Age | Commit message (Collapse) | Author |
|
* henrik/update-copyrightyear:
update copyright-year
|
|
|
|
In TLS-1.2 The signature algorithm and the hash function algorithm
used to produce the digest that is used when creating the digital signature
may be negotiated through the signature algorithm extension RFC 5246.
We want to make these algorithm pairs configurable.
In connections using lower versions of TLS these algorithms are
implicit defined and can not be negotiated or configured.
DTLS is updated to not cause dialyzer errors, but needs to get a real
implementation later.
|
|
In ssl_tls_dist_proxy:accept_loop/3, handle {error, closed} by
exiting normally. This prevents a spurious error report at node
shutdown.
|
|
|
|
|
|
* legoscia/tls_ipv6_dist:
Add inet6_tls_dist, for TLS distribution over IPv6
Conflicts:
lib/ssl/src/ssl_tls_dist_proxy.erl
OTP-13391
|
|
|
|
* legoscia/fix-ssl-example/PR-976/OTP-13363:
ssl: Modernize utility function
Fix ssl example
|
|
|
|
* legoscia/crl-check-without-dp:
Be suspicious of certificates without CRL DPs
Refactor ssl_crl_SUITE: extract crl_verify_error/6
OTP-13378
|
|
* legoscia/critical-extension-verify-none:
ssl: with verify_none, accept critical extensions
OTP-13377
|
|
Use application:ensure_all_started/2 instead of hard coding dependencies
|
|
|
|
Older SSL/TLS versions have cipher suites
that look like {key_exchange(), cipher(), MAC::hash()}
and the hash function used by the PRF (Pseudo Random function)
is implicit and always the same for that protocol version.
In TLS 1.2 a cipher suite is
{key_exchange(), cipher(), MAC::hash(), PRF::hash()}.
Internally a cipher suite is always a four tuple but
for backwards compatibility older cipher suites
will be presented as a three tuples, however new cipher suites
should be presented as four tuples.
|
|
Make sure that options only relevant for one role (client|server) is set
to undefined when the other role is invoked. As there are many options to
ssl, and many are optional, we choose to filter out all undefined options
to avoid overwhelming the user with not relevant information.
This way there is no need for any special handling of the role specific options
which is also nice.
|
|
* ia/ssl/remove-default-DES/OTP-13195:
ssl: Remove DES ciphers from default configuration
|
|
DES is not considered secure.
Also correct 'Server Name Indication' support description.
|
|
Previously, if certificate revocation checking was turned on, and a
certificate didn't contain a CRL Distribution Points extension, and
there was no relevant CRL in the cache, then ssl_handshake:crl_check
would accept the certificate even if the crl_check option was set to
reject certificates for which the revocation status could not be
determined. With this change, such certificates will only be accepted
if the crl_check option was set to best_effort.
The process for CRL validation is described in section 6.3 of RFC
5280. The text doesn't mention any special treatment to be given to
certificates without distribution points: it just says "For each
distribution point..." (section 6.3.3), which would leave the
revocation status undetermined, unless there were "any available CRLs
not specified in a distribution point but issued by the certificate
issuer". Thus the result of this algorithm should be UNDETERMINED in
this case, not UNREVOKED, and the crl_check option should govern how
the implementation reacts to this result.
|
|
When establishing a TLS connection with {verify, verify_none}, if the
server has a certificate with a critical extension, for example a
"Netscape Cert Type" extension, certificate verification would fail,
which is surprising given that the name of the option suggests that no
verification would be performed.
With this change, certificate extensions marked as critical are
ignored when using verify_none.
|
|
|
|
When searching for a certificate's issuer in the `CertDB`, verify the signature
against the original DER certificate from the handshake instead of a re-encoding
of the parsed certificate. This avoids false negatives due to differences
between DER encoding implementations of OTP and other platforms.
|
|
|
|
|
|
|
|
* ia/ssl/validator:
ssl: Only start a new session validator if the old one has finished its work
|
|
|
|
* legoscia/tls-dist-listen-ip:
TLS distribution: bind erts socket to localhost
OTP-13300
|
|
Generalise much of inet_tls_dist, so that inet6_tls_dist can reuse it.
|
|
|
|
* legoscia/tls-dist-connect-options:
ssl_dist_SUITE: don't use deprecated functions
TLS distribution: support inet_dist_connect_options
OTP-13285
|
|
|
|
* legoscia/tls_dist_wait_for_code_server:
TLS distribution: wait for code server
OTP-13268
|
|
If the session table is big the validator may not have finshed before
the validation interval is up, in this case we should not start a new
validator adding to the cpu load.
|
|
|
|
|
|
|
|
Allow adding extra options for outgoing TLS distribution connnections,
as supported for plain TCP connections.
|
|
|
|
* legoscia/tls_dist_error_reporting:
Report bad options for outgoing TLS distribution
Save error reasons for TLS distribution connections
Report bad options for TLS distribution connections
OTP-13219
|
|
There is no reason for the socket on the erts side of the proxy to
accept connections from other hosts, so let's bind it to the loopback
interface.
Also change {ip, {127,0,0,1}} to {ip, loopback} for the erts side of
the socket for outgoing connections, to avoid hardcoding IPv4.
|
|
|
|
|
|
If ssl:connect/3 returns an error related to options, let's log that
so we have a chance to see it and fix it.
|
|
When establishing an outbound connection for TLS distribution, let's
hold on to the failure reasons and use them as exit reasons. These
exit reasons are normally invisible, but they can be seen in the logs
after calling net_kernel:verbose(1).
While there are trace messages in the code already, those require
recompiling the module with a special flag, which is more cumbersome
than changing the net_kernel verbosity level at run time.
|
|
|
|
* ia/ssl-prepare-release:
ssl: Correct spec
ssl: Prepare for release
|
|
|
|
|
|
|