Age | Commit message (Collapse) | Author |
|
* anders/diameter/grouped_errors/OTP-12721:
Fix decode of Grouped AVPs containing errors
Simplify logic
Simplify logic
|
|
RFC 6733 says this of Failed-AVP in 7.5:
In the case where the offending AVP is embedded within a Grouped AVP,
the Failed-AVP MAY contain the grouped AVP, which in turn contains
the single offending AVP. The same method MAY be employed if the
grouped AVP itself is embedded in yet another grouped AVP and so on.
In this case, the Failed-AVP MAY contain the grouped AVP hierarchy up
to the single offending AVP. This enables the recipient to detect
the location of the offending AVP when embedded in a group.
It says this of DIAMETER_INVALID_AVP_LENGTH in 7.1.5:
The request contained an AVP with an invalid length. A Diameter
message indicating this error MUST include the offending AVPs
within a Failed-AVP AVP. In cases where the erroneous AVP length
value exceeds the message length or is less than the minimum AVP
header length, it is sufficient to include the offending AVP
header and a zero filled payload of the minimum required length
for the payloads data type. If the AVP is a Grouped AVP, the
Grouped AVP header with an empty payload would be sufficient to
indicate the offending AVP. In the case where the offending AVP
header cannot be fully decoded when the AVP length is less than
the minimum AVP header length, it is sufficient to include an
offending AVP header that is formulated by padding the incomplete
AVP header with zero up to the minimum AVP header length.
The AVPs placed in the errors field of a diameter_packet record are
intended to be appropriate for inclusion in a Failed-AVP, but neither of
the above paragraphs has been followed in the Grouped case: the entire
faulty AVP (non-faulty components and all) has been included. This made
it impossible to identify the actual faulty AVP in all but simple case.
This commit adapts the decode to the RFC, and implements the suggested
single faulty AVP, nested in as many Grouped containers as required.
The best-effort decode of Failed-AVP in answer messages, initially
implemented in commit 0f9cdbaf, is also applied.
|
|
Testing is_failed() is unnecessary since put/2 a second time will
return a previously put 'true'.
|
|
Failed == undefined implies is_failed() == true. This was true even when
the code was written, in commit c2c00fdd.
|
|
|
|
|
|
* anders/diameter/test/OTP-12767:
Replace config suite call to erlang:now/0
Fix incorrect suite usage of OTP 18 monotonic time
Make tls suite crash more verbosely
|
|
* anders/diameter/17.5.5/OTP-12757:
vsn -> 1.9.2
Update appup for 17.5.5
Fix mangled release note
|
|
* anders/diameter/sctp/OTP-12744:
Fix diameter_sctp listener race
Tweak transport suite failures
Run traffic suite over SCTP
|
|
Commit 4b691d8d made it possible for accepting transport processes to be
started concurrently, and commit 77c1b162 adapted diameter_sctp to this,
but missed that the publication of the listener process in diameter_reg
has to precede the return of its start function. As a result, concurrent
starts could result in multiple listener processes.
|
|
Make anything but a comm_up sctp_assoc_change crash. Make timeouts more
reasonable.
|
|
Previously it was only run over TCP.
Configure a pool of accepting processes since simultaneous connections
are otherwise prone to rejection, as discussed in commit 4b691d8d.
Tweak timeouts to more reasonable values.
|
|
To remove a compilation warning with OTP 18.
|
|
Value was used as strictly increasing when it's only non-decreasing,
causing testcases to fail.
|
|
To see why it's failing on at least one test machine.
|
|
|
|
- OTP-12741: disfunctional counters
- OTP-12744: diameter_sctp race
No load order requirements.
|
|
|
|
The message was regarded as unknown if the answer message in question
set the E-bit and the application dictionary was not the common
dictionary.
|
|
That is, outgoing answer messages received in response to a
handle_request callback having returned {relay, Opts}.
|
|
To clarify what it is that's being computed, which isn't entirely
obvious. No functional change, just renaming.
|
|
As the first step in starting to count outgoing, relayed answer
messages.
|
|
An incoming Diameter message is either a request, an answer to an
outstanding request, or an unexpected answer. The latter weren't
counted, but are now counted on keys of this form:
{pid(), {{unknown, 0}, recv, discarded}}
The form of the second element is similar to those of other counters,
like:
{{relay, 0|1}, send|recv, invalid_error_bit}
Compare this to the key used when counting known answers:
{{ApplicationId, CommandCode, 0}, recv}
The application id and command code aren't included so as not to count
on arbitrary keys, a topic last visited in commit 49e8b11c.
|
|
To differentiate between requests and answers, in analogy with relay
counters. This isn't backwards compatible, but these counters aren't yet
documented.
|
|
Commit 49e8b11c broke the counting of relayed message, causing them to
be accumulated as unknown messages.
|
|
Commit a1df50b3 broke result code counters in the case of answer
messages sent as a header/avp lists (unless the avps, untypically, set
the name field), and for answers sent/received in the relay application.
|
|
Which fails for a variety of reasons to be addressed in subsequent
commits.
|
|
Conflicts:
OTP_VERSION
erts/vsn.mk
lib/test_server/src/erl2html2.erl
|
|
|
|
* anders/diameter/17.5.3/OTP-12702:
Fix broken pre-17.4 appup
Update appup for 17.5.3
vsn -> 1.9.1
|
|
* anders/diameter/counters/OTP-12701:
Add counters testcase to 3xxx suite
Fix counting error with unknown application id
Add missing doc wording
|
|
* anders/diameter/result_codes/OTP-12654:
Fix broken traffic testcase
Match harder in traffic suite
Don't confuse Result-Code and Experimental-Result
|
|
The send_error testcase tested that Session-Id in an answer-message was
not undefined, but that's always the case since the AVP has arity 0 or
1. The correct test is that it's a list of length 1, to ensure that
diameter has inserted the session id as expected.
|
|
To ensure that the expected answer messages are received.
|
|
Decode of an answer message not setting the E-bit, and containing
Experiment-Result but not Result-Code, identified Result-Code as the
erroneous when Erroneous-Result-Code was 3xxx. Here's an example (from
trace) of a the errors field after decode:
[{5004,
{diameter_avp,undefined,undefined,false,false,undefined,'Result-Code',
3001,undefined,undefined}}],
The diameter_avp was just constructed from the AVP name and decoded
result, without regard for which result code AVP contained the value.
Fix by extracting the AVP from the incoming message.
|
|
Upgrade instructions have been added for each 17.X release without
adjusting the instructions for preceeding releases: the instructions
have only been sufficient to upgrading one release at a time: 17.0 to
17.1, 17.1 to 17.2, etc.
Conficting load order requirements make smooth upgrade from an
arbitrarily old release impossible. In this case, 17.3 looks to be as
far back as we can go, so require restart from 17.[0-2] or older.
Update the app suite to deal with binary regexps in appup, and to match
version numbers harder.
|
|
Required load order by ticket.
- OTP-12642, extra bit in diameter_avp.data
- OTP-12654, Result-Code/Experimental-Result confusion
- OTP-12701, counting error with unknown Application Id
none
|
|
To start checking that the counters are counting what's expected. The
parent commit fixes a case in which they weren't.
|
|
Statistics could be accumulated on a key like {{23,275,0}, recv} even
though 23 was not the application id of the dictionary in question.
Missed in commits df19c272 and 7816ab2f.
|
|
|
|
|
|
|
|
In the case of a faulty AVP Length (pointing past the end of a message
or not spanning the header), an extra bit is prepended to data bytes in
diameter_avp:collect_avps/1 in order to force a 5014 decode error. The
bit is supposed to be removed as part of the decode in diameter_gen.hrl
but this didn't happen in case of an AVP that unknown to the dictionary
in question.
|
|
=== OTP-17.5 ===
Changed Applications:
- asn1-3.0.4
- common_test-1.10
- compiler-5.0.4
- crypto-3.5
- debugger-4.0.3
- dialyzer-2.7.4
- diameter-1.9
- eldap-1.1.1
- erts-6.4
- hipe-3.11.3
- inets-5.10.6
- kernel-3.2
- mnesia-4.12.5
- observer-2.0.4
- os_mon-2.3.1
- public_key-0.23
- runtime_tools-1.8.16
- ssh-3.2
- ssl-6.0
- stdlib-2.4
- syntax_tools-1.6.18
- test_server-3.8
- tools-2.7.2
- wx-1.3.3
Unchanged Applications:
- cosEvent-2.1.15
- cosEventDomain-1.1.14
- cosFileTransfer-1.1.16
- cosNotification-1.1.21
- cosProperty-1.1.17
- cosTime-1.1.14
- cosTransactions-1.2.14
- edoc-0.7.16
- erl_docgen-0.3.7
- erl_interface-3.7.20
- et-1.5
- eunit-2.2.9
- gs-1.5.16
- ic-4.3.6
- jinterface-1.5.12
- megaco-3.17.3
- odbc-2.10.22
- orber-3.7.1
- ose-1.0.2
- otp_mibs-1.0.10
- parsetools-2.0.12
- percept-0.8.10
- reltool-0.6.6
- sasl-2.4.1
- snmp-5.1.1
- typer-0.9.8
- webtool-0.8.10
- xmerl-1.3.7
Conflicts:
OTP_VERSION
erts/vsn.mk
lib/ssl/vsn.mk
|
|
|
|
|
|
The function is intended to be traced on, to see abnormalities (mostly)
without producing excessive output. In the case of decode failure, the
error reason can be things like {badmatch, HugeBinary}.
Missed in commit 0058430.
|
|
As for the port number in the parent commit, a FQDN can't be arbitrarily
long, at most 255 octets. Make decode fail if it's more.
|
|
A port number is a 16-bit integer, but the regexp used to parse it in
commit 1590920 slavishly followed the RFC 6733 grammar in matching an
arbitrary number of digits. Make decode fail if it's anything more than
5, to avoid doing erlang:list_to_integer/1 on arbitrarily large lists.
Also make it fail if the resulting integer is outside of the expected
range.
|
|
To bound the length of incoming messages that will be decoded. A message
longer than the specified number of bytes is discarded. An
incoming_maxlen_exceeded counter is incremented to make note of the
occurrence.
The motivation is to prevent a sufficiently malicious peer from
generating significant load by sending long messages with many AVPs for
diameter to decode. The 24-bit message length header accomodates
(16#FFFFFF - 20) div 12 = 1398099
Unsigned32 AVPs for example, which the current record-valued decode is
too slow with in practice. A bound of 16#FFFF bytes allows for 5461
small AVPs, which is probably more than enough for the majority of
applications, but the default is the full 16#FFFFFF.
|