1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>1997</year><year>2013</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>Getting Started</title>
<prepared>Kenneth Lundin</prepared>
<docno></docno>
<date>1999-03-25</date>
<rev>D</rev>
<file>asn1_getting_started.xml</file>
</header>
<section>
<title>Example</title>
<p>The following example demonstrates the basic functionality used to
run the Erlang ASN.1 compiler.</p>
<p>Create a file named <c>People.asn</c> containing the following:</p>
<pre>
People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Person ::= SEQUENCE {
name PrintableString,
location INTEGER {home(0),field(1),roving(2)},
age INTEGER OPTIONAL
}
END </pre>
<p>This file must be compiled before it can be used.
The ASN.1 compiler checks that the syntax is correct and that the
text represents proper ASN.1 code before generating an abstract
syntax tree. The code-generator then uses the abstract syntax
tree to generate code.</p>
<p>The generated Erlang files are placed in the current directory or
in the directory specified with option <c>{outdir,Dir}</c>.</p>
<p>The following shows how the compiler
can be called from the Erlang shell:</p>
<pre>
1><input> asn1ct:compile("People", [ber]).</input>
ok
2> </pre>
<p>Option <c>verbose</c> can be added to get information
about the generated files:</p>
<pre>
2><input> asn1ct:compile("People", [ber,verbose]).</input>
Erlang ASN.1 compiling "People.asn"
--{generated,"People.asn1db"}--
--{generated,"People.hrl"}--
--{generated,"People.erl"}--
ok
3> </pre>
<p>ASN.1 module <c>People</c> is now accepted and the
abstract syntax tree is saved in file <c>People.asn1db</c>.
The generated Erlang code is compiled using the Erlang compiler
and loaded into the Erlang runtime system. There is now an API
for <c>encode/2</c> and <c>decode/2</c> in module
<c>People</c>, which is called like:<br></br>
<c><![CDATA['People':encode(<Type name>, <Value>)]]></c>
<br></br>
or<br></br>
<c><![CDATA['People':decode(<Type name>, <Value>)]]></c></p>
<p>Assume that there is a network
application that receives instances of the ASN.1 defined
type <c>Person</c>, modifies, and sends them back again:</p>
<code type="none">
receive
{Port,{data,Bytes}} ->
case 'People':decode('Person',Bytes) of
{ok,P} ->
{ok,Answer} = 'People':encode('Person',mk_answer(P)),
Port ! {self(),{command,Answer}};
{error,Reason} ->
exit({error,Reason})
end
end, </code>
<p>In this example, a series of bytes is received from an
external source and the bytes are then decoded into a valid
Erlang term. This was achieved with the call
<c>'People':decode('Person',Bytes)</c>, which returned
an Erlang value of the ASN.1 type <c>Person</c>. Then an answer was
constructed and encoded using
<c>'People':encode('Person',Answer)</c>, which takes an
instance of a defined ASN.1 type and transforms it to a
binary according to the BER or PER encoding rules.</p>
<p>The encoder and decoder can also be run from the shell:</p>
<pre>
2> <input>Rockstar = {'Person',"Some Name",roving,50}.</input>
{'Person',"Some Name",roving,50}
3> <input>{ok,Bin} = 'People':encode('Person',Rockstar).</input>
{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
2,1,50>>}
4> <input>{ok,Person} = 'People':decode('Person',Bin).</input>
{ok,{'Person',"Some Name",roving,50}}
5> </pre>
<section>
<title>Module Dependencies</title>
<p>It is common that ASN.1 modules import defined types, values, and
other entities from another ASN.1 module.</p>
<p>Earlier versions of the ASN.1 compiler required that modules
that were imported from had to be compiled before the module
that imported. This caused problems when ASN.1 modules had circular
dependencies.</p>
<p>Referenced modules are now parsed when the compiler finds an
entity that is imported. No code is generated for
the referenced module. However, the compiled modules rely on
that the referenced modules are also compiled.</p>
</section>
</section>
<section>
<title>ASN.1 Application User Interface</title>
<p>The <c>ASN.1</c> application provides the following two
separate user interfaces:</p>
<list type="bulleted">
<item>
<p>The module <c>asn1ct</c>, which provides the compile-time functions
(including the compiler)</p>
</item>
<item>
<p>The module <c>asn1rt_nif</c>, which provides the runtime functions
for the ASN.1 decoder for the BER back end</p>
</item>
</list>
<p>The reason for this division of the interfaces into compile-time
and runtime
is that only runtime modules (<c>asn1rt*</c>) need to be loaded in
an embedded system.
</p>
<section>
<title>Compile-Time Functions</title>
<p>The ASN.1 compiler can be started directly from the command line
by the <c>erlc</c> program. This is convenient when compiling
many ASN.1 files from the command line or when using Makefiles.
Some examples of how the <c>erlc</c> command can be used to start
the ASN.1 compiler:</p>
<pre>
erlc Person.asn
erlc -bper Person.asn
erlc -bber ../Example.asn
erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asn1 Person.asn</pre>
<p>Useful options for the ASN.1 compiler:</p>
<taglist>
<tag><c>-b[ber | per | uper]</c></tag>
<item>
<p>Choice of encoding rules. If omitted, <c>ber</c> is the
default.</p>
</item>
<tag><c>-o OutDirectory</c></tag>
<item>
<p>Where to put the generated files. Default is the current
directory.</p>
</item>
<tag><c>-I IncludeDir</c></tag>
<item>
<p>Where to search for <c>.asn1db</c> files and ASN.1
source specs to resolve references to other
modules. This option can be repeated many times if there
are several places to search in. The compiler
searches the current directory first.</p>
</item>
<tag><c>+der</c></tag>
<item>
<p>DER encoding rule. Only when using option <c>-ber</c>.</p>
</item>
<tag><c>+asn1config</c></tag>
<item>
<p>This functionality works together with option
<c>ber</c>. It enables the specialized decodes, see Section
<seealso marker="asn1_spec">Specialized Decode</seealso>.</p>
</item>
<tag><c>+undec_rest</c></tag>
<item>
<p>A buffer that holds a message being decoded can also have
trailing bytes. If those trailing bytes are important, they
can be returned along with the decoded value by compiling
the ASN.1 specification with option <c>+undec_rest</c>.
The return value from the decoder is
<c>{ok,Value,Rest}</c> where <c>Rest</c> is a binary
containing the trailing bytes.</p>
</item>
<tag><c>+'Any Erlc Option'</c></tag>
<item>
<p>Any option can be added to the Erlang compiler when
compiling the generated Erlang files. Any option
unrecognized by the ASN.1 compiler is passed to the
Erlang compiler.</p>
</item>
</taglist>
<p>For a complete description of <c>erlc</c>, see
ERTS Reference Manual.</p>
<p>The compiler and other compile-time functions can also be started
from the Erlang shell. Here follows a brief
description of the primary functions. For a
complete description of each function, see module <c>asn1ct</c> in
the <seealso marker="asn1ct">ASN.1 Reference Manual</seealso>.</p>
<p>The compiler is started by <c>asn1ct:compile/1</c> with
default options, or <c>asn1ct:compile/2</c> if explicit options
are given.</p>
<p>Example:</p>
<pre>
asn1ct:compile("H323-MESSAGES.asn1"). </pre>
<p>This equals:</p>
<pre>
asn1ct:compile("H323-MESSAGES.asn1",[ber]). </pre>
<p>If PER encoding is wanted:</p>
<pre>
asn1ct:compile("H323-MESSAGES.asn1",[per]). </pre>
<p>The generic encode and decode functions can be called
as follows:</p>
<pre>
'H323-MESSAGES':encode('SomeChoiceType',{call,<<"octetstring">>}).
'H323-MESSAGES':decode('SomeChoiceType',Bytes). </pre>
</section>
<section>
<title>Runtime Functions</title>
<p>When an ASN.1 specification is compiled with option <c>ber</c>,
the <c>asn1rt_nif</c> module and the NIF library in
<c>asn1/priv_dir</c> are needed at runtime.</p>
<p>By calling function <c>info/0</c> in a generated module, you
get information about which compiler options were used.</p>
</section>
<section>
<title>Errors</title>
<p>Errors detected at
compile-time are displayed on the screen together with line
numbers indicating where in the source file the respective error
was detected. If no errors are found, an Erlang ASN.1 module is
created.</p>
<p>The runtime encoders and decoders execute within a catch and
return <c>{ok, Data}</c> or
<c>{error, {asn1, Description}}</c> where
<c>Description</c> is
an Erlang term describing the error.</p>
</section>
</section>
<section>
<marker id="inlineExamples"></marker>
<title>Multi-File Compilation</title>
<p>There are various reasons for using multi-file compilation:</p>
<list type="bulleted">
<item>To choose the name for the generated module, for
example, because you need to compile the same specs for
different encoding rules.</item>
<item>You want only one resulting module.</item>
</list>
<p>Specify which ASN.1 specs to compile in a module with extension
<c>.set.asn</c>. Choose a module name and provide the
names of the ASN.1 specs. For example, if you have the specs
<c>File1.asn</c>, <c>File2.asn</c>, and <c>File3.asn</c>, your
module <c>MyModule.set.asn</c> looks as follows:</p>
<pre>
File1.asn
File2.asn
File3.asn </pre>
<p>If you compile with the following, the result is one merged
module <c>MyModule.erl</c> with the generated code from the three
ASN.1 specs:</p>
<code type="none">
~> erlc MyModule.set.asn </code>
</section>
<section>
<title>Remark about Tags</title>
<p>Tags used to be important for all users of ASN.1, because it
was necessary to add tags manually to certain constructs in order
for the ASN.1 specification to be valid. Example of
an old-style specification:</p>
<pre>
Tags DEFINITIONS ::=
BEGIN
Afters ::= CHOICE { cheese [0] IA5String,
dessert [1] IA5String }
END </pre>
<p>Without the tags (the numbers in square brackets) the ASN.1
compiler refused to compile the file.</p>
<p>In 1994 the global tagging mode <c>AUTOMATIC TAGS</c> was introduced.
By putting <c>AUTOMATIC TAGS</c> in the module header, the ASN.1
compiler automatically adds tags when needed. The following is the
same specification in <c>AUTOMATIC TAGS</c> mode:</p>
<pre>
Tags DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Afters ::= CHOICE { cheese IA5String,
dessert IA5String }
END </pre>
<p>Tags are not mentioned any more in this User's Guide.</p>
</section>
<section>
<marker id="ASN1Types"></marker>
<title>ASN.1 Types</title>
<p>This section describes the ASN.1 types including their
functionality, purpose, and how values are assigned in Erlang.
</p>
<p>ASN.1 has both primitive and constructed types:</p>
<p></p>
<table>
<row>
<cell align="left" valign="middle"><em>Primitive Types</em></cell>
<cell align="left" valign="middle"><em>Constructed Types</em></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#BOOLEAN">BOOLEAN</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#SEQUENCE">SEQUENCE</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#INTEGER">INTEGER</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#SET">SET</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#REAL">REAL</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#CHOICE">CHOICE</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#NULL">NULL</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#SOF">SET OF and SEQUENCE OF</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#ENUMERATED">ENUMERATED</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#ANY">ANY</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#BIT STRING">BIT STRING</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#ANY">ANY DEFINED BY</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#OCTET STRING">OCTET STRING</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#NegotiationTypes">EXTERNAL</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#Character Strings">Character Strings</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#NegotiationTypes">EMBEDDED PDV</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#OBJECT IDENTIFIER">OBJECT IDENTIFIER</seealso></cell>
<cell align="left" valign="middle"><seealso marker="#NegotiationTypes">CHARACTER STRING</seealso></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#Object Descriptor">Object Descriptor</seealso></cell>
<cell align="left" valign="middle"></cell>
</row>
<row>
<cell align="left" valign="middle"><seealso marker="#The TIME types">TIME Types</seealso></cell>
<cell align="left" valign="middle"></cell>
</row>
<tcaption>Supported ASN.1 Types</tcaption>
</table>
<marker id="TypeNameValue"></marker>
<note>
<p>The values of each ASN.1 type have their own representation in Erlang, as
described in the following sections. Users must provide
these values for encoding according to the representation, as shown in the
following example:</p>
</note>
<pre>
Operational ::= BOOLEAN --ASN.1 definition </pre>
<p>In Erlang code it can look as follows:</p>
<pre>
Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val), </pre>
<section>
<marker id="BOOLEAN"></marker>
<title>BOOLEAN</title>
<p>Booleans in ASN.1 express values that can be either
<c>TRUE</c> or <c>FALSE</c>.
The meanings assigned to <c>TRUE</c> and <c>FALSE</c> are outside the scope
of this text.</p>
<p>In ASN.1 it is possible to have:</p>
<pre>
Operational ::= BOOLEAN</pre>
<p>Assigning a value to type <c>Operational</c> in Erlang is possible by
using the following Erlang code:</p>
<code type="erl">
Myvar1 = true,</code>
<p>Thus, in Erlang the atoms <c>true</c> and <c>false</c> are used
to encode a boolean value.</p>
</section>
<section>
<marker id="INTEGER"></marker>
<title>INTEGER</title>
<p>ASN.1 itself specifies indefinitely large integers. Erlang
systems with version 4.3 and higher support very large
integers, in practice indefinitely large integers.</p>
<p>The concept of subtyping can be applied to integers and
to other ASN.1 types. The details of subtyping are not
explained here; for more information, see X.680. Various
syntaxes are allowed when defining a type as an integer:</p>
<pre>
T1 ::= INTEGER
T2 ::= INTEGER (-2..7)
T3 ::= INTEGER (0..MAX)
T4 ::= INTEGER (0<..MAX)
T5 ::= INTEGER (MIN<..-99)
T6 ::= INTEGER {red(0),blue(1),white(2)}</pre>
<p>The Erlang representation of an ASN.1 <c>INTEGER</c> is an integer or
an atom if a <c>Named Number List</c> (see <c>T6</c> in the previous
list) is specified.</p>
<p>The following is an example of Erlang code that assigns values for the
types in the previous list:</p>
<pre>
T1value = 0,
T2value = 6,
T6value1 = blue,
T6value2 = 0,
T6value3 = white</pre>
<p>These Erlang variables are now bound to valid instances of
ASN.1 defined types. This style of value can be passed directly
to the encoder for transformation into a series of bytes.</p>
<p>The decoder returns an atom if the value corresponds to a
symbol in the <c>Named Number List</c>.</p>
</section>
<section>
<marker id="REAL"></marker>
<title>REAL</title>
<p>The following ASN.1 type is used for real numbers:</p>
<pre>
R1 ::= REAL</pre>
<p>It is assigned a value in Erlang as follows:</p>
<pre>
R1value1 = "2.14",
R1value2 = {256,10,-2},</pre>
<p>In the last line, notice that the tuple {256,10,-2} is the real number
2.56 in a special notation, which encodes faster than simply
stating the number as <c>"2.56"</c>. The arity three tuple is
<c>{Mantissa,Base,Exponent}</c>, that is, Mantissa * Base^Exponent.</p>
</section>
<section>
<marker id="NULL"></marker>
<title>NULL</title>
<p>The type <c>NULL</c> is suitable where supply and recognition of a value
is important but the actual value is not.</p>
<pre>
Notype ::= NULL</pre>
<p>This type is assigned in Erlang as follows:</p>
<pre>
N1 = 'NULL',</pre>
<p>The actual value is the quoted atom <c>'NULL'</c>.</p>
</section>
<section>
<marker id="ENUMERATED"></marker>
<title>ENUMERATED</title>
<p>The type <c>ENUMERATED</c> can be used when the value you want to
describe can only take one of a set of predefined values. Example:</p>
<pre>
DaysOfTheWeek ::= ENUMERATED {
sunday(1),monday(2),tuesday(3),
wednesday(4),thursday(5),friday(6),saturday(7) }</pre>
<p>For example, to assign a weekday value in Erlang, use the same atom
as in the <c>Enumerations</c> of the type definition:</p>
<pre>
Day1 = saturday,</pre>
<p>The enumerated type is similar to an integer type, when
defined with a set of predefined values. The difference is that
an enumerated type can only have specified
values, whereas an integer can have any value.</p>
</section>
<section>
<marker id="BIT STRING"></marker>
<title>BIT STRING</title>
<p>The type <c>BIT STRING</c> can be used to model information that
is made up of arbitrary length series of bits. It is intended
to be used for selection of flags, not for binary files.</p>
<p>In ASN.1, <c>BIT STRING</c> definitions can look as follows:</p>
<pre>
Bits1 ::= BIT STRING
Bits2 ::= BIT STRING {foo(0),bar(1),gnu(2),gnome(3),punk(14)}</pre>
<p>The following two notations are available for representation of <c>BIT
STRING</c> values in Erlang and as input to the encode functions:</p>
<list type="ordered">
<item>A bitstring. By default, a <c>BIT STRING</c> with no
symbolic names is decoded to an Erlang bitstring.</item>
<item>A list of atoms corresponding to atoms in the <c>NamedBitList</c>
in the <c>BIT STRING</c> definition. A <c>BIT STRING</c> with symbolic
names is always decoded to the format shown in the following
example:</item>
</list>
<pre>
Bits1Val1 = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Val1 = [gnu,punk],
Bits2Val2 = <<2#1110:4>>,
Bits2Val3 = [bar,gnu,gnome],</pre>
<p><c>Bits2Val2</c> and <c>Bits2Val3</c> denote the same value.</p>
<p><c>Bits2Val1</c> is assigned symbolic values. The assignment means
that the bits corresponding to <c>gnu</c> and <c>punk</c>, that is, bits
2 and 14 are set to 1, and the rest are set to 0. The symbolic values
are shown as a list of values. If a named value, which is not
specified in the type definition, is shown, a runtime error occurs.</p>
<p><c>BIT STRING</c>s can also be subtyped with, for example, a <c>SIZE</c>
specification:</p>
<pre>
Bits3 ::= BIT STRING (SIZE(0..31)) </pre>
<p>This means that no bit higher than 31 can be set.</p>
<section>
<title>Deprecated Representations for BIT STRING</title>
<p>In addition to the representations described earlier, the
following deprecated representations are available if the
specification has been compiled with option
<c>legacy_erlang_types</c>:</p>
<list type="ordered">
<item>Aa a list of binary digits (0 or 1). This format is
accepted as input to the encode functions, and a <c>BIT STRING</c>
is decoded to this format if option
<em>legacy_bit_string</em> is given.
</item>
<item>As <c>{Unused,Binary}</c> where <c>Unused</c> denotes
how many trailing zero-bits 0-7 that are unused in the
least significant byte in <c>Binary</c>. This format is
accepted as input to the encode functions, and a <c>BIT
STRING</c> is decoded to this format if
<c>compact_bit_string</c> has been given.
</item>
<item>As a hexadecimal number (or an integer). Avoid this
as it is easy to misinterpret a <c>BIT
STRING</c> value in this format.
</item>
</list>
</section>
</section>
<section>
<marker id="OCTET STRING"></marker>
<title>OCTET STRING</title>
<p><c>OCTET STRING</c> is the simplest of all ASN.1 types. <c>OCTET
STRING</c> only moves or transfers, for example, binary files or other
unstructured information complying with two rules: the
bytes consist of octets and encoding is not required.</p>
<p>It is possible to have the following ASN.1 type definitions:</p>
<pre>
O1 ::= OCTET STRING
O2 ::= OCTET STRING (SIZE(28)) </pre>
<p>With the following example assignments in Erlang:</p>
<pre>
O1Val = <<17,13,19,20,0,0,255,254>>,
O2Val = <<"must be exactly 28 chars....">>,</pre>
<p>By default, an <c>OCTET STRING</c> is always represented as
an Erlang binary. If the specification has been compiled with
option <c>legacy_erlang_types</c>, the encode functions
accept both lists and binaries, and the decode functions
decode an <c>OCTET STRING</c> to a list.</p>
</section>
<section>
<marker id="Character Strings"></marker>
<title>Character Strings</title>
<p>ASN.1 supports a wide variety of character sets. The main difference
between an <c>OCTET STRING</c> and a character string is that the
<c>OCTET STRING</c> has no imposed semantics on the bytes delivered.</p>
<p>However, when using, for example, IA5String (which closely
resembles ASCII), byte 65 (in decimal
notation) <em>means</em> character 'A'.
</p>
<p>For example, if a defined type is to be a VideotexString and
an octet is received with the unsigned integer value <c>X</c>,
the octet is to be interpreted as specified in standard
ITU-T T.100, T.101.
</p>
<p>The ASN.1 to Erlang compiler
does not determine the correct interpretation of each BER
string octet value with different character strings. The
application is responsible for interpretation
of octets. Therefore, from the BER
string point of view, octets are very similar to
character strings and are compiled in the same way.
</p>
<p>When PER is
used, there is a significant difference in the encoding scheme
between <c>OCTET STRING</c>s and other strings. The constraints
specified for a type are especially important for PER, where
they affect the encoding.
</p>
<p>Examples:</p>
<pre>
Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000)) </pre>
<p>The corresponding Erlang assignments:</p>
<pre>
DigsVal1 = "456",
DigsVal2 = "123",
TextFileVal1 = "abc...xyz...",
TextFileVal2 = [88,76,55,44,99,121 .......... a lot of characters here ....]</pre>
<p>The Erlang representation for "BMPString" and
"UniversalString" is either a list of ASCII values or a list
of quadruples. The quadruple representation associates to the
Unicode standard representation of characters. The ASCII
characters are all represented by quadruples beginning with
three zeros like {0,0,0,65} for character 'A'. When
decoding a value for these strings, the result is a list of
quadruples, or integers when the value is an ASCII character.</p>
<p>The following example shows how it works. Assume the following
specification is in file <c>PrimStrings.asn1</c>:</p>
<pre>
PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
BMP ::= BMPString
END </pre>
<p>Encoding and decoding some strings:</p>
<pre>
1> <input>asn1ct:compile('PrimStrings', [ber]).</input>
ok
2> <input>{ok,Bytes1} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}]).</input>
{ok,<<30,4,53,54,45,56>>}
3> <input>'PrimStrings':decode('BMP', Bytes1).</input>
{ok,[{0,0,53,53},{0,0,45,56}]}
4> <input>{ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}]).</input>
{ok,<<30,4,53,53,0,65>>}
5> <input>'PrimStrings':decode('BMP', Bytes2).</input>
{ok,[{0,0,53,53},65]}
6> <input>{ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").</input>
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103>>}
7> <input>'PrimStrings':decode('BMP', Bytes3).</input>
{ok,"BMP string"} </pre>
<p>Type UTF8String is represented as a UTF-8 encoded binary in
Erlang. Such binaries can be created directly using the binary syntax
or by converting from a list of Unicode code points using function
<c>unicode:characters_to_binary/1</c>.</p>
<p>The following shows examples of how UTF-8 encoded binaries can
be created and manipulated:</p>
<pre>
1> <input>Gs = "Мой маленький Гном".</input>
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]
2> <input>Gbin = unicode:characters_to_binary(Gs).</input>
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208,...>>
3> <input>Gbin = <<"Мой маленький Гном"/utf8>>.</input>
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208,...>>
4> <input>Gs = unicode:characters_to_list(Gbin).</input>
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]</pre>
<p>For details, see the <seealso marker="stdlib:unicode">unicode</seealso>
module in <c>stdlib</c>.</p>
<p>In the following example, this ASN.1 specification is used:</p>
<pre>
UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
UTF ::= UTF8String
END </pre>
<p>Encoding and decoding a string with Unicode characters:</p>
<pre>
5> <input>asn1ct:compile('UTF', [ber]).</input>
ok
6> <input>{ok,Bytes1} = 'UTF':encode('UTF', <<"Гном"/utf8>>).</input>
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> <input>{ok,Bin1} = 'UTF':decode('UTF', Bytes1).</input>
{ok,<<208,147,208,189,208,190,208,188>>}
8> <input>io:format("~ts\n", [Bin1]).</input>
Гном
ok
9> <input>unicode:characters_to_list(Bin1).</input>
[1043,1085,1086,1084] </pre>
</section>
<section>
<marker id="OBJECT IDENTIFIER"></marker>
<title>OBJECT IDENTIFIER</title>
<p>The type <c>OBJECT IDENTIFIER</c> is used whenever a unique identity is
required. An ASN.1 module, a transfer syntax, and so on, is identified
with an <c>OBJECT IDENTIFIER</c>. Assume the following example:</p>
<pre>
Oid ::= OBJECT IDENTIFIER</pre>
<p>Therefore, the following example is a valid Erlang instance of
type 'Oid':</p>
<pre>
OidVal1 = {1,2,55},</pre>
<p>The <c>OBJECT IDENTIFIER</c> value is simply a tuple with the
consecutive values, which must be integers.
</p>
<p>The first value is limited to the values 0, 1, or 2. The
second value must be in the range 0..39 when the first value
is 0 or 1.
</p>
<p>The <c>OBJECT IDENTIFIER</c> is an important type and it is
widely used within different standards to identify various
objects uniquely. Dubuisson: ASN.1 - Communication Between
Heterogeneous Systems includes an
easy-to-understand description of the use of
<c>OBJECT IDENTIFIER</c>.</p>
</section>
<section>
<marker id="Object Descriptor"></marker>
<title>Object Descriptor</title>
<p>Values of this type can be assigned a value as an ordinary string
as follows:</p>
<pre>
"This is the value of an Object descriptor"</pre>
</section>
<section>
<marker id="The TIME types"></marker>
<title>TIME Types</title>
<p>Two time types are defined within ASN.1: Generalized
Time and Universal Time Coordinated (UTC). Both are assigned a
value as an ordinary string within double quotes, for example,
"19820102070533.8".</p>
<p>For DER encoding, the compiler does not check the validity
of the time values. The DER requirements upon those strings are
regarded as a matter for the application to fulfill.</p>
</section>
<section>
<marker id="SEQUENCE"></marker>
<title>SEQUENCE</title>
<p>The structured types of ASN.1 are constructed from other types
in a manner similar to the concepts of array and struct in C.</p>
<p>A <c>SEQUENCE</c> in ASN.1 is
comparable with a struct in C and a record in Erlang.
A <c>SEQUENCE</c> can be defined as follows:</p>
<pre>
Pdu ::= SEQUENCE {
a INTEGER,
b REAL,
c OBJECT IDENTIFIER,
d NULL } </pre>
<p>This is a 4-component structure called <c>Pdu</c>. The record format
is the major format for representation of <c>SEQUENCE</c> in Erlang.
For each <c>SEQUENCE</c> and <c>SET</c> in an ASN.1 module an Erlang
record declaration is generated. For <c>Pdu</c>, a record
like the following is defined:</p>
<pre>
-record('Pdu',{a, b, c, d}). </pre>
<p>The record declarations for a module <c>M</c> are placed in a
separate <c>M.hrl</c> file.</p>
<p>Values can be assigned in Erlang as follows:</p>
<pre>
MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d='NULL'}. </pre>
<p>The decode functions return a record as result when decoding
a <c>SEQUENCE</c> or a <c>SET</c>.</p>
<p>A <c>SEQUENCE</c> and a <c>SET</c> can contain a component
with a <c>DEFAULT</c> keyword followed by the actual value, which
is the default value. The <c>DEFAULT</c> keyword means that the
application doing the encoding can omit encoding of the value, which
results in fewer bytes to send to the receiving application.</p>
<p>An application can use the atom <c>asn1_DEFAULT</c> to indicate
that the encoding is to be omitted for that position in
the <c>SEQUENCE</c>.</p>
<p>Depending on the encoding rules, the encoder can also compare
the given value to the default value and automatically omit the
encoding if the values are equal. How much effort the encoder makes
to compare the values depends on the encoding rules. The DER
encoding rules forbid encoding a value equal to the default value,
so it has a more thorough and time-consuming comparison than the
encoders for the other encoding rules.</p>
<p>In the following example, this ASN.1 specification is used:</p>
<pre>
File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seq1 ::= SEQUENCE {
a INTEGER DEFAULT 1,
b Seq2 DEFAULT {aa TRUE, bb 15}
}
Seq2 ::= SEQUENCE {
aa BOOLEAN,
bb INTEGER
}
Seq3 ::= SEQUENCE {
bs BIT STRING {a(0), b(1), c(2)} DEFAULT {a, c}
}
END </pre>
<p>Example where the BER encoder is able to omit encoding
of the default values:</p>
<pre>
1> <input>asn1ct:compile('File', [ber]).</input>
ok
2> <input>'File':encode('Seq1', {'Seq1',asn1_DEFAULT,asn1_DEFAULT}).</input>
{ok,<<48,0>>}
3> <input>'File':encode('Seq1', {'Seq1',1,{'Seq2',true,15}}).</input>
{ok,<<48,0>>} </pre>
<p>Example with a named <c>BIT STRING</c> where the BER
encoder does not omit the encoding:</p>
<pre>
4> <input>'File':encode('Seq3', {'Seq3',asn1_DEFAULT).</input>
{ok,<<48,0>>}
5> <input>'File':encode('Seq3', {'Seq3',<<16#101:3>>).</input>
{ok,<<48,4,128,2,5,160>>} </pre>
<p>The DER encoder omits the encoding for the same <c>BIT STRING</c>:</p>
<pre>
6> <input>asn1ct:compile('File', [ber,der]).</input>
ok
7> <input>'File':encode('Seq3', {'Seq3',asn1_DEFAULT).</input>
{ok,<<48,0>>}
8> <input>'File':encode('Seq3', {'Seq3',<<16#101:3>>).</input>
{ok,<<48,0>>} </pre>
</section>
<section>
<marker id="SET"></marker>
<title>SET</title>
<p>In Erlang, the <c>SET</c> type is used exactly as <c>SEQUENCE</c>.
Notice that if BER or DER encoding rules are used, decoding a
<c>SET</c> is slower than decoding a <c>SEQUENCE</c> because the
components must be sorted.</p>
</section>
<section>
<title>Extensibility for SEQUENCE and SET</title>
<p>When a <c>SEQUENCE</c> or <c>SET</c> contains an extension marker
and extension components as the following, the type can get more
components in newer versions of the ASN.1 spec:</p>
<pre>
SExt ::= SEQUENCE {
a INTEGER,
...,
b BOOLEAN }</pre>
<p>In this case it has got a new
component <c>b</c>. Thus, incoming messages that are decoded
can have more or fever components than this one.
</p>
<p>The component <c>b</c> is treated as
an original component when encoding a message. In this case, as
it is not an optional element, it must be encoded.
</p>
<p>During decoding, the <c>b</c> field of the record gets the decoded
value of the <c>b</c>
component, if present, otherwise the value <c>asn1_NOVALUE</c>.</p>
</section>
<section>
<marker id="CHOICE"></marker>
<title>CHOICE</title>
<p>The type <c>CHOICE</c> is a space saver and is similar to the
concept of a 'union' in C.</p>
<p>Assume the following:</p>
<pre>
SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
T ::= CHOICE {
x REAL,
y INTEGER,
z OBJECT IDENTIFIER }
END </pre>
<p>It is then possible to assign values as follows:</p>
<pre>
TVal1 = {y,17},
TVal2 = {z,{0,1,2}},</pre>
<p>A <c>CHOICE</c> value is always represented as the tuple
<c>{ChoiceAlternative, Val}</c> where <c>ChoiceAlternative</c>
is an atom denoting the selected choice alternative.
</p>
<section>
<title>Extensible CHOICE</title>
<p>When a <c>CHOICE</c> contains an extension marker and the
decoder detects an unknown alternative of the <c>CHOICE</c>,
the value is represented as follows:</p>
<pre>
{asn1_ExtAlt, BytesForOpenType}</pre>
<p>Here <c>BytesForOpenType</c> is a list of bytes constituting the
encoding of the "unknown" <c>CHOICE</c> alternative.</p>
</section>
</section>
<section>
<marker id="SOF"></marker>
<title>SET OF and SEQUENCE OF</title>
<p>The types <c>SET OF</c> and <c>SEQUENCE OF</c> correspond
to the concept of an array
in several programming languages. The Erlang syntax for
both types is straightforward, for example:</p>
<pre>
Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
Arr2 ::= SEQUENCE OF OCTET STRING </pre>
<p>In Erlang the following can apply:</p>
<pre>
Arr1Val = [4,5,6,7,8],
Arr2Val = ["abc",[14,34,54],"Octets"], </pre>
<p>Notice that the definition of type <c>SET OF</c> implies that
the order of the components is undefined, but in practice there is
no difference between <c>SET OF</c> and <c>SEQUENCE OF</c>.
The ASN.1 compiler for Erlang does not randomize the order of the
<c>SET OF</c> components before encoding.</p>
<p>However, for a value of type <c>SET OF</c>, the DER
encoding format requires the elements to be sent in ascending
order of their encoding, which implies an expensive sorting
procedure in runtime. Therefore it is recommended to
use <c>SEQUENCE OF</c> instead of <c>SET OF</c> if possible.</p>
</section>
<section>
<marker id="ANY"></marker>
<title>ANY and ANY DEFINED BY</title>
<p>The types <c>ANY</c> and <c>ANY DEFINED BY</c> have been removed
from the standard since 1994. It is recommended not to use
these types any more. They can, however, exist in some old ASN.1
modules. The idea with this type was to leave a "hole" in a
definition where it was possible to
put unspecified data of any kind, even non-ASN.1 data.</p>
<p>A value of this type is encoded as an <c>open type</c>.</p>
<p>Instead of <c>ANY</c> and <c>ANY DEFINED BY</c>, it is
recommended to use
<c>information object class</c>, <c>table constraints</c>, and
<c>parameterization</c>. In particular the construct
<c>TYPE-IDENTIFIER.@Type</c> accomplish the same as the
deprecated <c>ANY</c>.</p>
<p>See also
<seealso marker="#Information Object">Information object</seealso>.</p>
</section>
<section>
<marker id="NegotiationTypes"></marker>
<title>EXTERNAL, EMBEDDED PDV, and CHARACTER STRING</title>
<p>The types <c>EXTERNAL</c>, <c>EMBEDDED PDV</c>, and
<c>CHARACTER STRING</c> are used in presentation layer negotiation.
They are encoded according to their associated type, see X.680.</p>
<p>The type <c>EXTERNAL</c> had a slightly different associated type
before 1994. X.691 states that encoding must follow
the older associated type. So, generated encode/decode
functions convert values of the newer format to the older format
before encoding. This implies that it is allowed to use
<c>EXTERNAL</c> type values of either format for encoding. Decoded
values are always returned in the newer format.</p>
</section>
<section>
<title>Embedded Named Types</title>
<p>The structured types previously described can have other named
types as their components. The general syntax to assign a value
to component <c>C</c> of a named ASN.1 type <c>T</c> in Erlang
is the record syntax <c>#'T'{'C'=Value}</c>.
Here <c>Value</c> can be a value of yet another type <c>T2</c>,
for example:</p>
<pre>
EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {
a Arr1,
b T }
Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
T ::= CHOICE {
x REAL,
y INTEGER,
z OBJECT IDENTIFIER }
END </pre>
<p><c>SEQUENCE</c> <c>b</c> can be encoded as follows in Erlang:</p>
<pre>
1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).
{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>} </pre>
</section>
</section>
<section>
<title>Naming of Records in .hrl Files</title>
<p>When an ASN.1 specification is compiled, all defined types of type
<c>SET</c> or <c>SEQUENCE</c> result in a corresponding record in the
generated <c>.hrl</c> file. This is because the values for
<c>SET</c> and <c>SEQUENCE</c> are represented as records as
mentioned earlier.</p>
<p>Some special cases of this functionality are presented in the
next section.</p>
<section>
<title>Embedded Structured Types</title>
<p>In ASN.1 it is also possible to have components that are themselves
structured types.
For example, it is possible to have the following:</p>
<pre>
Emb ::= SEQUENCE {
a SEQUENCE OF OCTET STRING,
b SET {
a INTEGER,
b INTEGER DEFAULT 66},
c CHOICE {
a INTEGER,
b FooType } }
FooType ::= [3] VisibleString </pre>
<p>The following records are generated because of type <c>Emb</c>:</p>
<pre>
-record('Emb,{a, b, c}).
-record('Emb_b',{a, b = asn1_DEFAULT}). % the embedded SET type </pre>
<p>Values of type <c>Emb</c> can be assigned as follows:</p>
<code type="none">
V = #'Emb'{a=["qqqq",[1,2,255]],
b = #'Emb_b'{a=99},
c ={b,"Can you see this"}}.</code>
<p>For an embedded type of type <c>SEQUENCE</c>/<c>SET</c> in a
<c>SEQUENCE</c>/<c>SET</c>, the record name is extended with an
underscore and the component name. If the embedded structure is
deeper with the <c>SEQUENCE</c>, <c>SET</c>, or <c>CHOICE</c>
types in the line, each component name/alternative name is
added to the record name.</p>
<p>Example:</p>
<pre>
Seq ::= SEQUENCE{
a CHOICE{
b SEQUENCE {
c INTEGER
}
}
} </pre>
<p>This results in the following record:</p>
<pre>
-record('Seq_a_b',{c}). </pre>
<p>If the structured type has a component with an embedded
<c>SEQUENCE OF</c>/<c>SET OF</c> which embedded type in turn
is a <c>SEQUENCE</c>/<c>SET</c>, it gives a record with the
<c>SEQUENCE OF</c>/<c>SET OF</c>
addition as in the following example:</p>
<pre>
Seq ::= SEQUENCE {
a SEQUENCE OF SEQUENCE {
b
}
c SET OF SEQUENCE {
d
}
} </pre>
<p>This results in the following records:</p>
<pre>
-record('Seq_a_SEQOF'{b}).
-record('Seq_c_SETOF'{d}). </pre>
<p>A parameterized type is to be considered as an embedded
type. Each time such a type is referenced, an instance of it is
defined. Thus, in the following example a record with name
<c>'Seq_b'</c> is generated in the <c>.hrl</c> file and is used
to hold values:</p>
<pre>
Seq ::= SEQUENCE {
b PType{INTEGER}
}
PType{T} ::= SEQUENCE{
id T
} </pre>
</section>
<section>
<title>Recursive Types</title>
<p>Types that refer to themselves are called recursive types.
Example:</p>
<pre>
Rec ::= CHOICE {
nothing NULL,
something SEQUENCE {
a INTEGER,
b OCTET STRING,
c Rec }} </pre>
<p>This is allowed in ASN.1 and the ASN.1-to-Erlang compiler
supports this recursive type.
A value for this type is assigned in Erlang as follows:</p>
<pre>
V = {something,#'Rec_something'{a = 77,
b = "some octets here",
c = {nothing,'NULL'}}}. </pre>
</section>
</section>
<section>
<title>ASN.1 Values</title>
<p>Values can be assigned to an ASN.1 type within the ASN.1 code
itself, as opposed to the actions in the previous section where
a value was assigned to an ASN.1 type in Erlang. The full value
syntax of ASN.1 is supported and X.680 describes in detail how
to assign values in ASN.1. A short example:</p>
<pre>
TT ::= SEQUENCE {
a INTEGER,
b SET OF OCTET STRING }
tt TT ::= {a 77,b {"kalle","kula"}} </pre>
<p>The value defined here can be used in several ways. It can, for
example, be used as the value in some <c>DEFAULT</c> component:</p>
<pre>
SS ::= SET {
s OBJECT IDENTIFIER,
val TT DEFAULT tt } </pre>
<p>It can also be used from inside an Erlang program. If this ASN.1
code is defined in ASN.1 module <c>Values</c>, the ASN.1 value
<c>tt</c> can be reached from Erlang as a function call to
<c>'Values':tt()</c> as in the following example:</p>
<pre>
1> <input>Val = 'Values':tt().</input>
{'TT',77,["kalle","kula"]}
2> <input>{ok,Bytes} = 'Values':encode('TT',Val).</input>
{ok,<<48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,
107,117,108,97>>}
4> <input>'Values':decode('TT',Bytes).</input>
{ok,{'TT',77,["kalle","kula"]}}
5> </pre>
<p>This example shows that a function is generated by the compiler
that returns a valid Erlang representation of the value, although
the value is of a complex type.</p>
<p>Furthermore, a macro is generated for each value in the <c>.hrl</c>
file. So, the defined value <c>tt</c> can also be extracted by
<c>?tt</c> in application code.</p>
</section>
<section>
<title>Macros</title>
<p>The type <c>MACRO</c> is not supported. It is no longer part of
the ASN.1 standard.</p>
</section>
<section>
<marker id="Information Object"></marker>
<title>ASN.1 Information Objects (X.681)</title>
<p>Information Object Classes, Information Objects, and Information
Object Sets (in the following called classes, objects, and
object sets, respectively) are defined in the standard
definition X.681. Only a brief explanation is given here.</p>
<p>These constructs makes it possible to define open types, that
is, values of that type can be of any ASN.1 type. Also,
relationships can be defined between different types and
values, as classes can hold types, values, objects, object
sets, and other classes in their fields. A class can be
defined in ASN.1 as follows:</p>
<pre>
GENERAL-PROCEDURE ::= CLASS {
&Message,
&Reply OPTIONAL,
&Error OPTIONAL,
&id PrintableString UNIQUE
}
WITH SYNTAX {
NEW MESSAGE &Message
[REPLY &Reply]
[ERROR &Error]
ADDRESS &id
} </pre>
<p>An object is an instance of a class. An object set is a set
containing objects of a specified class. A definition can look
as follows:</p>
<pre>
object1 GENERAL-PROCEDURE ::= {
NEW MESSAGE PrintableString
ADDRESS "home"
}
object2 GENERAL-PROCEDURE ::= {
NEW MESSAGE INTEGER
ERROR INTEGER
ADDRESS "remote"
}</pre>
<p>The object <c>object1</c> is an instance of the class
<c>GENERAL-PROCEDURE</c> and has one type field and one
fixed type value field. The object <c>object2</c> has also an
optional field <c>ERROR</c>, which is a type field. The field
<c>ADDRESS</c> is a <c>UNIQUE</c> field. Objects in an object set
must have unique values in their <c>UNIQUE</c> field, as in
<c>GENERAL-PROCEDURES</c>:</p>
<pre>
GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
object1 | object2} </pre>
<p>You cannot encode a class, object, or object set, only refer to
it when defining other ASN.1 entities. Typically you refer to a
class as well as to object sets by table constraints and component
relation constraints (X.682) in ASN.1 types, as in the following:</p>
<pre>
StartMessage ::= SEQUENCE {
msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),
} </pre>
<p>In type <c>StartMessage</c>, the constraint following field
<c>content</c> tells that in a value of type
<c>StartMessage</c> the value in field <c>content</c> must
come from the same object that is chosen by field <c>msgId</c>.</p>
<p>So, the value
<c>#'StartMessage'{msgId="home",content="Any Printable String"}</c>
is legal to encode as a <c>StartMessage</c> value. However, the value
<c>#'StartMessage'{msgId="remote", content="Some String"}</c>
is illegal as the constraint in <c>StartMessage</c> tells that
when you have chosen a value from a specific object in object
set <c>GENERAL-PROCEDURES</c> in field
<c>msgId</c>, you must choose a value from that same object in
the content field too. In this second case, it is to be
any <c>INTEGER</c> value.</p>
<p><c>StartMessage</c> can in field <c>content</c> be
encoded with a value of any type that an object in object set
<c>GENERAL-PROCEDURES</c> has in its <c>NEW MESSAGE</c> field.
This field refers to a type field
<c>&Message</c> in the class. Field <c>msgId</c> is always
encoded as a <c>PrintableString</c>, as the field refers to a
fixed type in the class.</p>
<p>In practice, object sets are usually declared to be extensible so
that more objects can be added to the set later. Extensibility is
indicated as follows:</p>
<pre>
GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
object1 | object2, ...} </pre>
<p>When decoding a type that uses an extensible set constraint,
it is always possible that the value in field <c>UNIQUE</c>
is unknown (that is, the type has been encoded with a later
version of the ASN.1 specification). The unencoded data is then
returned wrapped in a tuple as follows:</p>
<pre>
{asn1_OPENTYPE,Binary}</pre>
<p>Here <c>Binary</c> is an Erlang binary that contains the encoded
data. (If option <c>legacy_erlang_types</c> has been given,
only the binary is returned.)</p>
</section>
<section>
<title>Parameterization (X.683)</title>
<p>Parameterization, which is defined in X.683, can be used when
defining types, values, value sets, classes, objects, or object sets.
A part of a definition can be supplied as a parameter. For
example, if a <c>Type</c> is used in a definition with a certain
purpose, you want the type name to express the intention. This
can be done with parameterization.</p>
<p>When many types (or another ASN.1 entity) only differ in some
minor cases, but the structure of the types is similar, only
one general type can be defined and the differences can be supplied
through parameters.</p>
<p>Example of use of parameterization:</p>
<pre>
General{Type} ::= SEQUENCE
{
number INTEGER,
string Type
}
T1 ::= General{PrintableString}
T2 ::= General{BIT STRING}</pre>
<p>An example of a value that can be encoded as type <c>T1</c> is
<c>{12,"hello"}</c>.</p>
<p>Notice that the compiler does not generate encode/decode functions
for parameterized types, only for the instances of the parameterized
types. Therefore, if a file contains the types <c>General{}</c>,
<c>T1</c>, and <c>T2</c> as in the previous example, encode/decode
functions are only generated for <c>T1</c> and <c>T2</c>.
</p>
</section>
</chapter>
|