Age | Commit message (Collapse) | Author |
|
|
|
This allows us to pass around the context data that
hipe_regalloc_prepass needs cleanly, without using process dictionary or
parameterised modules (like it was previous to this change).
|
|
These will not only be useful for hipe_regalloc_prepass, but also, after
the introduction of a mk_move/2 (or similar) callback, for the purpose
of range splitting.
Since the substitution needed to case over all the instructions, a new
module, hipe_x86_subst, was introduced to the x86 backend.
Due to differences in the 'jtab' field of a #jmp_switch{} between x86
and amd64, it regrettably needed to be duplicated to hipe_amd64_subst.
|
|
Now that all backends do register allocation on a CFG directly and
define the defun_to_cfg/1 callback as the identity function, it can be
removed.
|
|
hipe_regalloc_prepass speeds up register allocation by spilling any temp
that is live over a call (which clobbers all register).
In order to detect these, a new function was added to the target
interface; defines_all_alloc/1, that takes an instruction and returns a
boolean.
|
|
Most x86 passes were either linearise(pass(to_cfg(Code))) or trivially
rewritable to process a CFG. This saves a great deal of time and memory
churn when compiling large programs.
Now, there will only ever be a single Linear->CFG conversion, just after
lowering from RTL, and only ever a single CFG->Linear conversion, just
before the finalise pass. Both of these now happen in hipe_x86_main.
|
|
|
|
|
|
|