1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2005-2011. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
#define ASM
#include "hipe_arm_asm.h"
#include "hipe_literals.h"
#include "hipe_mode_switch.h"
.text
.p2align 2
/*
* Enter Erlang from C.
* Create a new frame on the C stack.
* Save C callee-save registers in the frame.
* Do not clobber the C argument registers.
* Retrieve the process pointer from the C argument registers.
*
* Our C frame includes:
* - 9*4 == 36 bytes for saving r4-r11 and lr
* - 2*4 == 8 bytes for calls to hipe_bs_put_{big_integer,small_float}.
* They take 5-6 parameter words: 4 in registers and 1-2 on the stack.
* (They take 5 regular parameters, and an additional P parameter on SMP.)
* - 4 bytes to pad the frame size to a multiple of 8
*/
#define ENTER_FROM_C \
stmfd sp!, {r4,r5,r6,r7,r8,r9,r10,r11,lr}; \
sub sp, sp, #12; \
mov P, r0; \
RESTORE_CACHED_STATE
/*
* Return to the calling C function.
* The return value is in r0.
*
* .nosave_exit saves no state
* .flush_exit saves NSP and other cached P state.
* .suspend_exit also saves RA.
*/
.suspend_exit:
/* save RA, so we can be resumed */
str lr, [P, #P_NRA]
.flush_exit:
/* flush cached P state */
SAVE_CACHED_STATE
.nosave_exit:
/* restore callee-save registers, drop frame, return */
add sp, sp, #12
ldmfd sp!, {r4,r5,r6,r7,r8,r9,r10,r11,pc}
/*
* int hipe_arm_call_to_native(Process *p);
* Emulated code recursively calls native code.
*/
.global hipe_arm_call_to_native
hipe_arm_call_to_native:
ENTER_FROM_C
/* get argument registers */
LOAD_ARG_REGS
/* call the target */
mov lr, pc
ldr pc, [P, #P_NCALLEE]
/* FALLTHROUGH
*
* We export this return address so that hipe_mode_switch() can discover
* when native code tailcalls emulated code.
*
* This is where native code returns to emulated code.
*/
.global nbif_return
nbif_return:
str r0, [P, #P_ARG0] /* save retval */
mov r0, #HIPE_MODE_SWITCH_RES_RETURN
b .flush_exit
/*
* int hipe_arm_return_to_native(Process *p);
* Emulated code returns to its native code caller.
*/
.global hipe_arm_return_to_native
hipe_arm_return_to_native:
ENTER_FROM_C
/* get return value */
ldr r0, [P, #P_ARG0]
/*
* Return using the current return address.
* The parameters were popped at the original native-to-emulated
* call (hipe_call_from_native_is_recursive), so a plain ret suffices.
*/
ldr pc, [P, #P_NRA]
/*
* int hipe_arm_tailcall_to_native(Process *p);
* Emulated code tailcalls native code.
*/
.global hipe_arm_tailcall_to_native
hipe_arm_tailcall_to_native:
ENTER_FROM_C
/* get argument registers */
LOAD_ARG_REGS
/* restore return address */
ldr lr, [P, #P_NRA]
/* call the target */
ldr pc, [P, #P_NCALLEE]
/*
* int hipe_arm_throw_to_native(Process *p);
* Emulated code throws an exception to its native code caller.
*/
.global hipe_arm_throw_to_native
hipe_arm_throw_to_native:
ENTER_FROM_C
/* invoke the handler */
ldr pc, [P, #P_NCALLEE] /* set by hipe_find_handler() */
/*
* Native code calls emulated code via a stub
* which should look as follows:
*
* stub for f/N:
* <set r8 to f's export entry address>
* <set r0 to N>
* b nbif_callemu
*
* XXX: Different stubs for different number of register parameters?
*/
.global nbif_callemu
nbif_callemu:
str r8, [P, #P_CALLEE_EXP]
str r0, [P, #P_ARITY]
STORE_ARG_REGS
mov r0, #HIPE_MODE_SWITCH_RES_CALL_EXPORTED
b .suspend_exit
/*
* nbif_apply
*/
.global nbif_apply
nbif_apply:
STORE_ARG_REGS
mov r0, #HIPE_MODE_SWITCH_RES_APPLY
b .suspend_exit
/*
* Native code calls an emulated-mode closure via a stub defined below.
*
* The closure is appended as the last actual parameter, and parameters
* beyond the first few passed in registers are pushed onto the stack in
* left-to-right order.
* Hence, the location of the closure parameter only depends on the number
* of parameters in registers, not the total number of parameters.
*/
#if NR_ARG_REGS >= 6
.global nbif_ccallemu6
nbif_ccallemu6:
str ARG5, [P, #P_ARG5]
#if NR_ARG_REGS > 6
mov ARG5, ARG6
#else
ldr ARG5, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
#if NR_ARG_REGS >= 5
.global nbif_ccallemu5
nbif_ccallemu5:
str ARG4, [P, #P_ARG4]
#if NR_ARG_REGS > 5
mov ARG4, ARG5
#else
ldr ARG4, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
#if NR_ARG_REGS >= 4
.global nbif_ccallemu4
nbif_ccallemu4:
str ARG3, [P, #P_ARG3]
#if NR_ARG_REGS > 4
mov ARG3, ARG4
#else
ldr ARG3, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
#if NR_ARG_REGS >= 3
.global nbif_ccallemu3
nbif_ccallemu3:
str ARG2, [P, #P_ARG2]
#if NR_ARG_REGS > 3
mov ARG2, ARG3
#else
ldr ARG2, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
#if NR_ARG_REGS >= 2
.global nbif_ccallemu2
nbif_ccallemu2:
str ARG1, [P, #P_ARG1]
#if NR_ARG_REGS > 2
mov ARG1, ARG2
#else
ldr ARG1, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
#if NR_ARG_REGS >= 1
.global nbif_ccallemu1
nbif_ccallemu1:
str ARG0, [P, #P_ARG0]
#if NR_ARG_REGS > 1
mov ARG0, ARG1
#else
ldr ARG0, [NSP, #0]
#endif
/*FALLTHROUGH*/
#endif
.global nbif_ccallemu0
nbif_ccallemu0:
/* We use r1 not ARG0 here because ARG0 is not
defined when NR_ARG_REGS == 0. */
#if NR_ARG_REGS == 0
ldr r1, [NSP, #0] /* get the closure */
#endif
str r1, [P, #P_CLOSURE] /* save the closure */
mov r0, #HIPE_MODE_SWITCH_RES_CALL_CLOSURE
b .suspend_exit
/*
* This is where native code suspends.
*/
.global nbif_suspend_0
nbif_suspend_0:
mov r0, #HIPE_MODE_SWITCH_RES_SUSPEND
b .suspend_exit
/*
* Suspend from a receive (waiting for a message)
*/
.global nbif_suspend_msg
nbif_suspend_msg:
mov r0, #HIPE_MODE_SWITCH_RES_WAIT
b .suspend_exit
/*
* Suspend from a receive with a timeout (waiting for a message)
* if (!(p->flags & F_TIMO)) { suspend }
* else { return 0; }
*/
.global nbif_suspend_msg_timeout
nbif_suspend_msg_timeout:
ldr r1, [P, #P_FLAGS]
mov r0, #HIPE_MODE_SWITCH_RES_WAIT_TIMEOUT
/* this relies on F_TIMO (1<<2) fitting in a uimm16 */
tst r1, #F_TIMO
beq .suspend_exit
/* timeout has occurred */
mov r0, #0
mov pc, lr
/*
* This is the default exception handler for native code.
*/
.global nbif_fail
nbif_fail:
mov r0, #HIPE_MODE_SWITCH_RES_THROW
b .flush_exit /* no need to save RA */
.global nbif_0_gc_after_bif
.global nbif_1_gc_after_bif
.global nbif_2_gc_after_bif
.global nbif_3_gc_after_bif
nbif_0_gc_after_bif:
mov r1, #0
b .gc_after_bif
nbif_1_gc_after_bif:
mov r1, #1
b .gc_after_bif
nbif_2_gc_after_bif:
mov r1, #2
b .gc_after_bif
nbif_3_gc_after_bif:
mov r1, #3
/*FALLTHROUGH*/
.gc_after_bif:
str r1, [P, #P_NARITY]
str TEMP_LR, [P, #P_NRA]
str NSP, [P, #P_NSP]
mov TEMP_LR, lr
mov r3, #0 /* Pass 0 in arity */
mov r2, #0 /* Pass NULL in regs */
mov r1, r0
mov r0, P
bl erts_gc_after_bif_call
mov lr, TEMP_LR
ldr TEMP_LR, [P, #P_NRA]
mov r1, #0
str r1, [P, #P_NARITY]
mov pc, lr
/*
* We end up here when a BIF called from native signals an
* exceptional condition.
* HP was just read from P.
* NSP has not been saved in P.
* TEMP_LR contains a copy of LR
*/
.global nbif_0_simple_exception
nbif_0_simple_exception:
mov r1, #0
b .nbif_simple_exception
.global nbif_1_simple_exception
nbif_1_simple_exception:
mov r1, #1
b .nbif_simple_exception
.global nbif_2_simple_exception
nbif_2_simple_exception:
mov r1, #2
b .nbif_simple_exception
.global nbif_3_simple_exception
nbif_3_simple_exception:
mov r1, #3
/*FALLTHROUGH*/
.nbif_simple_exception:
ldr r0, [P, #P_FREASON]
cmp r0, #FREASON_TRAP
beq .handle_trap
/*
* Find and invoke catch handler (it must exist).
* HP was just read from P.
* NSP has not been saved in P.
* TEMP_LR should contain the current call's return address.
* r1 should contain the current call's arity.
*/
str NSP, [P, #P_NSP]
str TEMP_LR, [P, #P_NRA]
str r1, [P, #P_NARITY]
/* find and prepare to invoke the handler */
mov r0, P
bl hipe_handle_exception /* Note: hipe_handle_exception() conses */
RESTORE_CACHED_STATE /* NSP updated by hipe_find_handler() */
/* now invoke the handler */
ldr pc, [P, #P_NCALLEE] /* set by hipe_find_handler() */
/*
* A BIF failed with freason TRAP:
* - the BIF's arity is in r1
* - the native RA was saved in TEMP_LR before the BIF call
* - HP was just read from P
* - NSP has not been saved in P
*/
.handle_trap:
mov r0, #HIPE_MODE_SWITCH_RES_TRAP
str NSP, [P, #P_NSP]
str r1, [P, #P_NARITY]
str TEMP_LR, [P, #P_NRA]
b .nosave_exit
/*
* nbif_stack_trap_ra: trap return address for maintaining
* the gray/white stack boundary
*/
.global nbif_stack_trap_ra
nbif_stack_trap_ra: /* a return address, not a function */
# This only handles a single return value.
# If we have more, we need to save them in the PCB.
mov TEMP_ARG0, r0 /* save retval */
str NSP, [P, #P_NSP]
mov r0, P
bl hipe_handle_stack_trap /* must not cons */
mov lr, r0 /* original RA */
mov r0, TEMP_ARG0 /* restore retval */
mov pc, lr /* resume at original RA */
/*
* hipe_arm_inc_stack
* Caller saved its LR in TEMP_LR (== TEMP1) before calling us.
*/
.global hipe_arm_inc_stack
hipe_arm_inc_stack:
STORE_ARG_REGS
mov TEMP_ARG0, lr
str NSP, [P, #P_NSP]
mov r0, P
# hipe_inc_nstack reads and writes NSP and NSP_LIMIT,
# but does not access LR/RA, HP, or FCALLS.
bl hipe_inc_nstack
ldr NSP, [P, #P_NSP]
LOAD_ARG_REGS
# this relies on LOAD_ARG_REGS not clobbering TEMP_ARG0
mov pc, TEMP_ARG0
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
|