Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
'dtlsv1.2' should not be included in MIN_DATAGRAM_SUPPORTED_VERSIONS
as this is the default when crypto does not have sufficient support for
'tlsv1.2' and 'dtlsv1.2'
|
|
If a handshake message is really big it could happen that the ssl
process would hang due to failing of requesting more data from the
socket. This has been fixed.
Also added option to limit max handshake size. It has a default
value that should be big enough to handle normal usage and small
enough to mitigate DoS attacks.
|
|
|
|
Beta DTLS, not production ready. Only very basically tested, and
not everything in the SPEC is implemented and some things
are hard coded that should not be, so this implementation can not be consider
secure.
Refactor "TLS connection state" and socket handling, to facilitate
DTLS implementation.
Create dtls "listner" (multiplexor) process that spawns
DTLS connection process handlers.
Handle DTLS fragmentation.
Framework for handling retransmissions.
Replay Detection is not implemented yet.
Alerts currently always handled as in TLS.
|
|
As per RFC 4492 Sec 5.1, the preferred order of selection of named
curves is based on client preferences.
Currently, the SSL application only picks entries according to the
absolute order of entries as tracked in a hardcoded list in code.
This patch changes things so that the client-specified order is
preferred. It also allows a mode where the server can be configured to
override the client's preferred order with its own, although the chosen
ECC must still be within both lists.
The configuration is done through the following options:
- `eccs`, shared by clients and servers alike, allows the specification
of the supported named curves, in their preferred order, and may
eventually support more values for explicit primes and so on.
- `honor_ecc_order`, a server-only option, is similar to
`honor_cipher_order` and will, by default let the server pick the
client-preferred ECC, and otherwise pick the server-preferred one.
The default value for `eccs` is the same as before, although the
server-chosen ECC now defaults to the client rather than previous
choice.
A function `ssl:eccs()` has been added that returns the highest
supported ECCs for the library.
|
|
ssl servers can recognize sslv2 client hellos to interop with clients
that support higher version of SSL/TLS but also offers sslv2
Conflicts:
lib/ssl/src/tls_connection.erl
|
|
Some legacy TLS 1.0 software does not tolerate the 1/n-1 content
split BEAST mitigation technique. This commit adds a beast_mitigation
SSL option (defaulting to one_n_minus_one) to select or disable the
BEAST mitigation technique.
Valid option values are (one_n_minus_one | zero_n | disabled).
|
|
Also reduce timing issues in tests
|
|
In TLS-1.2 The signature algorithm and the hash function algorithm
used to produce the digest that is used when creating the digital signature
may be negotiated through the signature algorithm extension RFC 5246.
We want to make these algorithm pairs configurable.
In connections using lower versions of TLS these algorithms are
implicit defined and can not be negotiated or configured.
DTLS is updated to not cause dialyzer errors, but needs to get a real
implementation later.
|
|
|
|
The previous commit - 7b93f5d8a224a0a076a420294c95a666a763ee60 fixed the macro
only in one place.
|
|
Record field types have been modified due to commit 8ce35b2:
"Take out automatic insertion of 'undefined' from typed record fields".
|
|
|
|
* ferd/deny-client-renegotiation:
Add disable client-initiated renegotiation option
Conflicts:
lib/ssl/doc/src/ssl.xml
lib/ssl/src/ssl.erl
OTP-12815
|
|
Client-initiated renegotiation is more costly for the server than the
client, and this feature can be abused in denial of service attempts.
Although the ssl application already takes counter-measure for these
(via cooldown periods between renegotiations), it can be useful to
disable the feature entirely.
This patch adds the `{client_renegotiation, boolean()}' option to the
server-side of the SSL application (defaulting to `true' to be
compatible with the current behaviour).
The option disables the ability to do any renegotiation at all in the
protocol's state, reusing the existing denial code, but without opening
the code path that sets up a timed message to eventually reopen it up.
|
|
Dialyzer warned about the incorrect match of Packets. Code
was refactored and the problem avoided in the process.
Dialyzer warned that the empty tuple is not a function as the contract
said it should be. Changed the handling of the sni_fun default value to be
undefined and added it to the contract.
|
|
The newly added function sni_fun allows dynamic update of SSL options
like keys and certificates depending on different SNI hostname, rather
than a predefined rules of SSL options.
|
|
|
|
|
|
This commit adds support for RFC7301, application-layer protocol
negotiation. ALPN is the standard based approach to the NPN
extension, and is required for HTTP/2.
ALPN lives side by side with NPN and provides an equivalent
feature but in this case it is the server that decides what
protocol to use, not the client.
When both ALPN and NPN are sent by a client, and the server is
configured with both ALPN and NPN options, ALPN will always
take precedence. This behavior can also be found in the OpenSSL
implementation of ALPN.
ALPN and NPN share the ssl:negotiated_protocol/1 function for
retrieving the negotiated protocol. The previously existing
function ssl:negotiated_next_protocol/1 still exists, but has
been deprecated and removed from the documentation.
The tests against OpenSSL require OpenSSL version 1.0.2+.
|
|
|
|
Conflicts:
lib/ssl/src/ssl_cipher.erl
lib/ssl/test/ssl_basic_SUITE.erl
|
|
|
|
disable option
|
|
|
|
disable option
Conflicts:
lib/ssl/src/ssl_cipher.erl
lib/ssl/src/ssl_record.erl
lib/ssl/src/tls_record.erl
lib/ssl/test/ssl_cipher_SUITE.erl
|
|
|
|
Check that the certificate chain ends with a trusted ROOT CA e.i. a
self-signed certificate, but provide an option partial_chain to
enable the application to define an intermediat CA as trusted.
TLS RFC says:
"unknown_ca
A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not
be located or couldn't be matched with a known, trusted CA. This
message is always fatal."
and also states:
"certificate_list
This is a sequence (chain) of certificates. The sender's
certificate MUST come first in the list. Each following
certificate MUST directly certify the one preceding it. Because
certificate validation requires that root keys be distributed
independently, the self-signed certificate that specifies the root
certificate authority MAY be omitted from the chain, under the
assumption that the remote end must already possess it in order to
validate it in any case."
X509 RFC says:
"The selection of a trust anchor is a matter of policy: it could be
the top CA in a hierarchical PKI, the CA that issued the verifier's
own certificate(s), or any other CA in a network PKI. The path
validation procedure is the same regardless of the choice of trust
anchor. In addition, different applications may rely on different
trust anchors, or may accept paths that begin with any of a set of
trust anchors."
|
|
Implement a listen socket tracker process that holds the emulated socket
options so that it is possible to implement a destructive ssl:setopts
on SSL/TLS listen sockets without changing the options of the internal
socket as we want that socket to have the internal socket option values.
|
|
|
|
Conflicts:
lib/ssl/src/dtls_record.erl
|
|
Move dilayzer types from include file to erl file and use
-export_type
|
|
public_key:private_key/0 was referenced but undefined, and lib/ssl had a
local definition of private_key/0.
To fix that, make the following changes:
* add public_key:private_key/0 type
* document public_key/0 and private_key/0
* fix incorrect definitions and references
|
|
HonorCipherOrder as implemented in Apache, nginx, lighttpd, etc. This
instructs the server to prefer its own cipher ordering rather than the
client's and can help protect against things like BEAST while
maintaining compatability with clients which only support older ciphers.
This code is mostly written by Andrew Thompson, only the test case was
added by Andreas Schultz.
|
|
|
|
New design : ssl - Main
tls - Reflect tls specific semantics
dtls - Reflect dtls specific semantics
|
|
- Set to disable to explicitly disable SNI support.
- Set to a hostname when upgrading from TCP to TLS.
|
|
|
|
Common functions will be located in ssl_handshake.erl while
specific functions will be located in tls_handshake.erl and dtls_handshake.erl
|
|
Conflicts:
lib/inets/doc/src/notes.xml
lib/inets/src/http_lib/http_transport.erl
lib/inets/src/inets_app/inets.appup.src
lib/inets/vsn.mk
lib/ssl/doc/src/notes.xml
lib/ssl/src/ssl.appup.src
lib/ssl/src/ssl.erl
lib/ssl/src/ssl_internal.hrl
lib/ssl/src/tls_connection.erl
lib/ssl/vsn.mk
|
|
added as option to inets conf file
|
|
|
|
|
|
|
|
|
|
|
|
Types in a record where wrongly type specified, did not include
undefined. Make them comments for now, maybe we will specify internal
records with dialyzer types later, but as the other record fields are
not specified at the moment, with dialyzer types, make the code
consistent.
|