Age | Commit message (Collapse) | Author |
|
Preferably customized cipher suites will be based on the default value.
But all may be used as base and hence it will be good to
handle anonymous suites separately as they are intended for testing purposes.
|
|
Authenticated encryption (AE) and authenticated encryption with
associated data (AEAD, variant of AE) is a form of encryption which
simultaneously provides confidentiality, integrity, and authenticity
assurances on the data.
This is more logical value then null that was used, this happened to
work as the AEAD property was derived form other data, but it is confusing!
|
|
|
|
* ingela/ssl/cipher-suites/OTP-14749:
ssl: Use maps for cipher suites internally
|
|
This is a preparation for improvements to come in option handling and
support for TLS-1.3
|
|
|
|
|
|
* ingela/dtls/no-packet-upd/OTP-14664:
ssl: No support for packet option over unreliable transport
|
|
* ingela/ssl/extend-hostname-check/OTP-14632/OTP-14655:
ssl: Fix test cases to work on all test platforms
public_key: Fix dialyzer spec
ssl: Sessions must be registered with SNI if exists
ssl: Extend hostname check to fallback to checking IP-address
public_key, ssl: Handles keys so that APIs are preserved correctly
|
|
|
|
If no SNI is available and the hostname is an IP-address also check
for IP-address match. This check is not as good as a DNS hostname check
and certificates using IP-address are not recommended.
|
|
The functions are not performance critical. Will be used
when errors occurs, CRL data base is managed or legacy OpenSSL names
are used for ciphers.
|
|
Test that DTLS handles "high" level packet types as http-packet types.
Low level packet type as {packet, 2} we will consider later if they
should be relevant to support or not.
|
|
|
|
Current implementation expects Seed to be a list.
Correct type specification to match.
|
|
|
|
|
|
When the server_name_indication is sent automatize the
clients check of that the hostname is present in the
servers certificate. Currently server_name_indication shall
be on the dns_id format. If server_name_indication is disabled
it is up to the user to do its own check in the verify_fun.
|
|
|
|
Note this is a change form how it works for earlier versions that will
send the first hello message on the lowest supported version.
From RFC 5246
Appendix E. Backward Compatibility
E.1. Compatibility with TLS 1.0/1.1 and SSL 3.0
Since there are various versions of TLS (1.0, 1.1, 1.2, and any
future versions) and SSL (2.0 and 3.0), means are needed to negotiate
the specific protocol version to use. The TLS protocol provides a
built-in mechanism for version negotiation so as not to bother other
protocol components with the complexities of version selection.
TLS versions 1.0, 1.1, and 1.2, and SSL 3.0 are very similar, and use
compatible ClientHello messages; thus, supporting all of them is
relatively easy. Similarly, servers can easily handle clients trying
to use future versions of TLS as long as the ClientHello format
remains compatible, and the client supports the highest protocol
version available in the server.
A TLS 1.2 client who wishes to negotiate with such older servers will
send a normal TLS 1.2 ClientHello, containing { 3, 3 } (TLS 1.2) in
ClientHello.client_version. If the server does not support this
version, it will respond with a ServerHello containing an older
version number. If the client agrees to use this version, the
negotiation will proceed as appropriate for the negotiated protocol.
If the version chosen by the server is not supported by the client
(or not acceptable), the client MUST send a "protocol_version" alert
message and close the connection.
If a TLS server receives a ClientHello containing a version number
greater than the highest version supported by the server, it MUST
reply according to the highest version supported by the server.
A TLS server can also receive a ClientHello containing a version
number smaller than the highest supported version. If the server
wishes to negotiate with old clients, it will proceed as appropriate
for the highest version supported by the server that is not greater
than ClientHello.client_version. For example, if the server supports
TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
proceed with a TLS 1.0 ServerHello. If server supports (or is
willing to use) only versions greater than client_version, it MUST
send a "protocol_version" alert message and close the connection.
Whenever a client already knows the highest protocol version known to
a server (for example, when resuming a session), it SHOULD initiate
the connection in that native protocol.
Note: some server implementations are known to implement version
negotiation incorrectly. For example, there are buggy TLS 1.0
servers that simply close the connection when the client offers a
version newer than TLS 1.0. Also, it is known that some servers will
refuse the connection if any TLS extensions are included in
ClientHello. Interoperability with such buggy servers is a complex
topic beyond the scope of this document, and may require multiple
connection attempts by the client.
Earlier versions of the TLS specification were not fully clear on
what the record layer version number (TLSPlaintext.version) should
contain when sending ClientHello (i.e., before it is known which
version of the protocol will be employed). Thus, TLS servers
compliant with this specification MUST accept any value {03,XX} as
the record layer version number for ClientHello.
TLS clients that wish to negotiate with older servers MAY send any
value {03,XX} as the record layer version number. Typical values
would be {03,00}, the lowest version number supported by the client,
and the value of ClientHello.client_version. No single value will
guarantee interoperability with all old servers, but this is a
complex topic beyond the scope of this document.
|
|
Add session_id and remove undocumented ssl:session_info/1
Add client_random, server_random and master_secret, they will not be included
in ssl:connection_information/1 as they may affect the connections security if
used recklessly.
|
|
|
|
|
|
The new_options_in_accept test is not working yet, however DTLS is still
work in progress and we want to make a progress merge to avoid merge conflicts
with other progress of the ssl application.
|
|
DTLS does not support stream ciphers and needs diffrent
handling of the "#ssl_socket{}" handle .
|
|
The PEM cache handling has proven to be too disruptive of the manager process.
|
|
If a handshake message is really big it could happen that the ssl
process would hang due to failing of requesting more data from the
socket. This has been fixed.
Also added option to limit max handshake size. It has a default
value that should be big enough to handle normal usage and small
enough to mitigate DoS attacks.
|
|
Beta DTLS, not production ready. Only very basically tested, and
not everything in the SPEC is implemented and some things
are hard coded that should not be, so this implementation can not be consider
secure.
Refactor "TLS connection state" and socket handling, to facilitate
DTLS implementation.
Create dtls "listner" (multiplexor) process that spawns
DTLS connection process handlers.
Handle DTLS fragmentation.
Framework for handling retransmissions.
Replay Detection is not implemented yet.
Alerts currently always handled as in TLS.
|
|
As per RFC 4492 Sec 5.1, the preferred order of selection of named
curves is based on client preferences.
Currently, the SSL application only picks entries according to the
absolute order of entries as tracked in a hardcoded list in code.
This patch changes things so that the client-specified order is
preferred. It also allows a mode where the server can be configured to
override the client's preferred order with its own, although the chosen
ECC must still be within both lists.
The configuration is done through the following options:
- `eccs`, shared by clients and servers alike, allows the specification
of the supported named curves, in their preferred order, and may
eventually support more values for explicit primes and so on.
- `honor_ecc_order`, a server-only option, is similar to
`honor_cipher_order` and will, by default let the server pick the
client-preferred ECC, and otherwise pick the server-preferred one.
The default value for `eccs` is the same as before, although the
server-chosen ECC now defaults to the client rather than previous
choice.
A function `ssl:eccs()` has been added that returns the highest
supported ECCs for the library.
|
|
When protocol version is proagated from the DTLS connection processes
state into general ssl functions it must be converted to the corresponding
TLS version.
|
|
These functions call getstat on the underlying TCP socket.
The only way to do this before now was to use a hack, either
by looking inside the #sslsocket{} record directly, or by
not using the SSL listen/accept functions and upgrading
from a TCP socket that is kept around for the purpose of
calling getstat later on.
|
|
ssl servers can recognize sslv2 client hellos to interop with clients
that support higher version of SSL/TLS but also offers sslv2
Conflicts:
lib/ssl/src/tls_connection.erl
|
|
gen_tcp:recv allows this, and if you're doing something like
Transport:recv(Socket, 0, 0), TCP will work and SSL will exit with
function_clause
There were other cases of this throughout the module. This PR cleans
them all up.
|
|
Some legacy TLS 1.0 software does not tolerate the 1/n-1 content
split BEAST mitigation technique. This commit adds a beast_mitigation
SSL option (defaulting to one_n_minus_one) to select or disable the
BEAST mitigation technique.
Valid option values are (one_n_minus_one | zero_n | disabled).
|
|
|
|
Also reduce timing issues in tests
|
|
It was not possible to mix ssl 3 and 4 tuple cipher suites in the
ciphers option.
Some ssl_cipher:suite/1 clauses wrongly returned 3-tuples that
should have been 4 tuples
Conflicts:
lib/ssl/test/ssl_basic_SUITE.erl
|
|
ssl already used crypto:strong_rand_bytes/1 for most operations as
its use cases are mostly cryptographical. Now crypto:strong_rand_bytes/1
will be used everywhere.
However crypto:rand_bytes/1 was used as fallback if
crypto:strong_rand_bytes/1 throws low_entropy, this
will no longer be the case. This is a potential incompatibility.
The fallback was introduced a long time ago for interoperability reasons.
Now days this should not be a problem, and if it is, the security
compromise is not acceptable anyway.
|
|
* henrik/update-copyrightyear:
update copyright-year
|
|
In TLS-1.2 The signature algorithm and the hash function algorithm
used to produce the digest that is used when creating the digital signature
may be negotiated through the signature algorithm extension RFC 5246.
We want to make these algorithm pairs configurable.
In connections using lower versions of TLS these algorithms are
implicit defined and can not be negotiated or configured.
DTLS is updated to not cause dialyzer errors, but needs to get a real
implementation later.
|
|
|
|
* legoscia/fix-ssl-example/PR-976/OTP-13363:
ssl: Modernize utility function
Fix ssl example
|
|
* legoscia/critical-extension-verify-none:
ssl: with verify_none, accept critical extensions
OTP-13377
|
|
Use application:ensure_all_started/2 instead of hard coding dependencies
|
|
Make sure that options only relevant for one role (client|server) is set
to undefined when the other role is invoked. As there are many options to
ssl, and many are optional, we choose to filter out all undefined options
to avoid overwhelming the user with not relevant information.
This way there is no need for any special handling of the role specific options
which is also nice.
|
|
When establishing a TLS connection with {verify, verify_none}, if the
server has a certificate with a critical extension, for example a
"Netscape Cert Type" extension, certificate verification would fail,
which is surprising given that the name of the option suggests that no
verification would be performed.
With this change, certificate extensions marked as critical are
ignored when using verify_none.
|
|
* rlipscombe/rl-ssl-options:
Ensure single 'raw' option is handled correctly
Pass 'raw' options through
OTP-13166
|
|
In Erlang R16B03-1, I've been passing raw options to ssl:listen as
follows, and it's been working fine:
% The constants are defined elsewhere.
LOpts = [{raw, ?IPPROTO_TCP, ?TCP_MAXSEG, <<MSS:32/native>>} | ...],
{ok, LSocket} = ssl:listen(0, LOpts)
In Erlang 17.3, this fails with
{option_not_a_key_value_tuple,{raw,6,2,<<64,2,0,0>>}}
I originally reported this in
http://erlang.org/pipermail/erlang-questions/2014-October/081226.html
I need to pass this particular raw option to ssl:listen, because it
needs to be applied when the socket is first opened -- between inet:open
and prim_inet:listen -- it cannot be applied later by setopts. This
means that it needs to be done by inet_tcp:listen/2 -- well, actually by
inet:open/8, but...
Otherwise it's racey -- a client could connect between prim_inet:listen
and the setopts call. The MSS option is advertised in the SYN,ACK
packet, and can't be changed later.
|
|
|
|
Add possibility to downgrade an SSL/TLS connection to a tcp connection,
and give back the socket control to a user process.
Add application setting to be able to change fatal alert shutdown
timeout, also shorten the default timeout. The fatal alert timeout is
the number of milliseconds between sending of a fatal alert and
closing the connection. Waiting a little while improves the
peers chances to properly receiving the alert so it may
shutdown gracefully.
|