for allocation
instruction, it is not always safe to start with the number of live
registers at the start of the block. We will need to use the register
map to know whether there are any holes (dead registers) that are not
subsequently filled.
If the allocation instruction already has a number of live registers
calculated, there is nothing to be gained by raising it.
|
|
As a preparation for fixing a bug, introduce a complete register
map in the '%live' annotations.
|
|
|
|
|
|
* bjorn/compiler/beam_jump-share:
beam_jump: Don't jump into the middle of a 'try'
|
|
* bjorn/compiler/sys_core_fold:
sys_core_fold: Fix non-tail-recursive list comprehensions
|
|
* bjorn/compiler/beam_jump:
beam_jump: Eliminate pathologically slow compilation
|
|
* bjorn/compiler/beam_validator:
beam_validator: Exit immediately on crashes
beam_validator: Remove the file/1 and files/1 functions
beam_validator: Remove support for all other unsupported instructions
beam_validator: Remove support for unsupported bit syntax instructions
|
|
649d6e73 simplified opt_simple_let_2/6 a little bit too much,
so that some list comprehensions in effect context were not
properly tail-recursive.
|
|
José Valim noticed that code such as:
match(1) -> 1;
match(2) -> 2;
match(3) -> 3;
...
match(1000) -> 1000.
would compile very slowly. The culprit is opt/3 in beam_jump.
What happens is that opt/3 will rewrite this code:
select_val ...
label 1
jump 1000
label 2
jump 1000
...
label 999
jump 1000
label 1000
return
very slowly to this code:
select_val ...
label 1
label 2
...
label 999
label 1000
return
The reason for the slowness is that when opt/3 sees this
sequence:
label 1
jump 1000
...
it will remove the label (storing it in a dictionary),
and pick up the previously processed instruction from
the accumulator:
select_val ...
jump 1000
label 2
jump 1000
...
That is done in order to process all labels before the
jump and also to get rid of the jump instruction if the
previous instruction is an "unreachable after". In this
case, re-processing the sequence will remove the now
unreachable jump instruction:
select_val ...
label 2
jump 1000
...
The problem is that re-processing the select_val instruction is
expensive. The instruction has a list of 1000 labels, all of which
will be added (again) to the set of referenced labels. The
select_val instruction will be re-processed again and again
until all labels and jumps have been gobbled up.
In the original version of beam_jump, opt/3 was not called
repeatedly until a fixpoint was found, but was expected to do
all its optimizations in one pass. The fixpoint iteration was
added later.
Since we now have the fixpoint iteration, there is no need
to do everything in a single pass. When we encounter a jump, we will
collect all previously seen labels and put them into the dictionary,
and then we will move on.
As a further optimization, we will look for sequences like this:
jump X
label ...
jump X
and replace them with:
label ...
jump X
In the example above, that will avoid 1000 updates of the dictionary.
After applying this optimization, compilation of the
pattern went from roughly 55 s to 0.1 s for the example
above but with 10000 clauses.
Reported-by: José Valim
|
|
The code sharing optimization could produce a jump into the
middle of a 'try' block. beam_validator would reject the code.
Reported-by: Ulf Norell
|
|
The beam_validator catches all exceptions and collect them.
It makes more sense to don't catch 'error' and 'exit' exceptions,
but to just print out the name of the current function and pass
on the exception just as all other compilation passes do. Those
kind of exceptions are the symptoms of the kind of severe but
easily catched bugs that occur during development.
|
|
Before the beam_validator was added as compiler pass, it was a
standalone module that could analyse existing .beam files and .S
files.
Even though beam_validator has been part of the compiler for many
releases, it still supports the analysis of .beam and .S files.
To reduce the code bloat and to improve coverage of beam_validator,
remove the file/1 and files/1 functions and all associated help
functions. We'll need to update the test suite, since some of the
checked in .S files have errors that beam_validator ignores, but
that will not be accepted when running them throught the compiler
using the 'from_asm' option. In particular, we will need to export
all functions that should be validated (since the beam_clean pass
will remove any function that is not possible to call).
|
|
|
|
|
|
The assert_strict_literal_termorder/1 function is used to validate the
get_map_elements and has_map_fields instructions. In neither case is
it useful to allow an empty lists of fields, so we should no longer
allow an empty list.
The mmap/2 function is cute, but it is used in only one place, so it
is much simpler to write a special-purpose function to extract the
keys from the list of map pairs.
|
|
The has_map_fields test was not recognized in is_pure_test/1,
because beam_a has rewritten the {list,_} part of instruction.
|
|
|
|
|
|
|
|
There is no need to always introduce a new variable to hold a map.
Maps are novars (constructs that don't export variables).
|
|
In cd1eaf0116190, opt_simple_let_2/6 was updated to do the same
optimizations in 'value' and 'effect' context.
Coalesce the clauses for 'value' and 'effect' context to one to
make it clear that they do the same thing.
|
|
The code for inlining high-order functions from the lists module
is quite annoying when you try to navigate the sys_core_fold
module. Break out the code into its own module.
|
|
Those functions allow us to clean up some more code.
|
|
Introduce access functions to hide the low-level details of how
type information is implemented.
|
|
|
|
Essentially, core_lib:literal_value/1 became useless when literals
were introduced in R12. Since we always create #c_literal{} records
whenever possible, literal_value/1 would *only* succeed when it was
passed a #c_literal{} argument.
|
|
We are about to deprecate core_lib:get_anno/1 and core_lib:set_anno/2,
so we should stop using them in the compiler.
|
|
Attributes must be literals. Since 1fcdcd50, both core_parse and
v3_core guarantees all Core Erlang terms that may be represented as
literals in fact are represented as literals.
Therefore, we no longer need to call core_lib:is_literal/1, but
can test for a #c_literal{} directly.
|
|
This module is the last that uses -include() instead of
include_lib(). With that change, a quick smoke test can
be done simply like this:
PATH=$ERL_TOP/bin:$PATH erlc -W0 *.erl
Without the change, you would also need to add
-I $ERL_TOP/lib/test_server/include
to the command line.
|
|
Rename add_scope/2 to sub_add_scope/2 to be similar in naming as
the other functions that operates on #sub{} (in particular,
sub_subst_scope/1). Also, move the definition to be near to the
other sub_* functions.
|
|
Compiling the following function:
f(V) when not (bar and V) -> true; %Line 4
f(_) -> false.
would produce the following warnings:
no_file: Warning: the call to is_boolean/1 has no effect
t.erl:4: Warning: the guard for this clause evaluates to 'false'
t.erl:4: Warning: use of operator '=:=' has no effect
Two of the warnings refer to calls to is_boolean/1 and '=:='/2 which
v3_core added when translating the code to Core Erlang. The only
relevant warning is:
t.erl:4: Warning: the guard for this clause evaluates to 'false'
Suppress the other two warning by marking the compiler-generated
calls with a 'compiler_generated' annotation.
|
|
|
|
|
|
Core Erlang annotations are supposed to be a list of terms. v3_core
could temporarily stuff a record in the 'anno' field of a Core Erlang
record. That will cause Dialyzer warnings if we would tighten the
type specs for annotations. (We want to tighten the warnings in order
to catch more real problems.)
Avoid abusing the annotation by wrapping the entire Core Erlang
record in a #isimple{} record.
Reported-by: Kostis Sagonas
|
|
* bjorn/compiler/dup-bug-fix/OTP-12453:
Teach case_opt/3 to avoid unnecessary building
sys_core_fold: Optimize let statements more aggressively
Suppress warnings for expressions that are assigned to '_'
trace_bif_SUITE: Ensure that a call to time/0 is not removed
|
|
* bjorn/compiler/map-core-syntax/OTP-12454:
Make the syntax for map pairs readable
|
|
* maint:
Update primary bootstrap
Correct unsafe optimization of '==' and '/='
Conflicts:
bootstrap/lib/compiler/ebin/sys_core_fold.beam
|
|
Since '=:=' is cheaper than '==', the compiler tries to replace
'==' with '=:=' if the result of comparison will be the same.
As an example:
V == {a,b}
can be rewritten to:
V =:= {a,b}
since the literal on the right side contains no numeric values
that '==' would compare differently to '=:='.
With the introduction of maps, we will need to take them into
account. Since the comparison of maps is planned to change in 18.0,
we will be very conservative and only do the optimization if
both keys and values are non-numeric.
|
|
Given this code:
f(S) ->
F0 = F1 = {S,S},
[F0,F1].
case_opt/3 would "optimize" it like this:
f(S) ->
F1 = {S,S},
F0 = {S,S},
[F0,F1].
Similarly, this code:
g({a,_,_}=T) ->
{b,
[_,_] = [T,none],
x}.
would be rewritten to:
g({a,Tmp1,Tmp2}=T) ->
Tmp3 = {a,Tmp1,Tmp2},
{b,
[Tmp3,none],
x}.
where the tuple is rebuilt instead of using the T variable.
Rewrite case_opt/3 to be more careful while optimizing.
|
|
I originally decided that in 'value' context, rewriting a let statement
where the variables were not in the body to a sequence was not worth
it, because the variables would be unused in only one let in a
thousand lets (roughly).
I have reconsidered.
The main reason is that if we do the rewrite, core_lib:is_var_used/2
will be used much more frequently, which will help us to find bugs
in it sooner.
Another reason is that the way letify/2 is currently implemented
with its own calls to core_lib:is_var_used/2 is only safe as long
as all the bindings are independent of each other. We could make
letify/2 smarter, but if we introduce this new optimization there
is no need.
Measuring compilation speed, I have not seen any significant slowdown.
It seems that although core_lib:is_var_used/2 is called much more
frequently, most calls will be fast because is_var_used/2 will quickly
find a use of the variable.
Also add a test case to cover a line opt_guard_try/1 that was
no longer covered.
|
|
In c34ad2d5, the compiler learned to silence some warnings for
expressions that were explicitly assigned to the '_' variable,
as in this example:
_ = list_to_integer(S),
ok
That commit intentionally only made it possible to silence warnings
for BIFs that could cause an exception. Warnings would still be
produced for:
_ = date(),
ok
because date/0 can never fail and thus making the call completely
useless. The reasoning was that such warnings can always be
eliminated by eliminating the offending code.
While that is true, there is the question about rules and their
consistency. It is surprising that '_' can be used to silence
some warnings, but has no effect on other warnings.
Therefore, we will teach the compiler to silence warnings for
the following constructs:
* Calls to safe BIFs such as date/0
* Expressions that will cause an exception such as 'X/0'
* Terms that are built but not used, such as '{x,X}'
|
|
* maint:
Update primary bootstrap
Be more careful about map patterns when evalutating element/2
Do not convert map patterns to map expressions
Conflicts:
bootstrap/lib/compiler/ebin/sys_core_fold.beam
lib/compiler/test/match_SUITE.erl
|
|
We must not convert map patterns to map expressions.
|
|
In code such as:
case {a,Map} of
{a,#{}}=T ->
T
end
we must NOT rewrite a map pattern to a map expression like this:
case Map of
#{} ->
{a,#{}}
end
because the pattern '#{}' will match any map, but the expression
'#{}' will construct an empty map.
|
|
Use the same syntax for map pairs in Core Erlang code as in the
Erlang Code. This Erlang code:
M#{x:=42,y=>1}
will look like this in Core Erlang:
~{'x':=42,'y'=>1|M}~
|