aboutsummaryrefslogtreecommitdiffstats
path: root/erts/emulator/beam/beam_emu.c
blob: 1baf3ff7ab2bf56c0c2b742b1625c03dc2414f4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
/*
 * %CopyrightBegin%
 *
 * Copyright Ericsson AB 1996-2017. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * %CopyrightEnd%
 */

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include <stddef.h> /* offsetof() */
#include "sys.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "error.h"
#include "bif.h"
#include "big.h"
#include "beam_load.h"
#include "erl_binary.h"
#include "erl_map.h"
#include "erl_bits.h"
#include "dist.h"
#include "beam_bp.h"
#include "beam_catches.h"
#include "erl_thr_progress.h"
#include "erl_nfunc_sched.h"
#ifdef HIPE
#include "hipe_mode_switch.h"
#include "hipe_bif1.h"
#endif
#include "dtrace-wrapper.h"

/* #define HARDDEBUG 1 */

#if defined(NO_JUMP_TABLE)
#  define OpCase(OpCode)    case op_##OpCode
#  define CountCase(OpCode) case op_count_##OpCode
#  define OpCode(OpCode)    ((Uint*)op_##OpCode)
#  define Goto(Rel) {Go = (int)(UWord)(Rel); goto emulator_loop;}
#  define LabelAddr(Addr) &&##Addr
#else
#  define OpCase(OpCode)    lb_##OpCode
#  define CountCase(OpCode) lb_count_##OpCode
#  define Goto(Rel) goto *((void *)Rel)
#  define LabelAddr(Label) &&Label
#  define OpCode(OpCode)  (&&lb_##OpCode)
#endif

#ifdef ERTS_ENABLE_LOCK_CHECK
#    define PROCESS_MAIN_CHK_LOCKS(P)                   \
do {                                                    \
    if ((P))                                            \
	erts_proc_lc_chk_only_proc_main((P));           \
    ERTS_LC_ASSERT(!erts_thr_progress_is_blocking());   \
} while (0)
#    define ERTS_REQ_PROC_MAIN_LOCK(P)				\
do {                                                            \
    if ((P))                                                    \
	erts_proc_lc_require_lock((P), ERTS_PROC_LOCK_MAIN,     \
				  __FILE__, __LINE__);          \
} while (0)
#    define ERTS_UNREQ_PROC_MAIN_LOCK(P)				\
do {									\
    if ((P))								\
	erts_proc_lc_unrequire_lock((P), ERTS_PROC_LOCK_MAIN);		\
} while (0)
#else
#  define PROCESS_MAIN_CHK_LOCKS(P)
#  define ERTS_REQ_PROC_MAIN_LOCK(P)
#  define ERTS_UNREQ_PROC_MAIN_LOCK(P)
#endif

/*
 * Define macros for deep checking of terms.
 */

#if defined(HARDDEBUG)

#  define CHECK_TERM(T) size_object(T)

#  define CHECK_ARGS(PC)                 \
do {                                     \
  int i_;                                \
  int Arity_ = PC[-1];                   \
  for (i_ = 0; i_ < Arity_; i_++) {      \
	CHECK_TERM(x(i_));               \
  }                                      \
} while (0)
    
#else
#  define CHECK_TERM(T) ASSERT(!is_CP(T))
#  define CHECK_ARGS(T)
#endif

#define GET_BIF_MODULE(p)  (p->info.mfa.module)
#define GET_BIF_FUNCTION(p)  (p->info.mfa.function)
#define GET_BIF_ARITY(p)  (p->info.mfa.arity)
#define GET_BIF_ADDRESS(p) ((BifFunction) (p->beam[1]))
#define TermWords(t) (((t) / (sizeof(BeamInstr)/sizeof(Eterm))) + !!((t) % (sizeof(BeamInstr)/sizeof(Eterm))))


/*
 * We reuse some of fields in the save area in the process structure.
 * This is safe to do, since this space is only actively used when
 * the process is switched out.
 */
#define REDS_IN(p)  ((p)->def_arg_reg[5])

/*
 * Add a byte offset to a pointer to Eterm.  This is useful when the
 * the loader has precalculated a byte offset.
 */
#define ADD_BYTE_OFFSET(ptr, offset) \
   ((Eterm *) (((unsigned char *)ptr) + (offset)))

/* We don't check the range if an ordinary switch is used */
#ifdef NO_JUMP_TABLE
#define VALID_INSTR(IP) ((UWord)(IP) < (NUMBER_OF_OPCODES*2+10))
#else
#define VALID_INSTR(IP) \
   ((SWord)LabelAddr(emulator_loop) <= (SWord)(IP) && \
    (SWord)(IP) < (SWord)LabelAddr(end_emulator_loop))
#endif /* NO_JUMP_TABLE */

#define SET_CP(p, ip)           \
   ASSERT(VALID_INSTR(*(ip)));  \
   (p)->cp = (ip)

#define SET_I(ip) \
   ASSERT(VALID_INSTR(* (Eterm *)(ip))); \
   I = (ip)

/*
 * Register target (X or Y register).
 */

#define REG_TARGET_PTR(Target) (((Target) & 1) ? &yb((Target)-1) : &xb(Target))

/*
 * Special Beam instructions.
 */

BeamInstr beam_apply[2];
BeamInstr beam_exit[1];
BeamInstr beam_continue_exit[1];

BeamInstr* em_call_error_handler;
BeamInstr* em_apply_bif;
BeamInstr* em_call_nif;
BeamInstr* em_call_bif_e;


/* NOTE These should be the only variables containing trace instructions.
**      Sometimes tests are form the instruction value, and sometimes
**      for the referring variable (one of these), and rouge references
**      will most likely cause chaos.
*/
BeamInstr beam_return_to_trace[1];   /* OpCode(i_return_to_trace) */
BeamInstr beam_return_trace[1];      /* OpCode(i_return_trace) */
BeamInstr beam_exception_trace[1];   /* UGLY also OpCode(i_return_trace) */
BeamInstr beam_return_time_trace[1]; /* OpCode(i_return_time_trace) */


/*
 * All Beam instructions in numerical order.
 */

#ifndef NO_JUMP_TABLE
void** beam_ops;
#endif

#define SWAPIN             \
    HTOP = HEAP_TOP(c_p);  \
    E = c_p->stop

#define SWAPOUT            \
    HEAP_TOP(c_p) = HTOP;  \
    c_p->stop = E

#define HEAVY_SWAPIN       \
    SWAPIN;		   \
    FCALLS = c_p->fcalls

#define HEAVY_SWAPOUT      \
    SWAPOUT;		   \
    c_p->fcalls = FCALLS

/*
 * Use LIGHT_SWAPOUT when the called function
 * will call HeapOnlyAlloc() (and never HAlloc()).
 */
#ifdef DEBUG
#  /* The stack pointer is used in an assertion. */
#  define LIGHT_SWAPOUT SWAPOUT
#else
#  define LIGHT_SWAPOUT HEAP_TOP(c_p) = HTOP
#endif

/*
 * Use LIGHT_SWAPIN when we know that c_p->stop cannot
 * have been updated (i.e. if there cannot have been
 * a garbage-collection).
 */

#define LIGHT_SWAPIN HTOP = HEAP_TOP(c_p)

#ifdef FORCE_HEAP_FRAGS
#  define HEAP_SPACE_VERIFIED(Words) do { \
      c_p->space_verified = (Words);	  \
      c_p->space_verified_from = HTOP;	  \
    }while(0)
#else
#  define HEAP_SPACE_VERIFIED(Words) ((void)0)
#endif

#define PRE_BIF_SWAPOUT(P)						\
     HEAP_TOP((P)) = HTOP;  						\
     (P)->stop = E;  							\
     PROCESS_MAIN_CHK_LOCKS((P));					\
     ERTS_UNREQ_PROC_MAIN_LOCK((P))

#define db(N) (N)
#define fb(N) ((Sint)(Sint32)(N))
#define jb(N) ((Sint)(Sint32)(N))
#define tb(N) (N)
#define xb(N) (*(Eterm *) (((unsigned char *)reg) + (N)))
#define yb(N) (*(Eterm *) (((unsigned char *)E) + (N)))
#define Sb(N) (*REG_TARGET_PTR(N))
#define lb(N) (*(double *) (((unsigned char *)&(freg[0].fd)) + (N)))
#define Qb(N) (N)
#define Ib(N) (N)
#define x(N) reg[N]
#define y(N) E[N]
#define r(N) x(N)

/*
 * Check that we haven't used the reductions and jump to function pointed to by
 * the I register.  If we are out of reductions, do a context switch.
 */

#define DispatchMacro()				\
  do {						\
     BeamInstr* dis_next;				\
     dis_next = (BeamInstr *) *I;			\
     CHECK_ARGS(I);				\
     if (FCALLS > 0 || FCALLS > neg_o_reds) {	\
        FCALLS--;				\
        Goto(dis_next);				\
     } else {					\
	goto context_switch;			\
     }						\
 } while (0)

#define DispatchMacroFun()			\
  do {						\
     BeamInstr* dis_next;				\
     dis_next = (BeamInstr *) *I;			\
     CHECK_ARGS(I);				\
     if (FCALLS > 0 || FCALLS > neg_o_reds) {	\
        FCALLS--;				\
        Goto(dis_next);				\
     } else {					\
	goto context_switch_fun;		\
     }						\
 } while (0)

#define DispatchMacrox()					\
  do {								\
     if (FCALLS > 0) {						\
        Eterm* dis_next;					\
        SET_I(((Export *) Arg(0))->addressv[erts_active_code_ix()]); \
        dis_next = (Eterm *) *I;				\
        FCALLS--;						\
        CHECK_ARGS(I);						\
        Goto(dis_next);						\
     } else if (ERTS_PROC_GET_SAVED_CALLS_BUF(c_p)		\
		&& FCALLS > neg_o_reds) {			\
        goto save_calls1;					\
     } else {							\
        SET_I(((Export *) Arg(0))->addressv[erts_active_code_ix()]); \
        CHECK_ARGS(I);						\
	goto context_switch;					\
     }								\
 } while (0)

#ifdef DEBUG
/*
 * To simplify breakpoint setting, put the code in one place only and jump to it.
 */
#  define Dispatch() goto do_dispatch
#  define Dispatchx() goto do_dispatchx
#  define Dispatchfun() goto do_dispatchfun
#else
/*
 * Inline for speed.
 */
#  define Dispatch() DispatchMacro()
#  define Dispatchx() DispatchMacrox()
#  define Dispatchfun() DispatchMacroFun()
#endif

#define Arg(N)       I[(N)+1]

#define GetR(pos, tr)				\
   do {						\
     tr = Arg(pos);				\
     switch (loader_tag(tr)) {			\
     case LOADER_X_REG:				\
        tr = x(loader_x_reg_index(tr));		\
        break;					\
     case LOADER_Y_REG:				\
        ASSERT(loader_y_reg_index(tr) >= 1);	\
        tr = y(loader_y_reg_index(tr));		\
        break;					\
     }						\
     CHECK_TERM(tr);				\
   } while (0)

#define PUT_TERM_REG(term, desc)		\
do {						\
    switch (loader_tag(desc)) {			\
    case LOADER_X_REG:				\
	x(loader_x_reg_index(desc)) = (term);	\
	break;					\
    case LOADER_Y_REG:				\
	y(loader_y_reg_index(desc)) = (term);	\
	break;					\
    default:					\
	ASSERT(0);				\
	break;					\
    }						\
} while(0)

#define DispatchReturn                          \
do {                                            \
    if (FCALLS > 0 || FCALLS > neg_o_reds) {	\
        FCALLS--;				\
        Goto(*I);                               \
    }                                           \
    else {					\
        c_p->current = NULL;                    \
        c_p->arity = 1;                         \
        goto context_switch3;			\
    }						\
} while (0)

#ifdef DEBUG
/* Better static type testing by the C compiler */
#  define BEAM_IS_TUPLE(Src) is_tuple(Src)
#else
/* Better performance */
# define BEAM_IS_TUPLE(Src) is_boxed(Src)
#endif

/*
 * process_main() is already huge, so we want to avoid inlining
 * into it. Especially functions that are seldom used.
 */
#ifdef __GNUC__
#  define NOINLINE __attribute__((__noinline__))
#else
#  define NOINLINE
#endif


/*
 * The following functions are called directly by process_main().
 * Don't inline them.
 */
static ErtsCodeMFA *ubif2mfa(void* uf) NOINLINE;
static ErtsCodeMFA *gcbif2mfa(void* gcf) NOINLINE;
static BeamInstr* handle_error(Process* c_p, BeamInstr* pc,
			       Eterm* reg, ErtsCodeMFA* bif_mfa) NOINLINE;
static BeamInstr* call_error_handler(Process* p, ErtsCodeMFA* mfa,
				     Eterm* reg, Eterm func) NOINLINE;
static BeamInstr* fixed_apply(Process* p, Eterm* reg, Uint arity,
			      BeamInstr *I, Uint offs) NOINLINE;
static BeamInstr* apply(Process* p, Eterm* reg,
                        BeamInstr *I, Uint offs) NOINLINE;
static BeamInstr* call_fun(Process* p, int arity,
			   Eterm* reg, Eterm args) NOINLINE;
static BeamInstr* apply_fun(Process* p, Eterm fun,
			    Eterm args, Eterm* reg) NOINLINE;
static Eterm new_fun(Process* p, Eterm* reg,
		     ErlFunEntry* fe, int num_free) NOINLINE;
static Eterm new_map(Process* p, Eterm* reg, Uint live, Uint n, BeamInstr* ptr) NOINLINE;
static Eterm new_small_map_lit(Process* p, Eterm* reg, Eterm keys_literal,
                               Uint live, BeamInstr* ptr) NOINLINE;
static Eterm update_map_assoc(Process* p, Eterm* reg, Uint live,
                              Uint n, BeamInstr* new_p) NOINLINE;
static Eterm update_map_exact(Process* p, Eterm* reg, Uint live,
                              Uint n, Eterm* new_p) NOINLINE;
static Eterm get_map_element(Eterm map, Eterm key);
static Eterm get_map_element_hash(Eterm map, Eterm key, Uint32 hx);

/*
 * Functions not directly called by process_main(). OK to inline.
 */
static BeamInstr* next_catch(Process* c_p, Eterm *reg);
static void terminate_proc(Process* c_p, Eterm Value);
static Eterm add_stacktrace(Process* c_p, Eterm Value, Eterm exc);
static void save_stacktrace(Process* c_p, BeamInstr* pc, Eterm* reg,
			    ErtsCodeMFA *bif_mfa, Eterm args);
static struct StackTrace * get_trace_from_exc(Eterm exc);
static Eterm make_arglist(Process* c_p, Eterm* reg, int a);

void
init_emulator(void)
{
    process_main(0, 0);
}

/*
 * On certain platforms, make sure that the main variables really are placed
 * in registers.
 */

#if defined(__GNUC__) && defined(sparc) && !defined(DEBUG)
#  define REG_xregs asm("%l1")
#  define REG_htop asm("%l2")
#  define REG_stop asm("%l3")
#  define REG_I asm("%l4")
#  define REG_fcalls asm("%l5")
#elif defined(__GNUC__) && defined(__amd64__) && !defined(DEBUG)
#  define REG_xregs asm("%r12")
#  define REG_htop
#  define REG_stop asm("%r13")
#  define REG_I asm("%rbx")
#  define REG_fcalls asm("%r14")
#else
#  define REG_xregs
#  define REG_htop
#  define REG_stop
#  define REG_I
#  define REG_fcalls
#endif

#ifdef USE_VM_PROBES
#  define USE_VM_CALL_PROBES
#endif

#ifdef USE_VM_CALL_PROBES

#define DTRACE_LOCAL_CALL(p, mfa)					\
    if (DTRACE_ENABLED(local_function_entry)) {				\
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);		\
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);			\
        int depth = STACK_START(p) - STACK_TOP(p);			\
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);               \
        DTRACE3(local_function_entry, process_name, mfa_buf, depth);	\
    }

#define DTRACE_GLOBAL_CALL(p, mfa)					\
    if (DTRACE_ENABLED(global_function_entry)) {			\
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);		\
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);			\
        int depth = STACK_START(p) - STACK_TOP(p);			\
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);               \
        DTRACE3(global_function_entry, process_name, mfa_buf, depth);	\
    }

#define DTRACE_RETURN(p, mfa)                                    \
    if (DTRACE_ENABLED(function_return)) {                      \
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);     \
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);          \
        int depth = STACK_START(p) - STACK_TOP(p);              \
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);       \
        DTRACE3(function_return, process_name, mfa_buf, depth); \
    }

#define DTRACE_BIF_ENTRY(p, mfa)                                    \
    if (DTRACE_ENABLED(bif_entry)) {                                \
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);         \
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);              \
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);           \
        DTRACE2(bif_entry, process_name, mfa_buf);                  \
    }

#define DTRACE_BIF_RETURN(p, mfa)                                   \
    if (DTRACE_ENABLED(bif_return)) {                               \
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);         \
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);              \
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);           \
        DTRACE2(bif_return, process_name, mfa_buf);                 \
    }

#define DTRACE_NIF_ENTRY(p, mfa)                                        \
    if (DTRACE_ENABLED(nif_entry)) {                                    \
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);             \
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);                  \
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);               \
        DTRACE2(nif_entry, process_name, mfa_buf);                      \
    }

#define DTRACE_NIF_RETURN(p, mfa)                                       \
    if (DTRACE_ENABLED(nif_return)) {                                   \
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);             \
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);                  \
        dtrace_fun_decode(p, mfa, process_name, mfa_buf);               \
        DTRACE2(nif_return, process_name, mfa_buf);                     \
    }

#define DTRACE_GLOBAL_CALL_FROM_EXPORT(p,e)                                                    \
    do {                                                                                       \
        if (DTRACE_ENABLED(global_function_entry)) {                                           \
            BeamInstr* fp = (BeamInstr *) (((Export *) (e))->addressv[erts_active_code_ix()]); \
            DTRACE_GLOBAL_CALL((p), erts_code_to_codemfa(fp));          \
        }                                                                                      \
    } while(0)

#define DTRACE_RETURN_FROM_PC(p)                                                        \
    do {                                                                                \
        ErtsCodeMFA* cmfa;                                                                  \
        if (DTRACE_ENABLED(function_return) && (cmfa = find_function_from_pc((p)->cp))) { \
            DTRACE_RETURN((p), cmfa);                               \
        }                                                                               \
    } while(0)

#else /* USE_VM_PROBES */
#define DTRACE_LOCAL_CALL(p, mfa)        do {} while (0)
#define DTRACE_GLOBAL_CALL(p, mfa)       do {} while (0)
#define DTRACE_GLOBAL_CALL_FROM_EXPORT(p, e) do {} while (0)
#define DTRACE_RETURN(p, mfa)            do {} while (0)
#define DTRACE_RETURN_FROM_PC(p)             do {} while (0)
#define DTRACE_BIF_ENTRY(p, mfa)         do {} while (0)
#define DTRACE_BIF_RETURN(p, mfa)        do {} while (0)
#define DTRACE_NIF_ENTRY(p, mfa)         do {} while (0)
#define DTRACE_NIF_RETURN(p, mfa)        do {} while (0)
#endif /* USE_VM_PROBES */

#ifdef DEBUG
#define ERTS_DBG_CHK_REDS(P, FC)					\
    do {								\
	if (ERTS_PROC_GET_SAVED_CALLS_BUF((P))) {			\
	    ASSERT(FC <= 0);						\
	    ASSERT(erts_proc_sched_data(c_p)->virtual_reds		\
		   <= 0 - (FC));					\
	}								\
	else {								\
	    ASSERT(FC <= CONTEXT_REDS);					\
	    ASSERT(erts_proc_sched_data(c_p)->virtual_reds		\
		   <= CONTEXT_REDS - (FC));				\
	}								\
} while (0)
#else
#define ERTS_DBG_CHK_REDS(P, FC)
#endif

#ifdef NO_FPE_SIGNALS
#  define ERTS_NO_FPE_CHECK_INIT ERTS_FP_CHECK_INIT
#  define ERTS_NO_FPE_ERROR ERTS_FP_ERROR
#else
#  define ERTS_NO_FPE_CHECK_INIT(p)
#  define ERTS_NO_FPE_ERROR(p, a, b)
#endif

/*
 * process_main() is called twice:
 * The first call performs some initialisation, including exporting
 * the instructions' C labels to the loader.
 * The second call starts execution of BEAM code. This call never returns.
 */
void process_main(Eterm * x_reg_array, FloatDef* f_reg_array)
{
    static int init_done = 0;
    Process* c_p = NULL;
    int reds_used;
#ifdef DEBUG
    ERTS_DECLARE_DUMMY(Eterm pid);
#endif

    /* Pointer to X registers: x(1)..x(N); reg[0] is used when doing GC,
     * in all other cases x0 is used.
     */
    register Eterm* reg REG_xregs = x_reg_array;

    /*
     * Top of heap (next free location); grows upwards.
     */
    register Eterm* HTOP REG_htop = NULL;

    /* Stack pointer.  Grows downwards; points
     * to last item pushed (normally a saved
     * continuation pointer).
     */
    register Eterm* E REG_stop = NULL;

    /*
     * Pointer to next threaded instruction.
     */
    register BeamInstr *I REG_I = NULL;

    /* Number of reductions left.  This function
     * returns to the scheduler when FCALLS reaches zero.
     */
    register Sint FCALLS REG_fcalls = 0;

    /*
     * X registers and floating point registers are located in
     * scheduler specific data.
     */
    register FloatDef *freg = f_reg_array;

    /*
     * For keeping the negative old value of 'reds' when call saving is active.
     */
    int neg_o_reds = 0;

#ifdef ERTS_OPCODE_COUNTER_SUPPORT
    static void* counting_opcodes[] = { DEFINE_COUNTING_OPCODES };
#else
#ifndef NO_JUMP_TABLE
    static void* opcodes[] = { DEFINE_OPCODES };
#else
    int Go;
#endif
#endif

    Uint64 start_time = 0;          /* Monitor long schedule */
    BeamInstr* start_time_i = NULL;

    ERTS_MSACC_DECLARE_CACHE_X() /* a cached value of the tsd pointer for msacc */

    ERL_BITS_DECLARE_STATEP; /* Has to be last declaration */


    /*
     * Note: In this function, we attempt to place rarely executed code towards
     * the end of the function, in the hope that the cache hit rate will be better.
     * The initialization code is only run once, so it is at the very end.
     *
     * Note: c_p->arity must be set to reflect the number of useful terms in
     * c_p->arg_reg before calling the scheduler.
     */
    if (ERTS_UNLIKELY(!init_done)) {
       /* This should only be reached during the init phase when only the main
        * process is running. I.e. there is no race for init_done.
        */
	init_done = 1;
	goto init_emulator;
    }

    c_p = NULL;
    reds_used = 0;

    goto do_schedule1;

 do_schedule:
    ASSERT(c_p->arity < 6);
    ASSERT(c_p->debug_reds_in == REDS_IN(c_p));
    if (!ERTS_PROC_GET_SAVED_CALLS_BUF(c_p))
	reds_used = REDS_IN(c_p) - FCALLS;
    else
	reds_used = REDS_IN(c_p) - (CONTEXT_REDS + FCALLS);
    ASSERT(reds_used >= 0);
 do_schedule1:

    if (start_time != 0) {
        Sint64 diff = erts_timestamp_millis() - start_time;
	if (diff > 0 && (Uint) diff >  erts_system_monitor_long_schedule) {
	    ErtsCodeMFA *inptr = find_function_from_pc(start_time_i);
	    ErtsCodeMFA *outptr = find_function_from_pc(c_p->i);
	    monitor_long_schedule_proc(c_p,inptr,outptr,(Uint) diff);
	}
    }

    PROCESS_MAIN_CHK_LOCKS(c_p);
    ERTS_UNREQ_PROC_MAIN_LOCK(c_p);
    ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
    c_p = erts_schedule(NULL, c_p, reds_used);
    ASSERT(!(c_p->flags & F_HIPE_MODE));
    ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
    start_time = 0;
#ifdef DEBUG
    pid = c_p->common.id; /* Save for debugging purposes */
#endif
    ERTS_REQ_PROC_MAIN_LOCK(c_p);
    PROCESS_MAIN_CHK_LOCKS(c_p);

    ERTS_MSACC_UPDATE_CACHE_X();

    if (erts_system_monitor_long_schedule != 0) {
	start_time = erts_timestamp_millis();
	start_time_i = c_p->i;
    }

    ERL_BITS_RELOAD_STATEP(c_p);
    {
	int reds;
	Eterm* argp;
	BeamInstr *next;
	int i;

	argp = c_p->arg_reg;
	for (i = c_p->arity - 1; i >= 0; i--) {
	    reg[i] = argp[i];
	    CHECK_TERM(reg[i]);
	}

	/*
	 * We put the original reduction count in the process structure, to reduce
	 * the code size (referencing a field in a struct through a pointer stored
	 * in a register gives smaller code than referencing a global variable).
	 */

	SET_I(c_p->i);

	REDS_IN(c_p) = reds = c_p->fcalls;
#ifdef DEBUG
	c_p->debug_reds_in = reds;
#endif

	if (ERTS_PROC_GET_SAVED_CALLS_BUF(c_p)) {
	    neg_o_reds = -CONTEXT_REDS;
	    FCALLS = neg_o_reds + reds;
	} else {
	    neg_o_reds = 0;
	    FCALLS = reds;
	}

	ERTS_DBG_CHK_REDS(c_p, FCALLS);

	next = (BeamInstr *) *I;
	SWAPIN;
	ASSERT(VALID_INSTR(next));

#ifdef USE_VM_PROBES
        if (DTRACE_ENABLED(process_scheduled)) {
            DTRACE_CHARBUF(process_buf, DTRACE_TERM_BUF_SIZE);
            DTRACE_CHARBUF(fun_buf, DTRACE_TERM_BUF_SIZE);
            dtrace_proc_str(c_p, process_buf);

            if (ERTS_PROC_IS_EXITING(c_p)) {
                strcpy(fun_buf, "<exiting>");
            } else {
                ErtsCodeMFA *cmfa = find_function_from_pc(c_p->i);
                if (cmfa) {
                    dtrace_fun_decode(c_p, cmfa,
                                      NULL, fun_buf);
                } else {
                    erts_snprintf(fun_buf, sizeof(DTRACE_CHARBUF_NAME(fun_buf)),
                                  "<unknown/%p>", next);
                }
            }

            DTRACE2(process_scheduled, process_buf, fun_buf);
        }
#endif
	Goto(next);
    }

#if defined(DEBUG) || defined(NO_JUMP_TABLE)
 emulator_loop:
#endif

#ifdef NO_JUMP_TABLE
    switch (Go) {
#endif

#include "beam_hot.h"

#ifdef DEBUG
    /*
     * Set a breakpoint here to get control just after a call instruction.
     * I points to the first instruction in the called function.
     *
     * In gdb, use 'call dis(I-5, 1)' to show the name of the function.
     */
 do_dispatch:
     DispatchMacro();

 do_dispatchx:
     DispatchMacrox();

 do_dispatchfun:
     DispatchMacroFun();

#endif

    /*
     * Jumped to from the Dispatch() macro when the reductions are used up.
     *
     * Since the I register points just beyond the FuncBegin instruction, we
     * can get the module, function, and arity for the function being
     * called from I[-3], I[-2], and I[-1] respectively.
     */
 context_switch_fun:
    /* Add one for the environment of the fun */
    c_p->arity = erts_code_to_codemfa(I)->arity + 1;
    goto context_switch2;

 context_switch:
    c_p->arity = erts_code_to_codemfa(I)->arity;

 context_switch2: 		/* Entry for fun calls. */
    c_p->current = erts_code_to_codemfa(I);

 context_switch3:

 {
     Eterm* argp;
     int i;

     if (erts_atomic32_read_nob(&c_p->state) & ERTS_PSFLG_EXITING) {
         c_p->i = beam_exit;
         c_p->arity = 0;
         c_p->current = NULL;
         goto do_schedule;
     }

     /*
      * Make sure that there is enough room for the argument registers to be saved.
      */
     if (c_p->arity > c_p->max_arg_reg) {
	 /*
	  * Yes, this is an expensive operation, but you only pay it the first
	  * time you call a function with more than 6 arguments which is
	  * scheduled out.  This is better than paying for 26 words of wasted
	  * space for most processes which never call functions with more than
	  * 6 arguments.
	  */
	 Uint size = c_p->arity * sizeof(c_p->arg_reg[0]);
	 if (c_p->arg_reg != c_p->def_arg_reg) {
	     c_p->arg_reg = (Eterm *) erts_realloc(ERTS_ALC_T_ARG_REG,
						   (void *) c_p->arg_reg,
						   size);
	 } else {
	     c_p->arg_reg = (Eterm *) erts_alloc(ERTS_ALC_T_ARG_REG, size);
	 }
	 c_p->max_arg_reg = c_p->arity;
     }

     /*
      * Since REDS_IN(c_p) is stored in the save area (c_p->arg_reg) we must read it
      * now before saving registers.
      *
      * The '+ 1' compensates for the last increment which was not done
      * (beacuse the code for the Dispatch() macro becomes shorter that way).
      */

     ASSERT(c_p->debug_reds_in == REDS_IN(c_p));
    if (!ERTS_PROC_GET_SAVED_CALLS_BUF(c_p))
	reds_used = REDS_IN(c_p) - FCALLS;
    else
	reds_used = REDS_IN(c_p) - (CONTEXT_REDS + FCALLS);
    ASSERT(reds_used >= 0);

     /*
      * Save the argument registers and everything else.
      */

     argp = c_p->arg_reg;
     for (i = c_p->arity - 1; i >= 0; i--) {
	 argp[i] = reg[i];
     }
     SWAPOUT;
     c_p->i = I;
     goto do_schedule1;
 }

#include "beam_warm.h"

 OpCase(normal_exit): {
     SWAPOUT;
     c_p->freason = EXC_NORMAL;
     c_p->arity = 0; /* In case this process will ever be garbed again. */
     ERTS_UNREQ_PROC_MAIN_LOCK(c_p);
     erts_do_exit_process(c_p, am_normal);
     ERTS_REQ_PROC_MAIN_LOCK(c_p);
     goto do_schedule;
 }

 OpCase(continue_exit): {
     ERTS_UNREQ_PROC_MAIN_LOCK(c_p);
     erts_continue_exit_process(c_p);
     ERTS_REQ_PROC_MAIN_LOCK(c_p);
     goto do_schedule;
 }

 find_func_info: {
     SWAPOUT;
     I = handle_error(c_p, I, reg, NULL);
     goto post_error_handling;
 }

 OpCase(call_error_handler):
    /*
     * At this point, I points to the code[3] in the export entry for
     * a function which is not loaded.
     *
     * code[0]: Module
     * code[1]: Function
     * code[2]: Arity
     * code[3]: &&call_error_handler
     * code[4]: Not used
     */
    HEAVY_SWAPOUT;
    I = call_error_handler(c_p, erts_code_to_codemfa(I),
                           reg, am_undefined_function);
    HEAVY_SWAPIN;
    if (I) {
	Goto(*I);
    }

 /* Fall through */
 OpCase(error_action_code): {
    handle_error:
     SWAPOUT;
     I = handle_error(c_p, NULL, reg, NULL);
 post_error_handling:
     if (I == 0) {
	 goto do_schedule;
     } else {
	 ASSERT(!is_value(r(0)));
	 SWAPIN;
	 Goto(*I);
     }
 }

 OpCase(i_func_info_IaaI): {
     ErtsCodeInfo *ci = (ErtsCodeInfo*)I;
     c_p->freason = EXC_FUNCTION_CLAUSE;
     c_p->current = &ci->mfa;
     goto handle_error;
 }

#include "beam_cold.h"

#ifdef ERTS_OPCODE_COUNTER_SUPPORT
    DEFINE_COUNTING_LABELS;
#endif

#ifndef NO_JUMP_TABLE
#ifdef DEBUG
 end_emulator_loop:
#endif
#endif

 OpCase(int_code_end):
 OpCase(label_L):
 OpCase(on_load):
 OpCase(line_I):
    erts_exit(ERTS_ERROR_EXIT, "meta op\n");

    /*
     * One-time initialization of Beam emulator.
     */

 init_emulator:
 {
     int i;
     Export* ep;

#ifndef NO_JUMP_TABLE
#ifdef ERTS_OPCODE_COUNTER_SUPPORT
#ifdef DEBUG
     counting_opcodes[op_catch_end_y] = LabelAddr(lb_catch_end_y);
#endif
     counting_opcodes[op_i_func_info_IaaI] = LabelAddr(lb_i_func_info_IaaI);
     beam_ops = counting_opcodes;
#else /* #ifndef ERTS_OPCODE_COUNTER_SUPPORT */
     beam_ops = opcodes;
#endif /* ERTS_OPCODE_COUNTER_SUPPORT */
#endif /* NO_JUMP_TABLE */
     
     em_call_error_handler = OpCode(call_error_handler);
     em_apply_bif = OpCode(apply_bif);
     em_call_nif = OpCode(call_nif);
     em_call_bif_e = OpCode(call_bif_e);

     beam_apply[0]             = (BeamInstr) OpCode(i_apply);
     beam_apply[1]             = (BeamInstr) OpCode(normal_exit);
     beam_exit[0]              = (BeamInstr) OpCode(error_action_code);
     beam_continue_exit[0]     = (BeamInstr) OpCode(continue_exit);
     beam_return_to_trace[0]   = (BeamInstr) OpCode(i_return_to_trace);
     beam_return_trace[0]      = (BeamInstr) OpCode(return_trace);
     beam_exception_trace[0]   = (BeamInstr) OpCode(return_trace); /* UGLY */
     beam_return_time_trace[0] = (BeamInstr) OpCode(i_return_time_trace);

     /*
      * Enter all BIFs into the export table.
      */
     for (i = 0; i < BIF_SIZE; i++) {
	 ep = erts_export_put(bif_table[i].module,
			      bif_table[i].name,
			      bif_table[i].arity);
	 bif_export[i] = ep;
	 ep->beam[0] = (BeamInstr) OpCode(apply_bif);
	 ep->beam[1] = (BeamInstr) bif_table[i].f;
	 /* XXX: set func info for bifs */
	 ep->info.op = (BeamInstr) BeamOp(op_i_func_info_IaaI);
     }

     return;
 }
#ifdef NO_JUMP_TABLE
 default:
    erts_exit(ERTS_ERROR_EXIT, "unexpected op code %d\n",Go);
  }
#endif
    return;			/* Never executed */

  save_calls1:
    {
	Eterm* dis_next;

	save_calls(c_p, (Export *) Arg(0));

	SET_I(((Export *) Arg(0))->addressv[erts_active_code_ix()]);

	dis_next = (Eterm *) *I;
	FCALLS--;
	Goto(dis_next);
    }
}

/*
 * erts_dirty_process_main() is what dirty schedulers execute. Since they handle
 * only NIF calls they do not need to be able to execute all BEAM
 * instructions.
 */
void erts_dirty_process_main(ErtsSchedulerData *esdp)
{
#ifdef ERTS_DIRTY_SCHEDULERS
    Process* c_p = NULL;
    ErtsMonotonicTime start_time;
#ifdef DEBUG
    ERTS_DECLARE_DUMMY(Eterm pid);
#endif

    /* Pointer to X registers: x(1)..x(N); reg[0] is used when doing GC,
     * in all other cases x0 is used.
     */
    register Eterm* reg REG_xregs = NULL;

    /*
     * Top of heap (next free location); grows upwards.
     */
    register Eterm* HTOP REG_htop = NULL;

    /* Stack pointer.  Grows downwards; points
     * to last item pushed (normally a saved
     * continuation pointer).
     */
    register Eterm* E REG_stop = NULL;

    /*
     * Pointer to next threaded instruction.
     */
    register BeamInstr *I REG_I = NULL;

    ERTS_MSACC_DECLARE_CACHE_X() /* a cached value of the tsd pointer for msacc */

    /*
     * start_time always positive for dirty CPU schedulers,
     * and negative for dirty I/O schedulers.
     */

    if (ERTS_SCHEDULER_IS_DIRTY_CPU(esdp)) {
	start_time = erts_get_monotonic_time(NULL);
	ASSERT(start_time >= 0);
    }
    else {
	start_time = ERTS_SINT64_MIN;
	ASSERT(start_time < 0);
    }

    goto do_dirty_schedule;

 context_switch:
    c_p->current = erts_code_to_codemfa(I);	/* Pointer to Mod, Func, Arity */
    c_p->arity = c_p->current->arity;

    {
	int reds_used;
	Eterm* argp;
	int i;

	/*
	 * Make sure that there is enough room for the argument registers to be saved.
	 */
	if (c_p->arity > c_p->max_arg_reg) {
	    /*
	     * Yes, this is an expensive operation, but you only pay it the first
	     * time you call a function with more than 6 arguments which is
	     * scheduled out.  This is better than paying for 26 words of wasted
	     * space for most processes which never call functions with more than
	     * 6 arguments.
	     */
	    Uint size = c_p->arity * sizeof(c_p->arg_reg[0]);
	    if (c_p->arg_reg != c_p->def_arg_reg) {
		c_p->arg_reg = (Eterm *) erts_realloc(ERTS_ALC_T_ARG_REG,
						      (void *) c_p->arg_reg,
						      size);
	    } else {
		c_p->arg_reg = (Eterm *) erts_alloc(ERTS_ALC_T_ARG_REG, size);
	    }
	    c_p->max_arg_reg = c_p->arity;
	}

	/*
	 * Save the argument registers and everything else.
	 */

	argp = c_p->arg_reg;
	for (i = c_p->arity - 1; i >= 0; i--) {
	    argp[i] = reg[i];
	}
	SWAPOUT;
	c_p->i = I;

    do_dirty_schedule:

	if (start_time < 0) {
	    /*
	     * Dirty I/O scheduler:
	     *   One reduction consumed regardless of
	     *   time spent in the dirty NIF.
	     */
	    reds_used = esdp->virtual_reds + 1;
	}
	else {
	    /*
	     * Dirty CPU scheduler:
	     *   Reductions based on time consumed by
	     *   the dirty NIF.
	     */
	    Sint64 treds;
	    treds = erts_time2reds(start_time,
				   erts_get_monotonic_time(esdp));
	    treds += esdp->virtual_reds;
	    reds_used = treds > INT_MAX ? INT_MAX : (int) treds;
	}

	PROCESS_MAIN_CHK_LOCKS(c_p);
	ERTS_UNREQ_PROC_MAIN_LOCK(c_p);
	ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
	c_p = erts_schedule(esdp, c_p, reds_used);

	if (start_time >= 0) {
	    start_time = erts_get_monotonic_time(esdp);
	    ASSERT(start_time >= 0);
	}
    }

    ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
#ifdef DEBUG
    pid = c_p->common.id; /* Save for debugging purposes */
#endif
    ERTS_REQ_PROC_MAIN_LOCK(c_p);
    PROCESS_MAIN_CHK_LOCKS(c_p);

    ASSERT(!(c_p->flags & F_HIPE_MODE));
    ERTS_MSACC_UPDATE_CACHE_X();

    /*
     * Set fcalls even though we ignore it, so we don't
     * confuse code accessing it...
     */
    if (ERTS_PROC_GET_SAVED_CALLS_BUF(c_p))
	c_p->fcalls = 0;
    else
	c_p->fcalls = CONTEXT_REDS;

    if (erts_atomic32_read_nob(&c_p->state) & ERTS_PSFLG_DIRTY_RUNNING_SYS) {
	erts_execute_dirty_system_task(c_p);
	goto do_dirty_schedule;
    }
    else {
	ErtsCodeMFA *codemfa;
	Eterm* argp;
	int i, exiting;

	reg = esdp->x_reg_array;

	argp = c_p->arg_reg;
	for (i = c_p->arity - 1; i >= 0; i--) {
	    reg[i] = argp[i];
	    CHECK_TERM(reg[i]);
	}

	/*
	 * We put the original reduction count in the process structure, to reduce
	 * the code size (referencing a field in a struct through a pointer stored
	 * in a register gives smaller code than referencing a global variable).
	 */

	I = c_p->i;

	SWAPIN;

#ifdef USE_VM_PROBES
        if (DTRACE_ENABLED(process_scheduled)) {
            DTRACE_CHARBUF(process_buf, DTRACE_TERM_BUF_SIZE);
            DTRACE_CHARBUF(fun_buf, DTRACE_TERM_BUF_SIZE);
            dtrace_proc_str(c_p, process_buf);

            if (ERTS_PROC_IS_EXITING(c_p)) {
                strcpy(fun_buf, "<exiting>");
            } else {
                ErtsCodeMFA *cmfa = find_function_from_pc(c_p->i);
                if (cmfa) {
		    dtrace_fun_decode(c_p, cmfa, NULL, fun_buf);
                } else {
                    erts_snprintf(fun_buf, sizeof(DTRACE_CHARBUF_NAME(fun_buf)),
                                  "<unknown/%p>", *I);
                }
            }

            DTRACE2(process_scheduled, process_buf, fun_buf);
        }
#endif

	/*
	 * call_nif is always first instruction in function:
	 *
	 * I[-3]: Module
	 * I[-2]: Function
	 * I[-1]: Arity
	 * I[0]: &&call_nif
	 * I[1]: Function pointer to NIF function
	 * I[2]: Pointer to erl_module_nif
	 * I[3]: Function pointer to dirty NIF
	 *
	 * This layout is determined by the NifExport struct
	 */

	ERTS_MSACC_SET_STATE_CACHED_M_X(ERTS_MSACC_STATE_NIF);

	codemfa = erts_code_to_codemfa(I);

	DTRACE_NIF_ENTRY(c_p, codemfa);
	c_p->current = codemfa;
	SWAPOUT;
	PROCESS_MAIN_CHK_LOCKS(c_p);
	ERTS_UNREQ_PROC_MAIN_LOCK(c_p);

	ASSERT(!ERTS_PROC_IS_EXITING(c_p));
	if (em_apply_bif == (BeamInstr *) *I) {
	    exiting = erts_call_dirty_bif(esdp, c_p, I, reg);
	}
	else {
	    ASSERT(em_call_nif == (BeamInstr *) *I);
	    exiting = erts_call_dirty_nif(esdp, c_p, I, reg);
	}

	ASSERT(!(c_p->flags & F_HIBERNATE_SCHED));

	PROCESS_MAIN_CHK_LOCKS(c_p);
	ERTS_REQ_PROC_MAIN_LOCK(c_p);
	ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
	ERTS_MSACC_SET_STATE_CACHED_M_X(ERTS_MSACC_STATE_EMULATOR);
	if (exiting)
	    goto do_dirty_schedule;
	ASSERT(!ERTS_PROC_IS_EXITING(c_p));

	DTRACE_NIF_RETURN(c_p, codemfa);
	ERTS_HOLE_CHECK(c_p);
	SWAPIN;
	I = c_p->i;
	goto context_switch;
    }
#endif /* ERTS_DIRTY_SCHEDULERS */
}

static ErtsCodeMFA *
gcbif2mfa(void* gcf)
{
    int i;
    for (i = 0; erts_gc_bifs[i].bif; i++) {
	if (erts_gc_bifs[i].gc_bif == gcf)
	    return &bif_export[erts_gc_bifs[i].exp_ix]->info.mfa;
    }
    erts_exit(ERTS_ERROR_EXIT, "bad gc bif");
    return NULL;
}

static ErtsCodeMFA *
ubif2mfa(void* uf)
{
    int i;
    for (i = 0; erts_u_bifs[i].bif; i++) {
	if (erts_u_bifs[i].bif == uf)
	    return &bif_export[erts_u_bifs[i].exp_ix]->info.mfa;
    }
    erts_exit(ERTS_ERROR_EXIT, "bad u bif");
    return NULL;
}

/*
 * Mapping from the error code 'class tag' to atoms.
 */
Eterm exception_tag[NUMBER_EXC_TAGS] = {
  am_error,	/* 0 */
  am_exit,	/* 1 */
  am_throw,	/* 2 */
};

/*
 * Mapping from error code 'index' to atoms.
 */
Eterm error_atom[NUMBER_EXIT_CODES] = {
  am_internal_error,	/* 0 */
  am_normal,		/* 1 */
  am_internal_error,	/* 2 */
  am_badarg,		/* 3 */
  am_badarith,		/* 4 */
  am_badmatch,		/* 5 */
  am_function_clause,	/* 6 */
  am_case_clause,	/* 7 */
  am_if_clause,		/* 8 */
  am_undef,		/* 9 */
  am_badfun,		/* 10 */
  am_badarity,		/* 11 */
  am_timeout_value,	/* 12 */
  am_noproc,		/* 13 */
  am_notalive,		/* 14 */
  am_system_limit,	/* 15 */
  am_try_clause,	/* 16 */
  am_notsup,		/* 17 */
  am_badmap,		/* 18 */
  am_badkey,		/* 19 */
};

/*
 * To fully understand the error handling, one must keep in mind that
 * when an exception is thrown, the search for a handler can jump back
 * and forth between Beam and native code. Upon each mode switch, a
 * dummy handler is inserted so that if an exception reaches that point,
 * the handler is invoked (like any handler) and transfers control so
 * that the search for a real handler is continued in the other mode.
 * Therefore, c_p->freason and c_p->fvalue must still hold the exception
 * info when the handler is executed, but normalized so that creation of
 * error terms and saving of the stack trace is only done once, even if
 * we pass through the error handling code several times.
 *
 * When a new exception is raised, the current stack trace information
 * is quick-saved in a small structure allocated on the heap. Depending
 * on how the exception is eventually caught (perhaps by causing the
 * current process to terminate), the saved information may be used to
 * create a symbolic (human-readable) representation of the stack trace
 * at the point of the original exception.
 */

static BeamInstr*
handle_error(Process* c_p, BeamInstr* pc, Eterm* reg, ErtsCodeMFA *bif_mfa)
{
    Eterm* hp;
    Eterm Value = c_p->fvalue;
    Eterm Args = am_true;

    ASSERT(c_p->freason != TRAP); /* Should have been handled earlier. */

    if (c_p->freason & EXF_RESTORE_NIF)
	erts_nif_export_restore_error(c_p, &pc, reg, &bif_mfa);

#ifdef DEBUG
    if (bif_mfa) {
	/* Verify that bif_mfa does not point into our nif export */
	NifExport *nep = ERTS_PROC_GET_NIF_TRAP_EXPORT(c_p);
	ASSERT(!nep || !ErtsInArea(bif_mfa, (char *)nep, sizeof(NifExport)));
    }
#endif

    c_p->i = pc;    /* In case we call erts_exit(). */

    /*
     * Check if we have an arglist for the top level call. If so, this
     * is encoded in Value, so we have to dig out the real Value as well
     * as the Arglist.
     */
    if (c_p->freason & EXF_ARGLIST) {
	  Eterm* tp;
	  ASSERT(is_tuple(Value));
	  tp = tuple_val(Value);
	  Value = tp[1];
	  Args = tp[2];
    }

    /*
     * Save the stack trace info if the EXF_SAVETRACE flag is set. The
     * main reason for doing this separately is to allow throws to later
     * become promoted to errors without losing the original stack
     * trace, even if they have passed through one or more catch and
     * rethrow. It also makes the creation of symbolic stack traces much
     * more modular.
     */
    if (c_p->freason & EXF_SAVETRACE) {
        save_stacktrace(c_p, pc, reg, bif_mfa, Args);
    }

    /*
     * Throws that are not caught are turned into 'nocatch' errors
     */
    if ((c_p->freason & EXF_THROWN) && (c_p->catches <= 0) ) {
	hp = HAlloc(c_p, 3);
        Value = TUPLE2(hp, am_nocatch, Value);
        c_p->freason = EXC_ERROR;
    }

    /* Get the fully expanded error term */
    Value = expand_error_value(c_p, c_p->freason, Value);

    /* Save final error term and stabilize the exception flags so no
       further expansion is done. */
    c_p->fvalue = Value;
    c_p->freason = PRIMARY_EXCEPTION(c_p->freason);

    /* Find a handler or die */
    if ((c_p->catches > 0 || IS_TRACED_FL(c_p, F_EXCEPTION_TRACE))
	&& !(c_p->freason & EXF_PANIC)) {
	BeamInstr *new_pc;
        /* The Beam handler code (catch_end or try_end) checks reg[0]
	   for THE_NON_VALUE to see if the previous code finished
	   abnormally. If so, reg[1], reg[2] and reg[3] should hold the
	   exception class, term and trace, respectively. (If the
	   handler is just a trap to native code, these registers will
	   be ignored.) */
	reg[0] = THE_NON_VALUE;
	reg[1] = exception_tag[GET_EXC_CLASS(c_p->freason)];
	reg[2] = Value;
	reg[3] = c_p->ftrace;
        if ((new_pc = next_catch(c_p, reg))) {
	    c_p->cp = 0;	/* To avoid keeping stale references. */
	    return new_pc;
	}
	if (c_p->catches > 0) erts_exit(ERTS_ERROR_EXIT, "Catch not found");
    }
    ERTS_UNREQ_PROC_MAIN_LOCK(c_p);
    terminate_proc(c_p, Value);
    ERTS_REQ_PROC_MAIN_LOCK(c_p);
    return NULL;
}

/*
 * Find the nearest catch handler
 */
static BeamInstr*
next_catch(Process* c_p, Eterm *reg) {
    int active_catches = c_p->catches > 0;
    int have_return_to_trace = 0;
    Eterm *ptr, *prev, *return_to_trace_ptr = NULL;

    BeamInstr i_return_trace      = beam_return_trace[0];
    BeamInstr i_return_to_trace   = beam_return_to_trace[0];
    BeamInstr i_return_time_trace = beam_return_time_trace[0];

    ptr = prev = c_p->stop;
    ASSERT(is_CP(*ptr));
    ASSERT(ptr <= STACK_START(c_p));
    if (ptr == STACK_START(c_p)) return NULL;
    if ((is_not_CP(*ptr) || (*cp_val(*ptr) != i_return_trace &&
			     *cp_val(*ptr) != i_return_to_trace &&
			     *cp_val(*ptr) != i_return_time_trace ))
	&& c_p->cp) {
	/* Can not follow cp here - code may be unloaded */
	BeamInstr *cpp = c_p->cp;
	if (cpp == beam_exception_trace) {
            ErtsCodeMFA *mfa = (ErtsCodeMFA*)cp_val(ptr[0]);
	    erts_trace_exception(c_p, mfa,
				 reg[1], reg[2],
                                 ERTS_TRACER_FROM_ETERM(ptr+1));
	    /* Skip return_trace parameters */
	    ptr += 2;
	} else if (cpp == beam_return_trace) {
	    /* Skip return_trace parameters */
	    ptr += 2;
	} else if (cpp == beam_return_time_trace) {
	    /* Skip return_trace parameters */
	    ptr += 1;
	} else if (cpp == beam_return_to_trace) {
	    have_return_to_trace = !0; /* Record next cp */
	}
    }
    while (ptr < STACK_START(c_p)) {
	if (is_catch(*ptr)) {
	    if (active_catches) goto found_catch;
	    ptr++;
	}
	else if (is_CP(*ptr)) {
	    prev = ptr;
	    if (*cp_val(*prev) == i_return_trace) {
		/* Skip stack frame variables */
		while (++ptr, ptr < STACK_START(c_p) && is_not_CP(*ptr)) {
		    if (is_catch(*ptr) && active_catches) goto found_catch;
		}
		if (cp_val(*prev) == beam_exception_trace) {
                    ErtsCodeMFA *mfa = (ErtsCodeMFA*)cp_val(ptr[0]);
		    erts_trace_exception(c_p, mfa,
					 reg[1], reg[2],
                                         ERTS_TRACER_FROM_ETERM(ptr+1));
		}
		/* Skip return_trace parameters */
		ptr += 2;
	    } else if (*cp_val(*prev) == i_return_to_trace) {
		/* Skip stack frame variables */
		while (++ptr, ptr < STACK_START(c_p) && is_not_CP(*ptr)) {
		    if (is_catch(*ptr) && active_catches) goto found_catch;
		}
		have_return_to_trace = !0; /* Record next cp */
		return_to_trace_ptr = NULL;
	    } else if (*cp_val(*prev) == i_return_time_trace) {
		/* Skip stack frame variables */
		while (++ptr, ptr < STACK_START(c_p) && is_not_CP(*ptr)) {
		    if (is_catch(*ptr) && active_catches) goto found_catch;
		}
		/* Skip return_trace parameters */
		ptr += 1;
	    } else {
		if (have_return_to_trace) {
		    /* Record this cp as possible return_to trace cp */
		    have_return_to_trace = 0;
		    return_to_trace_ptr = ptr;
		} else return_to_trace_ptr = NULL;
		ptr++;
	    }
	} else ptr++;
    }
    return NULL;
    
 found_catch:
    ASSERT(ptr < STACK_START(c_p));
    c_p->stop = prev;
    if (IS_TRACED_FL(c_p, F_TRACE_RETURN_TO) && return_to_trace_ptr) {
	/* The stackframe closest to the catch contained an
	 * return_to_trace entry, so since the execution now
	 * continues after the catch, a return_to trace message 
	 * would be appropriate.
	 */
	erts_trace_return_to(c_p, cp_val(*return_to_trace_ptr));
    }
    return catch_pc(*ptr);
}

/*
 * Terminating the process when an exception is not caught
 */
static void
terminate_proc(Process* c_p, Eterm Value)
{
    Eterm *hp;
    Eterm Args = NIL;

    /* Add a stacktrace if this is an error. */
    if (GET_EXC_CLASS(c_p->freason) == EXTAG_ERROR) {
        Value = add_stacktrace(c_p, Value, c_p->ftrace);
    }
    /* EXF_LOG is a primary exception flag */
    if (c_p->freason & EXF_LOG) {
	int alive = erts_is_alive;
	erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();

        /* Build the format message */
	erts_dsprintf(dsbufp, "Error in process ~p ");
	if (alive)
	    erts_dsprintf(dsbufp, "on node ~p ");
	erts_dsprintf(dsbufp, "with exit value:~n~p~n");

        /* Build the args in reverse order */
	hp = HAlloc(c_p, 2);
	Args = CONS(hp, Value, Args);
	if (alive) {
	    hp = HAlloc(c_p, 2);
	    Args = CONS(hp, erts_this_node->sysname, Args);
	}
	hp = HAlloc(c_p, 2);
	Args = CONS(hp, c_p->common.id, Args);

	erts_send_error_term_to_logger(c_p->group_leader, dsbufp, Args);
    }
    /*
     * If we use a shared heap, the process will be garbage-collected.
     * Must zero c_p->arity to indicate that there are no live registers.
     */
    c_p->arity = 0;
    erts_do_exit_process(c_p, Value);
}

/*
 * Build and add a symbolic stack trace to the error value.
 */
static Eterm
add_stacktrace(Process* c_p, Eterm Value, Eterm exc) {
    Eterm Where = build_stacktrace(c_p, exc);
    Eterm* hp = HAlloc(c_p, 3);
    return TUPLE2(hp, Value, Where);
}

/*
 * Forming the correct error value from the internal error code.
 * This does not update c_p->fvalue or c_p->freason.
 */
Eterm
expand_error_value(Process* c_p, Uint freason, Eterm Value) {
    Eterm* hp;
    Uint r;

    r = GET_EXC_INDEX(freason);
    ASSERT(r < NUMBER_EXIT_CODES); /* range check */
    ASSERT(is_value(Value));

    switch (r) {
    case (GET_EXC_INDEX(EXC_PRIMARY)):
        /* Primary exceptions use fvalue as it is */
	break;
    case (GET_EXC_INDEX(EXC_BADMATCH)):
    case (GET_EXC_INDEX(EXC_CASE_CLAUSE)):
    case (GET_EXC_INDEX(EXC_TRY_CLAUSE)):
    case (GET_EXC_INDEX(EXC_BADFUN)):
    case (GET_EXC_INDEX(EXC_BADARITY)):
    case (GET_EXC_INDEX(EXC_BADMAP)):
    case (GET_EXC_INDEX(EXC_BADKEY)):
        /* Some common exceptions: value -> {atom, value} */
        ASSERT(is_value(Value));
	hp = HAlloc(c_p, 3);
	Value = TUPLE2(hp, error_atom[r], Value);
	break;
    default:
        /* Other exceptions just use an atom as descriptor */
        Value = error_atom[r];
	break;
    }
#ifdef DEBUG
    ASSERT(Value != am_internal_error);
#endif
    return Value;
}

/*
 * Quick-saving the stack trace in an internal form on the heap. Note
 * that c_p->ftrace will point to a cons cell which holds the given args
 * and the saved data (encoded as a bignum).
 *
 * There is an issue with line number information. Line number
 * information is associated with the address *before* an operation
 * that may fail or be stored stored on the stack. But continuation
 * pointers point after its call instruction, not before. To avoid
 * finding the wrong line number, we'll need to adjust them so that
 * they point at the beginning of the call instruction or inside the
 * call instruction. Since its impractical to point at the beginning,
 * we'll do the simplest thing and decrement the continuation pointers
 * by one.
 *
 * Here is an example of what can go wrong. Without the adjustment
 * of continuation pointers, the call at line 42 below would seem to
 * be at line 43:
 *
 * line 42
 * call ...
 * line 43
 * gc_bif ...
 *
 * (It would be much better to put the arglist - when it exists - in the
 * error value instead of in the actual trace; e.g. '{badarg, Args}'
 * instead of using 'badarg' with Args in the trace. The arglist may
 * contain very large values, and right now they will be kept alive as
 * long as the stack trace is live. Preferably, the stack trace should
 * always be small, so that it does not matter if it is long-lived.
 * However, it is probably not possible to ever change the format of
 * error terms.)
 */

static void
save_stacktrace(Process* c_p, BeamInstr* pc, Eterm* reg,
		ErtsCodeMFA *bif_mfa, Eterm args) {
    struct StackTrace* s;
    int sz;
    int depth = erts_backtrace_depth;    /* max depth (never negative) */

    if (depth > 0) {
	/* There will always be a current function */
	depth --;
    }

    /* Create a container for the exception data */
    sz = (offsetof(struct StackTrace, trace) + sizeof(BeamInstr *)*depth
          + sizeof(Eterm) - 1) / sizeof(Eterm);
    s = (struct StackTrace *) HAlloc(c_p, 1 + sz);
    /* The following fields are inside the bignum */
    s->header = make_pos_bignum_header(sz);
    s->freason = c_p->freason;
    s->depth = 0;

    /*
     * If the failure was in a BIF other than 'error/1', 'error/2',
     * 'exit/1' or 'throw/1', save BIF-MFA and save the argument
     * registers by consing up an arglist.
     */
    if (bif_mfa) {
	if (bif_mfa->module == am_erlang) {
	    switch (bif_mfa->function) {
	    case am_error:
		if (bif_mfa->arity == 1 || bif_mfa->arity == 2)
		    goto non_bif_stacktrace;
		break;
	    case am_exit:
		if (bif_mfa->arity == 1)
		    goto non_bif_stacktrace;
		break;
	    case am_throw:
		if (bif_mfa->arity == 1)
		    goto non_bif_stacktrace;
		break;
	    default:
		break;
	    }
	}
	s->current = bif_mfa;
	/* Save first stack entry */
	ASSERT(pc);
	if (depth > 0) {
	    s->trace[s->depth++] = pc;
	    depth--;
	}
	/* Save second stack entry if CP is valid and different from pc */
	if (depth > 0 && c_p->cp != 0 && c_p->cp != pc) {
	    s->trace[s->depth++] = c_p->cp - 1;
	    depth--;
	}
	s->pc = NULL;
	args = make_arglist(c_p, reg, bif_mfa->arity); /* Overwrite CAR(c_p->ftrace) */
    } else {

    non_bif_stacktrace:

	s->current = c_p->current;
        /* 
	 * For a function_clause error, the arguments are in the beam
	 * registers, c_p->cp is valid, and c_p->current is set.
	 */
	if ( (GET_EXC_INDEX(s->freason)) ==
	     (GET_EXC_INDEX(EXC_FUNCTION_CLAUSE)) ) {
	    int a;
	    ASSERT(s->current);
	    a = s->current->arity;
	    args = make_arglist(c_p, reg, a); /* Overwrite CAR(c_p->ftrace) */
	    /* Save first stack entry */
	    ASSERT(c_p->cp);
	    if (depth > 0) {
		s->trace[s->depth++] = c_p->cp - 1;
		depth--;
	    }
	    s->pc = NULL; /* Ignore pc */
	} else {
	    if (depth > 0 && c_p->cp != 0 && c_p->cp != pc) {
		s->trace[s->depth++] = c_p->cp - 1;
		depth--;
	    }
	    s->pc = pc;
	}
    }

    /* Package args and stack trace */
    {
	Eterm *hp;
	hp = HAlloc(c_p, 2);
	c_p->ftrace = CONS(hp, args, make_big((Eterm *) s));
    }

    /* Save the actual stack trace */
    erts_save_stacktrace(c_p, s, depth);
}

void
erts_save_stacktrace(Process* p, struct StackTrace* s, int depth)
{
    if (depth > 0) {
	Eterm *ptr;
	BeamInstr *prev = s->depth ? s->trace[s->depth-1] : NULL;
	BeamInstr i_return_trace = beam_return_trace[0];
	BeamInstr i_return_to_trace = beam_return_to_trace[0];

	/*
	 * Traverse the stack backwards and add all unique continuation
	 * pointers to the buffer, up to the maximum stack trace size.
	 * 
	 * Skip trace stack frames.
	 */
	ptr = p->stop;
	if (ptr < STACK_START(p) &&
	    (is_not_CP(*ptr)|| (*cp_val(*ptr) != i_return_trace &&
				*cp_val(*ptr) != i_return_to_trace)) &&
	    p->cp) {
	    /* Cannot follow cp here - code may be unloaded */
	    BeamInstr *cpp = p->cp;
	    int trace_cp;
	    if (cpp == beam_exception_trace || cpp == beam_return_trace) {
		/* Skip return_trace parameters */
		ptr += 2;
		trace_cp = 1;
	    } else if (cpp == beam_return_to_trace) {
		/* Skip return_to_trace parameters */
		ptr += 1;
		trace_cp = 1;
	    }
	    else {
		trace_cp = 0;
	    }
	    if (trace_cp && s->pc == cpp) {
		/*
		 * If process 'cp' points to a return/exception trace
		 * instruction and 'cp' has been saved as 'pc' in
		 * stacktrace, we need to update 'pc' in stacktrace
		 * with the actual 'cp' located on the top of the
		 * stack; otherwise, we will lose the top stackframe
		 * when building the stack trace.
		 */
		ASSERT(is_CP(p->stop[0]));
		s->pc = cp_val(p->stop[0]);
	    }
	}
	while (ptr < STACK_START(p) && depth > 0) {
	    if (is_CP(*ptr)) {
		if (*cp_val(*ptr) == i_return_trace) {
		    /* Skip stack frame variables */
		    do ++ptr; while (is_not_CP(*ptr));
		    /* Skip return_trace parameters */
		    ptr += 2;
		} else if (*cp_val(*ptr) == i_return_to_trace) {
		    /* Skip stack frame variables */
		    do ++ptr; while (is_not_CP(*ptr));
		} else {
		    BeamInstr *cp = cp_val(*ptr);
		    if (cp != prev) {
			/* Record non-duplicates only */
			prev = cp;
			s->trace[s->depth++] = cp - 1;
			depth--;
		    }
		    ptr++;
		}
	    } else ptr++;
	}
    }
}

/*
 * Getting the relevant fields from the term pointed to by ftrace
 */

static struct StackTrace *get_trace_from_exc(Eterm exc) {
    if (exc == NIL) {
	return NULL;
    } else {
	ASSERT(is_list(exc));
	return (struct StackTrace *) big_val(CDR(list_val(exc)));
    }
}

static Eterm get_args_from_exc(Eterm exc) {
    if (exc == NIL) {
	return NIL;
    } else {
	ASSERT(is_list(exc));
	return CAR(list_val(exc));
    }
}

static int is_raised_exc(Eterm exc) {
    if (exc == NIL) {
        return 0;
    } else {
        ASSERT(is_list(exc));
        return bignum_header_is_neg(*big_val(CDR(list_val(exc))));
    }
}

/*
 * Creating a list with the argument registers
 */
static Eterm
make_arglist(Process* c_p, Eterm* reg, int a) {
    Eterm args = NIL;
    Eterm* hp = HAlloc(c_p, 2*a);
    while (a > 0) {
        args = CONS(hp, reg[a-1], args);
	hp += 2;
	a--;
    }
    return args;
}

/*
 * Building a symbolic representation of a saved stack trace. Note that
 * the exception object 'exc', unless NIL, points to a cons cell which
 * holds the given args and the quick-saved data (encoded as a bignum).
 *
 * If the bignum is negative, the given args is a complete stacktrace.
 */
Eterm
build_stacktrace(Process* c_p, Eterm exc) {
    struct StackTrace* s;
    Eterm  args;
    int    depth;
    FunctionInfo fi;
    FunctionInfo* stk;
    FunctionInfo* stkp;
    Eterm res = NIL;
    Uint heap_size;
    Eterm* hp;
    Eterm mfa;
    int i;

    if (! (s = get_trace_from_exc(exc))) {
        return NIL;
    }
#ifdef HIPE
    if (s->freason & EXF_NATIVE) {
	return hipe_build_stacktrace(c_p, s);
    }
#endif
    if (is_raised_exc(exc)) {
	return get_args_from_exc(exc);
    }

    /*
     * Find the current function. If the saved s->pc is null, then the
     * saved s->current should already contain the proper value.
     */
    if (s->pc != NULL) {
	erts_lookup_function_info(&fi, s->pc, 1);
    } else if (GET_EXC_INDEX(s->freason) ==
	       GET_EXC_INDEX(EXC_FUNCTION_CLAUSE)) {
	erts_lookup_function_info(&fi, erts_codemfa_to_code(s->current), 1);
    } else {
	erts_set_current_function(&fi, s->current);
    }

    depth = s->depth;
    /*
     * If fi.current is still NULL, and we have no
     * stack at all, default to the initial function
     * (e.g. spawn_link(erlang, abs, [1])).
     */
    if (fi.mfa == NULL) {
	if (depth <= 0)
            erts_set_current_function(&fi, &c_p->u.initial);
	args = am_true; /* Just in case */
    } else {
	args = get_args_from_exc(exc);
    }

    /*
     * Look up all saved continuation pointers and calculate
     * needed heap space.
     */
    stk = stkp = (FunctionInfo *) erts_alloc(ERTS_ALC_T_TMP,
				      depth*sizeof(FunctionInfo));
    heap_size = fi.mfa ? fi.needed + 2 : 0;
    for (i = 0; i < depth; i++) {
	erts_lookup_function_info(stkp, s->trace[i], 1);
	if (stkp->mfa) {
	    heap_size += stkp->needed + 2;
	    stkp++;
	}
    }

    /*
     * Allocate heap space and build the stacktrace.
     */
    hp = HAlloc(c_p, heap_size);
    while (stkp > stk) {
	stkp--;
	hp = erts_build_mfa_item(stkp, hp, am_true, &mfa);
	res = CONS(hp, mfa, res);
	hp += 2;
    }
    if (fi.mfa) {
	hp = erts_build_mfa_item(&fi, hp, args, &mfa);
	res = CONS(hp, mfa, res);
    }

    erts_free(ERTS_ALC_T_TMP, (void *) stk);
    return res;
}

static BeamInstr*
call_error_handler(Process* p, ErtsCodeMFA* mfa, Eterm* reg, Eterm func)
{
    Eterm* hp;
    Export* ep;
    int arity;
    Eterm args;
    Uint sz;
    int i;

    DBG_TRACE_MFA_P(mfa, "call_error_handler");
    /*
     * Search for the error_handler module.
     */
    ep = erts_find_function(erts_proc_get_error_handler(p), func, 3,
			    erts_active_code_ix());
    if (ep == NULL) {		/* No error handler */
	p->current = mfa;
	p->freason = EXC_UNDEF;
	return 0;
    }

    /*
     * Create a list with all arguments in the x registers.
     */

    arity = mfa->arity;
    sz = 2 * arity;
    if (HeapWordsLeft(p) < sz) {
	erts_garbage_collect(p, sz, reg, arity);
    }
    hp = HEAP_TOP(p);
    HEAP_TOP(p) += sz;
    args = NIL;
    for (i = arity-1; i >= 0; i--) {
	args = CONS(hp, reg[i], args);
	hp += 2;
    }

    /*
     * Set up registers for call to error_handler:<func>/3.
     */
    reg[0] = mfa->module;
    reg[1] = mfa->function;
    reg[2] = args;
    return ep->addressv[erts_active_code_ix()];
}

static Export*
apply_setup_error_handler(Process* p, Eterm module, Eterm function, Uint arity, Eterm* reg)
{
    Export* ep;

    /*
     * Find the export table index for the error handler. Return NULL if
     * there is no error handler module.
     */

    if ((ep = erts_active_export_entry(erts_proc_get_error_handler(p),
				     am_undefined_function, 3)) == NULL) {
	return NULL;
    } else {
	int i;
	Uint sz = 2*arity;
	Eterm* hp;
	Eterm args = NIL;
	
	/*
	 * Always copy args from registers to a new list; this ensures
	 * that we have the same behaviour whether or not this was
	 * called from apply or fixed_apply (any additional last
	 * THIS-argument will be included, assuming that arity has been
	 * properly adjusted).
	 */

	if (HeapWordsLeft(p) < sz) {
	    erts_garbage_collect(p, sz, reg, arity);
	}
	hp = HEAP_TOP(p);
	HEAP_TOP(p) += sz;
	for (i = arity-1; i >= 0; i--) {
	    args = CONS(hp, reg[i], args);
	    hp += 2;
	}
	reg[0] = module;
	reg[1] = function;
	reg[2] = args;
    }

    return ep;
}

static ERTS_INLINE void
apply_bif_error_adjustment(Process *p, Export *ep,
			   Eterm *reg, Uint arity,
			   BeamInstr *I, Uint stack_offset)
{
    /*
     * I is only set when the apply is a tail call, i.e.,
     * from the instructions i_apply_only, i_apply_last_P,
     * and apply_last_IP.
     */
    if (I
	&& ep->beam[0] == (BeamInstr) em_apply_bif
	&& (ep == bif_export[BIF_error_1]
	    || ep == bif_export[BIF_error_2]
	    || ep == bif_export[BIF_exit_1]
	    || ep == bif_export[BIF_throw_1])) {
	/*
	 * We are about to tail apply one of the BIFs
	 * erlang:error/1, erlang:error/2, erlang:exit/1,
	 * or erlang:throw/1. Error handling of these BIFs is
	 * special!
	 *
	 * We need 'p->cp' to point into the calling
	 * function when handling the error after the BIF has
	 * been applied. This in order to get the topmost
	 * stackframe correct. Without the following adjustment,
	 * 'p->cp' will point into the function that called
	 * current function when handling the error. We add a
	 * dummy stackframe in order to achieve this.
	 *
	 * Note that these BIFs unconditionally will cause
	 * an exception to be raised. That is, our modifications
	 * of 'p->cp' as well as the stack will be corrected by
	 * the error handling code.
	 *
	 * If we find an exception/return-to trace continuation
	 * pointer as the topmost continuation pointer, we do not
	 * need to do anything since the information already will
	 * be available for generation of the stacktrace.
	 */
	int apply_only = stack_offset == 0;
	BeamInstr *cpp;

	if (apply_only) {
	    ASSERT(p->cp != NULL);
	    cpp = p->cp;
	}
	else {
	    ASSERT(is_CP(p->stop[0]));
	    cpp = cp_val(p->stop[0]);
	}

	if (cpp != beam_exception_trace
	    && cpp != beam_return_trace
	    && cpp != beam_return_to_trace) {
	    Uint need = stack_offset /* bytes */ / sizeof(Eterm);
	    if (need == 0)
		need = 1; /* i_apply_only */
	    if (p->stop - p->htop < need)
		erts_garbage_collect(p, (int) need, reg, arity+1);
	    p->stop -= need;

	    if (apply_only) {
		/*
		 * Called from the i_apply_only instruction.
		 *
		 * 'p->cp' contains continuation pointer pointing
		 * into the function that called current function.
		 * We push that continuation pointer onto the stack,
		 * and set 'p->cp' to point into current function.
		 */

		p->stop[0] = make_cp(p->cp);
		p->cp = I;
	    }
	    else {
		/*
		 * Called from an i_apply_last_p, or apply_last_IP,
		 * instruction.
		 *
		 * Calling instruction will after we return read
		 * a continuation pointer from the stack and write
		 * it to 'p->cp', and then remove the topmost
		 * stackframe of size 'stack_offset'.
		 *
		 * We have sized the dummy-stackframe so that it
		 * will be removed by the instruction we currently
		 * are executing, and leave the stackframe that
		 * normally would have been removed intact.
		 *
		 */
		p->stop[0] = make_cp(I);
	    }
	}
    }
}

static BeamInstr*
apply(Process* p, Eterm* reg, BeamInstr *I, Uint stack_offset)
{
    int arity;
    Export* ep;
    Eterm tmp;
    Eterm module = reg[0];
    Eterm function = reg[1];
    Eterm args = reg[2];

    /*
     * Check the arguments which should be of the form apply(Module,
     * Function, Arguments) where Function is an atom and
     * Arguments is an arity long list of terms.
     */
    if (is_not_atom(function)) {
	/*
	 * No need to test args here -- done below.
	 */
    error:
	p->freason = BADARG;

    error2:
	reg[0] = module;
	reg[1] = function;
	reg[2] = args;
	return 0;
    }

    while (1) {
	Eterm m, f, a;

	if (is_not_atom(module)) goto error;

	if (module != am_erlang || function != am_apply)
	    break;

	/* Adjust for multiple apply of apply/3... */

	a = args;
	if (is_list(a)) {
	    Eterm *consp = list_val(a);
	    m = CAR(consp);
	    a = CDR(consp);
	    if (is_list(a)) {
		consp = list_val(a);
		f = CAR(consp);
		a = CDR(consp);
		if (is_list(a)) {
		    consp = list_val(a);
		    a = CAR(consp);
		    if (is_nil(CDR(consp))) {
			/* erlang:apply/3 */
			module = m;
			function = f;
			args = a;
			if (is_not_atom(f))
			    goto error;
			continue;
		    }
		}
	    }
	}
	break; /* != erlang:apply/3 */
    }
    /*
     * Walk down the 3rd parameter of apply (the argument list) and copy
     * the parameters to the x registers (reg[]).
     */

    tmp = args;
    arity = 0;
    while (is_list(tmp)) {
	if (arity < (MAX_REG - 1)) {
	    reg[arity++] = CAR(list_val(tmp));
	    tmp = CDR(list_val(tmp));
	} else {
	    p->freason = SYSTEM_LIMIT;
	    goto error2;
	}
    }
    if (is_not_nil(tmp)) {	/* Must be well-formed list */
	goto error;
    }

    /*
     * Get the index into the export table, or failing that the export
     * entry for the error handler.
     *
     * Note: All BIFs have export entries; thus, no special case is needed.
     */

    if ((ep = erts_active_export_entry(module, function, arity)) == NULL) {
	if ((ep = apply_setup_error_handler(p, module, function, arity, reg)) == NULL) goto error;
    } else if (ERTS_PROC_GET_SAVED_CALLS_BUF(p)) {
	save_calls(p, ep);
    }
    apply_bif_error_adjustment(p, ep, reg, arity, I, stack_offset);
    DTRACE_GLOBAL_CALL_FROM_EXPORT(p, ep);
    return ep->addressv[erts_active_code_ix()];
}

static BeamInstr*
fixed_apply(Process* p, Eterm* reg, Uint arity,
	    BeamInstr *I, Uint stack_offset)
{
    Export* ep;
    Eterm module;
    Eterm function;

    module = reg[arity];    /* The THIS pointer already in place */
    function = reg[arity+1];

    if (is_not_atom(function)) {
    error:
	p->freason = BADARG;
	reg[0] = module;
	reg[1] = function;
	reg[2] = NIL;
	return 0;
    }

    if (is_not_atom(module)) goto error;

    /* Handle apply of apply/3... */
    if (module == am_erlang && function == am_apply && arity == 3) {
	return apply(p, reg, I, stack_offset);
    }
    
    /*
     * Get the index into the export table, or failing that the export
     * entry for the error handler module.
     *
     * Note: All BIFs have export entries; thus, no special case is needed.
     */

    if ((ep = erts_active_export_entry(module, function, arity)) == NULL) {
	if ((ep = apply_setup_error_handler(p, module, function, arity, reg)) == NULL)
	    goto error;
    } else if (ERTS_PROC_GET_SAVED_CALLS_BUF(p)) {
	save_calls(p, ep);
    }
    apply_bif_error_adjustment(p, ep, reg, arity, I, stack_offset);
    DTRACE_GLOBAL_CALL_FROM_EXPORT(p, ep);
    return ep->addressv[erts_active_code_ix()];
}

int
erts_hibernate(Process* c_p, Eterm* reg)
{
    int arity;
    Eterm tmp;
    Eterm module = reg[0];
    Eterm function = reg[1];
    Eterm args = reg[2];

    if (is_not_atom(module) || is_not_atom(function)) {
	/*
	 * No need to test args here -- done below.
	 */
    error:
	c_p->freason = BADARG;

    error2:
	reg[0] = module;
	reg[1] = function;
	reg[2] = args;
	return 0;
    }

    arity = 0;
    tmp = args;
    while (is_list(tmp)) {
	if (arity < MAX_REG) {
	    tmp = CDR(list_val(tmp));
	    arity++;
	} else {
	    c_p->freason = SYSTEM_LIMIT;
	    goto error2;
	}
    }
    if (is_not_nil(tmp)) {	/* Must be well-formed list */
	goto error;
    }

    /*
     * At this point, arguments are known to be good.
     */

    if (c_p->arg_reg != c_p->def_arg_reg) {
	/* Save some memory */
	erts_free(ERTS_ALC_T_ARG_REG, c_p->arg_reg);
	c_p->arg_reg = c_p->def_arg_reg;
	c_p->max_arg_reg = sizeof(c_p->def_arg_reg)/sizeof(c_p->def_arg_reg[0]);
    }

#ifdef USE_VM_PROBES
    if (DTRACE_ENABLED(process_hibernate)) {
        ErtsCodeMFA cmfa = { module, function, arity};
        DTRACE_CHARBUF(process_name, DTRACE_TERM_BUF_SIZE);
        DTRACE_CHARBUF(mfa_buf, DTRACE_TERM_BUF_SIZE);
        dtrace_fun_decode(c_p, &cmfa, process_name, mfa_buf);
        DTRACE2(process_hibernate, process_name, mfa_buf);
    }
#endif
    /*
     * Arrange for the process to be resumed at the given MFA with
     * the stack cleared.
     */
    c_p->arity = 3;
    c_p->arg_reg[0] = module;
    c_p->arg_reg[1] = function;
    c_p->arg_reg[2] = args;
    c_p->stop = STACK_START(c_p);
    c_p->catches = 0;
    c_p->i = beam_apply;
    c_p->cp = (BeamInstr *) beam_apply+1;

    /*
     * If there are no waiting messages, garbage collect and
     * shrink the heap. 
     */
    erts_proc_lock(c_p, ERTS_PROC_LOCK_MSGQ|ERTS_PROC_LOCK_STATUS);
    ERTS_MSGQ_MV_INQ2PRIVQ(c_p);
    if (!c_p->msg.len) {
	erts_proc_unlock(c_p, ERTS_PROC_LOCK_MSGQ|ERTS_PROC_LOCK_STATUS);
	c_p->fvalue = NIL;
	PROCESS_MAIN_CHK_LOCKS(c_p);
	erts_garbage_collect_hibernate(c_p);
	ERTS_VERIFY_UNUSED_TEMP_ALLOC(c_p);
	PROCESS_MAIN_CHK_LOCKS(c_p);
	erts_proc_lock(c_p, ERTS_PROC_LOCK_MSGQ|ERTS_PROC_LOCK_STATUS);
        ERTS_MSGQ_MV_INQ2PRIVQ(c_p);
	if (!c_p->msg.len)
	    erts_atomic32_read_band_relb(&c_p->state, ~ERTS_PSFLG_ACTIVE);
	ASSERT(!ERTS_PROC_IS_EXITING(c_p));
    }
    erts_proc_unlock(c_p, ERTS_PROC_LOCK_MSGQ|ERTS_PROC_LOCK_STATUS);
    c_p->current = &bif_export[BIF_hibernate_3]->info.mfa;
    c_p->flags |= F_HIBERNATE_SCHED; /* Needed also when woken! */
    return 1;
}

static BeamInstr*
call_fun(Process* p,		/* Current process. */
	 int arity,		/* Number of arguments for Fun. */
	 Eterm* reg,		/* Contents of registers. */
	 Eterm args)		/* THE_NON_VALUE or pre-built list of arguments. */
{
    Eterm fun = reg[arity];
    Eterm hdr;
    int i;
    Eterm* hp;

    if (!is_boxed(fun)) {
	goto badfun;
    }
    hdr = *boxed_val(fun);

    if (is_fun_header(hdr)) {
	ErlFunThing* funp = (ErlFunThing *) fun_val(fun);
	ErlFunEntry* fe = funp->fe;
	BeamInstr* code_ptr = fe->address;
	Eterm* var_ptr;
	unsigned num_free = funp->num_free;
        ErtsCodeMFA *mfa = erts_code_to_codemfa(code_ptr);
	int actual_arity = mfa->arity;

	if (actual_arity == arity+num_free) {
	    DTRACE_LOCAL_CALL(p, mfa);
	    if (num_free == 0) {
		return code_ptr;
	    } else {
		var_ptr = funp->env;
		reg += arity;
		i = 0;
		do {
		    reg[i] = var_ptr[i];
		    i++;
		} while (i < num_free);
		reg[i] = fun;
		return code_ptr;
	    }
	    return code_ptr;
	} else {
	    /*
	     * Something wrong here. First build a list of the arguments.
	     */

	    if (is_non_value(args)) {
		Uint sz = 2 * arity;
		args = NIL;
		if (HeapWordsLeft(p) < sz) {
		    erts_garbage_collect(p, sz, reg, arity+1);
		    fun = reg[arity];
		}
		hp = HEAP_TOP(p);
		HEAP_TOP(p) += sz;
		for (i = arity-1; i >= 0; i--) {
		    args = CONS(hp, reg[i], args);
		    hp += 2;
		}
	    }

	    if (actual_arity >= 0) {
		/*
		 * There is a fun defined, but the call has the wrong arity.
		 */
		hp = HAlloc(p, 3);
		p->freason = EXC_BADARITY;
		p->fvalue = TUPLE2(hp, fun, args);
		return NULL;
	    } else {
		Export* ep;
		Module* modp;
		Eterm module;
		ErtsCodeIndex code_ix = erts_active_code_ix();

		/*
		 * No arity. There is no module loaded that defines the fun,
		 * either because the fun is newly created from the external
		 * representation (the module has never been loaded),
		 * or the module defining the fun has been unloaded.
		 */

		module = fe->module;

		ERTS_THR_READ_MEMORY_BARRIER;
		if (fe->pend_purge_address) {
		    /*
		     * The system is currently trying to purge the
		     * module containing this fun. Suspend the process
		     * and let it try again when the purge operation is
		     * done (may succeed or not).
		     */
		    ep = erts_suspend_process_on_pending_purge_lambda(p, fe);
		    ASSERT(ep);
		}
		else {
		    if ((modp = erts_get_module(module, code_ix)) != NULL
			&& modp->curr.code_hdr != NULL) {
			/*
			 * There is a module loaded, but obviously the fun is not
			 * defined in it. We must not call the error_handler
			 * (or we will get into an infinite loop).
			 */
			goto badfun;
		    }
		
		    /*
		     * No current code for this module. Call the error_handler module
		     * to attempt loading the module.
		     */

		    ep = erts_find_function(erts_proc_get_error_handler(p),
					    am_undefined_lambda, 3, code_ix);
		    if (ep == NULL) {	/* No error handler */
			p->current = NULL;
			p->freason = EXC_UNDEF;
			return NULL;
		    }
		}
		reg[0] = module;
		reg[1] = fun;
		reg[2] = args;
		reg[3] = NIL;
		return ep->addressv[code_ix];
	    }
	}
    } else if (is_export_header(hdr)) {
	Export *ep;
	int actual_arity;

	ep = *((Export **) (export_val(fun) + 1));
	actual_arity = ep->info.mfa.arity;

	if (arity == actual_arity) {
	    DTRACE_GLOBAL_CALL(p, &ep->info.mfa);
	    return ep->addressv[erts_active_code_ix()];
	} else {
	    /*
	     * Wrong arity. First build a list of the arguments.
	     */  

	    if (is_non_value(args)) {
		args = NIL;
		hp = HAlloc(p, arity*2);
		for (i = arity-1; i >= 0; i--) {
		    args = CONS(hp, reg[i], args);
		    hp += 2;
		}
	    }

	    hp = HAlloc(p, 3);
	    p->freason = EXC_BADARITY;
	    p->fvalue = TUPLE2(hp, fun, args);
	    return NULL;
	}
    } else {
    badfun:
	p->current = NULL;
	p->freason = EXC_BADFUN;
	p->fvalue = fun;
	return NULL;
    }
}

static BeamInstr*
apply_fun(Process* p, Eterm fun, Eterm args, Eterm* reg)
{
    int arity;
    Eterm tmp;

    /*
     * Walk down the 3rd parameter of apply (the argument list) and copy
     * the parameters to the x registers (reg[]).
     */

    tmp = args;
    arity = 0;
    while (is_list(tmp)) {
	if (arity < MAX_REG-1) {
	    reg[arity++] = CAR(list_val(tmp));
	    tmp = CDR(list_val(tmp));
	} else {
	    p->freason = SYSTEM_LIMIT;
	    return NULL;
	}
    }

    if (is_not_nil(tmp)) {	/* Must be well-formed list */
	p->freason = EXC_BADARG;
	return NULL;
    }
    reg[arity] = fun;
    return call_fun(p, arity, reg, args);
}



static Eterm
new_fun(Process* p, Eterm* reg, ErlFunEntry* fe, int num_free)
{
    unsigned needed = ERL_FUN_SIZE + num_free;
    ErlFunThing* funp;
    Eterm* hp;
    int i;

    if (HEAP_LIMIT(p) - HEAP_TOP(p) <= needed) {
	PROCESS_MAIN_CHK_LOCKS(p);
	erts_garbage_collect(p, needed, reg, num_free);
	ERTS_VERIFY_UNUSED_TEMP_ALLOC(p);
	PROCESS_MAIN_CHK_LOCKS(p);
    }
    hp = p->htop;
    p->htop = hp + needed;
    funp = (ErlFunThing *) hp;
    hp = funp->env;
    erts_refc_inc(&fe->refc, 2);
    funp->thing_word = HEADER_FUN;
    funp->next = MSO(p).first;
    MSO(p).first = (struct erl_off_heap_header*) funp;
    funp->fe = fe;
    funp->num_free = num_free;
    funp->creator = p->common.id;
    funp->arity = (int)fe->address[-1] - num_free;
    for (i = 0; i < num_free; i++) {
	*hp++ = reg[i];
    }
    return make_fun(funp);
}

static Eterm get_map_element(Eterm map, Eterm key)
{
    Uint32 hx;
    const Eterm *vs;
    if (is_flatmap(map)) {
	flatmap_t *mp;
	Eterm *ks;
	Uint i;
	Uint n;

	mp = (flatmap_t *)flatmap_val(map);
	ks = flatmap_get_keys(mp);
	vs = flatmap_get_values(mp);
	n  = flatmap_get_size(mp);
	if (is_immed(key)) {
	    for (i = 0; i < n; i++) {
		if (ks[i] == key) {
		    return vs[i];
		}
	    }
	} else {
	    for (i = 0; i < n; i++) {
		if (EQ(ks[i], key)) {
		    return vs[i];
		}
	    }
	}
	return THE_NON_VALUE;
    }
    ASSERT(is_hashmap(map));
    hx = hashmap_make_hash(key);
    vs = erts_hashmap_get(hx,key,map);
    return vs ? *vs : THE_NON_VALUE;
}

static Eterm get_map_element_hash(Eterm map, Eterm key, Uint32 hx)
{
    const Eterm *vs;

    if (is_flatmap(map)) {
	flatmap_t *mp;
	Eterm *ks;
	Uint i;
	Uint n;

	mp = (flatmap_t *)flatmap_val(map);
	ks = flatmap_get_keys(mp);
	vs = flatmap_get_values(mp);
	n  = flatmap_get_size(mp);
	if (is_immed(key)) {
	    for (i = 0; i < n; i++) {
		if (ks[i] == key) {
		    return vs[i];
		}
	    }
	} else {
	    for (i = 0; i < n; i++) {
		if (EQ(ks[i], key)) {
		    return vs[i];
		}
	    }
	}
	return THE_NON_VALUE;
    }

    ASSERT(is_hashmap(map));
    ASSERT(hx == hashmap_make_hash(key));
    vs = erts_hashmap_get(hx, key, map);
    return vs ? *vs : THE_NON_VALUE;
}

#define GET_TERM(term, dest)			\
do {						\
    Eterm src = (Eterm)(term);			\
    switch (loader_tag(src)) {			\
    case LOADER_X_REG:				\
        dest = x(loader_x_reg_index(src));	\
	break;					\
    case LOADER_Y_REG:				\
        dest = y(loader_y_reg_index(src));	\
	break;					\
    default:					\
	dest = src;				\
	break;					\
    }						\
} while(0)


static Eterm
new_map(Process* p, Eterm* reg, Uint live, Uint n, BeamInstr* ptr)
{
    Uint i;
    Uint need = n + 1 /* hdr */ + 1 /*size*/ + 1 /* ptr */ + 1 /* arity */;
    Eterm keys;
    Eterm *mhp,*thp;
    Eterm *E;
    flatmap_t *mp;
    ErtsHeapFactory factory;

    if (n > 2*MAP_SMALL_MAP_LIMIT) {
        Eterm res;
	if (HeapWordsLeft(p) < n) {
	    erts_garbage_collect(p, n, reg, live);
	}

	mhp = p->htop;
	thp = p->htop;
	E   = p->stop;

	for (i = 0; i < n/2; i++) {
	    GET_TERM(*ptr++, *mhp++);
	    GET_TERM(*ptr++, *mhp++);
	}

	p->htop = mhp;

        erts_factory_proc_init(&factory, p);
        res = erts_hashmap_from_array(&factory, thp, n/2, 0);
        erts_factory_close(&factory);
        return res;
    }

    if (HeapWordsLeft(p) < need) {
	erts_garbage_collect(p, need, reg, live);
    }

    thp    = p->htop;
    mhp    = thp + 1 + n/2;
    E      = p->stop;
    keys   = make_tuple(thp);
    *thp++ = make_arityval(n/2);

    mp = (flatmap_t *)mhp; mhp += MAP_HEADER_FLATMAP_SZ;
    mp->thing_word = MAP_HEADER_FLATMAP;
    mp->size = n/2;
    mp->keys = keys;

    for (i = 0; i < n/2; i++) {
	GET_TERM(*ptr++, *thp++);
	GET_TERM(*ptr++, *mhp++);
    }
    p->htop = mhp;
    return make_flatmap(mp);
}

static Eterm
new_small_map_lit(Process* p, Eterm* reg, Eterm keys_literal, Uint live, BeamInstr* ptr)
{
    Eterm* keys = tuple_val(keys_literal);
    Uint n = arityval(*keys);
    Uint need = n + 1 /* hdr */ + 1 /*size*/ + 1 /* ptr */ + 1 /* arity */;
    Uint i;
    flatmap_t *mp;
    Eterm *mhp;
    Eterm *E;

    ASSERT(n <= MAP_SMALL_MAP_LIMIT);

    if (HeapWordsLeft(p) < need) {
        erts_garbage_collect(p, need, reg, live);
    }

    mhp = p->htop;
    E   = p->stop;

    mp = (flatmap_t *)mhp; mhp += MAP_HEADER_FLATMAP_SZ;
    mp->thing_word = MAP_HEADER_FLATMAP;
    mp->size = n;
    mp->keys = keys_literal;

    for (i = 0; i < n; i++) {
        GET_TERM(*ptr++, *mhp++);
    }

    p->htop = mhp;

    return make_flatmap(mp);
}

static Eterm
update_map_assoc(Process* p, Eterm* reg, Uint live, Uint n, BeamInstr* new_p)
{
    Uint num_old;
    Uint num_updates;
    Uint need;
    flatmap_t *old_mp, *mp;
    Eterm res;
    Eterm* hp;
    Eterm* E;
    Eterm* old_keys;
    Eterm* old_vals;
    Eterm new_key;
    Eterm* kp;
    Eterm map;

    num_updates = n / 2;
    map = reg[live];

    if (is_not_flatmap(map)) {
	Uint32 hx;
	Eterm val;

	ASSERT(is_hashmap(map));
	res = map;
	E = p->stop;
	while(num_updates--) {
	    /* assoc can't fail */
	    GET_TERM(new_p[0], new_key);
	    GET_TERM(new_p[1], val);
	    hx = hashmap_make_hash(new_key);

	    res = erts_hashmap_insert(p, hx, new_key, val, res,  0);

	    new_p += 2;
	}
	return res;
    }

    old_mp  = (flatmap_t *) flatmap_val(map);
    num_old = flatmap_get_size(old_mp);

    /*
     * If the old map is empty, create a new map.
     */

    if (num_old == 0) {
	return new_map(p, reg, live, n, new_p);
    }

    /*
     * Allocate heap space for the worst case (i.e. all keys in the
     * update list are new).
     */

    need = 2*(num_old+num_updates) + 1 + MAP_HEADER_FLATMAP_SZ;
    if (HeapWordsLeft(p) < need) {
	erts_garbage_collect(p, need, reg, live+1);
	map      = reg[live];
	old_mp   = (flatmap_t *)flatmap_val(map);
    }

    /*
     * Build the skeleton for the map, ready to be filled in.
     *
     * +-----------------------------------+
     * | (Space for aritvyal for keys)     | <-----------+
     * +-----------------------------------+		 |
     * | (Space for key 1)		   |		 |    <-- kp
     * +-----------------------------------+		 |
     *        .				    		 |
     *        .				    		 |
     *        .				    		 |
     * +-----------------------------------+		 |
     * | (Space for last key)		   |		 |
     * +-----------------------------------+		 |
     * | MAP_HEADER			   |		 |
     * +-----------------------------------+		 |
     * | (Space for number of keys/values) |		 |
     * +-----------------------------------+		 |
     * | Boxed tuple pointer            >----------------+
     * +-----------------------------------+
     * | (Space for value 1)		   |                  <-- hp
     * +-----------------------------------+
     */

    E = p->stop;
    kp = p->htop + 1;		/* Point to first key */
    hp = kp + num_old + num_updates;

    res = make_flatmap(hp);
    mp = (flatmap_t *)hp;
    hp += MAP_HEADER_FLATMAP_SZ;
    mp->thing_word = MAP_HEADER_FLATMAP;
    mp->keys = make_tuple(kp-1);

    old_vals = flatmap_get_values(old_mp);
    old_keys = flatmap_get_keys(old_mp);

    GET_TERM(*new_p, new_key);
    n = num_updates;

    /*
     * Fill in keys and values, until we run out of either updates
     * or old values and keys.
     */

    for (;;) {
	Eterm key;
	Sint c;

	ASSERT(kp < (Eterm *)mp);
	key = *old_keys;
	if ((c = CMP_TERM(key, new_key)) < 0) {
	    /* Copy old key and value */
	    *kp++ = key;
	    *hp++ = *old_vals;
	    old_keys++, old_vals++, num_old--;
	} else {		/* Replace or insert new */
	    GET_TERM(new_p[1], *hp++);
	    if (c > 0) {	/* If new new key */
		*kp++ = new_key;
	    } else {		/* If replacement */
		*kp++ = key;
		old_keys++, old_vals++, num_old--;
	    }
	    n--;
	    if (n == 0) {
		break;
	    } else {
		new_p += 2;
		GET_TERM(*new_p, new_key);
	    }
	}
	if (num_old == 0) {
	    break;
	}
    }

    /*
     * At this point, we have run out of either old keys and values,
     * or the update list. In other words, at least of one n and
     * num_old must be zero.
     */

    if (n > 0) {
	/*
	 * All old keys and values have been copied, but there
	 * are still new keys and values in the update list that
	 * must be copied.
	 */
	ASSERT(num_old == 0);
	while (n-- > 0) {
	    GET_TERM(new_p[0], *kp++);
	    GET_TERM(new_p[1], *hp++);
	    new_p += 2;
	}
    } else {
	/*
	 * All updates are now done. We may still have old
	 * keys and values that we must copy.
	 */
	ASSERT(n == 0);
	while (num_old-- > 0) {
	    ASSERT(kp < (Eterm *)mp);
	    *kp++ = *old_keys++;
	    *hp++ = *old_vals++;
	}
    }

    /*
     * Calculate how many values that are unused at the end of the
     * key tuple and fill it out with a bignum header.
     */
    if ((n = (Eterm *)mp - kp) > 0) {
	*kp = make_pos_bignum_header(n-1);
    }

    /*
     * Fill in the size of the map in both the key tuple and in the map.
     */

    n = kp - p->htop - 1;	/* Actual number of keys/values */
    *p->htop = make_arityval(n);
    p->htop  = hp;
    mp->size = n;

    /* The expensive case, need to build a hashmap */
    if (n > MAP_SMALL_MAP_LIMIT) {
        ErtsHeapFactory factory;
        erts_factory_proc_init(&factory, p);
        res = erts_hashmap_from_ks_and_vs(&factory,flatmap_get_keys(mp),
                                          flatmap_get_values(mp),n);
        erts_factory_close(&factory);
    }
    return res;
}

/*
 * Update values for keys that already exist in the map.
 */

static Eterm
update_map_exact(Process* p, Eterm* reg, Uint live, Uint n, Eterm* new_p)
{
    Uint i;
    Uint num_old;
    Uint need;
    flatmap_t *old_mp, *mp;
    Eterm res;
    Eterm* hp;
    Eterm* E;
    Eterm* old_keys;
    Eterm* old_vals;
    Eterm new_key;
    Eterm map;

    n /= 2;		/* Number of values to be updated */
    ASSERT(n > 0);
    map = reg[live];

    if (is_not_flatmap(map)) {
	Uint32 hx;
	Eterm val;

	/* apparently the compiler does not emit is_map instructions,
	 * bad compiler */

	if (is_not_hashmap(map)) {
	    p->freason = BADMAP;
	    p->fvalue = map;
	    return THE_NON_VALUE;
	}

	res = map;
	E = p->stop;
	while(n--) {
	    GET_TERM(new_p[0], new_key);
	    GET_TERM(new_p[1], val);
	    hx = hashmap_make_hash(new_key);

	    res = erts_hashmap_insert(p, hx, new_key, val, res,  1);
	    if (is_non_value(res)) {
		p->fvalue = new_key;
		p->freason = BADKEY;
		return res;
	    }

	    new_p += 2;
	}
	return res;
    }

    old_mp = (flatmap_t *) flatmap_val(map);
    num_old = flatmap_get_size(old_mp);

    /*
     * If the old map is empty, fail.
     */

    if (num_old == 0) {
	E = p->stop;
	p->freason = BADKEY;
	GET_TERM(new_p[0], p->fvalue);
	return THE_NON_VALUE;
    }

    /*
     * Allocate the exact heap space needed.
     */

    need = num_old + MAP_HEADER_FLATMAP_SZ;
    if (HeapWordsLeft(p) < need) {
	erts_garbage_collect(p, need, reg, live+1);
	map      = reg[live];
	old_mp   = (flatmap_t *)flatmap_val(map);
    }

    /*
     * Update map, keeping the old key tuple.
     */

    hp = p->htop;
    E = p->stop;

    old_vals = flatmap_get_values(old_mp);
    old_keys = flatmap_get_keys(old_mp);

    res = make_flatmap(hp);
    mp = (flatmap_t *)hp;
    hp += MAP_HEADER_FLATMAP_SZ;
    mp->thing_word = MAP_HEADER_FLATMAP;
    mp->size = num_old;
    mp->keys = old_mp->keys;

    /* Get array of key/value pairs to be updated */
    GET_TERM(*new_p, new_key);

    /* Update all values */
    for (i = 0; i < num_old; i++) {
	if (!EQ(*old_keys, new_key)) {
	    /* Not same keys */
	    *hp++ = *old_vals;
	} else {
	    GET_TERM(new_p[1], *hp);
	    hp++;
	    n--;
	    if (n == 0) {
		/*
		 * All updates done. Copy remaining values
		 * and return the result.
		 */
		for (i++, old_vals++; i < num_old; i++) {
		    *hp++ = *old_vals++;
		}
		ASSERT(hp == p->htop + need);
		p->htop = hp;
		return res;
	    } else {
		new_p += 2;
		GET_TERM(*new_p, new_key);
	    }
	}
	old_vals++, old_keys++;
    }

    /*
     * Updates left. That means that at least one the keys in the
     * update list did not previously exist.
     */
    ASSERT(hp == p->htop + need);
    p->freason = BADKEY;
    p->fvalue = new_key;
    return THE_NON_VALUE;
}
#undef GET_TERM

int catchlevel(Process *p)
{
    return p->catches;
}

/*
 * Check if the given function is built-in (i.e. a BIF implemented in C).
 *
 * Returns 0 if not built-in, and a non-zero value if built-in.
 */

int
erts_is_builtin(Eterm Mod, Eterm Name, int arity)
{
    Export e;
    Export* ep;

    if (Mod == am_erlang && Name == am_apply && arity == 3) {
	/*
	 * Special case. apply/3 is built-in (implemented in C),
	 * but implemented in a different way than all other
	 * BIFs.
	 */
	return 1;
    }

    e.info.mfa.module = Mod;
    e.info.mfa.function = Name;
    e.info.mfa.arity = arity;

    if ((ep = export_get(&e)) == NULL) {
	return 0;
    }
    return ep->addressv[erts_active_code_ix()] == ep->beam
	&& (ep->beam[0] == (BeamInstr) em_apply_bif);
}


/*
 * Return the current number of reductions for the given process.
 * To get the total number of reductions, p->reds must be added.
 */

Uint
erts_current_reductions(Process *current, Process *p)
{
    if (current != p) {
	return 0;
    } else if (current->fcalls < 0 && ERTS_PROC_GET_SAVED_CALLS_BUF(current)) {
	return current->fcalls + CONTEXT_REDS;
    } else {
	return REDS_IN(current) - current->fcalls;
    }
}

int
erts_beam_jump_table(void)
{
#if defined(NO_JUMP_TABLE)
    return 0;
#else
    return 1;
#endif
}