1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Partitions assembly instructions into basic blocks and
%% optimizes them.
-module(beam_block).
-export([module/2]).
-import(lists, [reverse/1,reverse/2,foldl/3,member/2]).
-spec module(beam_utils:module_code(), [compile:option()]) ->
{'ok',beam_utils:module_code()}.
module({Mod,Exp,Attr,Fs0,Lc}, _Opt) ->
Fs = [function(F) || F <- Fs0],
{ok,{Mod,Exp,Attr,Fs,Lc}}.
function({function,Name,Arity,CLabel,Is0}) ->
try
%% Collect basic blocks and optimize them.
Is1 = blockify(Is0),
Is2 = embed_lines(Is1),
Is3 = move_allocates(Is2),
Is4 = beam_utils:live_opt(Is3),
Is5 = opt_blocks(Is4),
Is6 = beam_utils:delete_live_annos(Is5),
%% Done.
{function,Name,Arity,CLabel,Is6}
catch
Class:Error ->
Stack = erlang:get_stacktrace(),
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
%% blockify(Instructions0) -> Instructions
%% Collect sequences of instructions to basic blocks.
%% Also do some simple optimations on instructions outside the blocks.
blockify(Is) ->
blockify(Is, []).
blockify([{loop_rec,{f,Fail},{x,0}},{loop_rec_end,_Lbl},{label,Fail}|Is], Acc) ->
%% Useless instruction sequence.
blockify(Is, Acc);
blockify([I|Is0]=IsAll, Acc) ->
case collect(I) of
error -> blockify(Is0, [I|Acc]);
Instr when is_tuple(Instr) ->
{Block,Is} = collect_block(IsAll),
blockify(Is, [{block,Block}|Acc])
end;
blockify([], Acc) -> reverse(Acc).
collect_block(Is) ->
collect_block(Is, []).
collect_block([{allocate,N,R}|Is0], Acc) ->
{Inits,Is} = lists:splitwith(fun ({init,{y,_}}) -> true;
(_) -> false
end, Is0),
collect_block(Is, [{set,[],[],{alloc,R,{nozero,N,0,Inits}}}|Acc]);
collect_block([{allocate_zero,Ns,R},{test_heap,Nh,R}|Is], Acc) ->
collect_block(Is, [{set,[],[],{alloc,R,{zero,Ns,Nh,[]}}}|Acc]);
collect_block([I|Is]=Is0, Acc) ->
case collect(I) of
error -> {reverse(Acc),Is0};
Instr -> collect_block(Is, [Instr|Acc])
end;
collect_block([], Acc) ->
{reverse(Acc),[]}.
collect({allocate,N,R}) -> {set,[],[],{alloc,R,{nozero,N,0,[]}}};
collect({allocate_zero,N,R}) -> {set,[],[],{alloc,R,{zero,N,0,[]}}};
collect({allocate_heap,Ns,Nh,R}) -> {set,[],[],{alloc,R,{nozero,Ns,Nh,[]}}};
collect({allocate_heap_zero,Ns,Nh,R}) -> {set,[],[],{alloc,R,{zero,Ns,Nh,[]}}};
collect({init,D}) -> {set,[D],[],init};
collect({test_heap,N,R}) -> {set,[],[],{alloc,R,{nozero,nostack,N,[]}}};
collect({bif,N,F,As,D}) -> {set,[D],As,{bif,N,F}};
collect({gc_bif,N,F,R,As,D}) -> {set,[D],As,{alloc,R,{gc_bif,N,F}}};
collect({move,S,D}) -> {set,[D],[S],move};
collect({put_list,S1,S2,D}) -> {set,[D],[S1,S2],put_list};
collect({put_tuple,A,D}) -> {set,[D],[],{put_tuple,A}};
collect({put,S}) -> {set,[],[S],put};
collect({get_tuple_element,S,I,D}) -> {set,[D],[S],{get_tuple_element,I}};
collect({set_tuple_element,S,D,I}) -> {set,[],[S,D],{set_tuple_element,I}};
collect({get_list,S,D1,D2}) -> {set,[D1,D2],[S],get_list};
collect(remove_message) -> {set,[],[],remove_message};
collect({put_map,F,Op,S,D,R,{list,Puts}}) ->
{set,[D],[S|Puts],{alloc,R,{put_map,Op,F}}};
collect({'catch'=Op,R,L}) ->
{set,[R],[],{try_catch,Op,L}};
collect({'try'=Op,R,L}) ->
{set,[R],[],{try_catch,Op,L}};
collect(fclearerror) -> {set,[],[],fclearerror};
collect({fcheckerror,{f,0}}) -> {set,[],[],fcheckerror};
collect({fmove,S,D}) -> {set,[D],[S],fmove};
collect({fconv,S,D}) -> {set,[D],[S],fconv};
collect(_) -> error.
%% embed_lines([Instruction]) -> [Instruction]
%% Combine blocks that would be split by line/1 instructions.
%% Also move a line instruction before a block into the block,
%% but leave the line/1 instruction after a block outside.
embed_lines(Is) ->
embed_lines(reverse(Is), []).
embed_lines([{block,B2},{line,_}=Line,{block,B1}|T], Acc) ->
B = {block,B1++[{set,[],[],Line}]++B2},
embed_lines([B|T], Acc);
embed_lines([{block,B1},{line,_}=Line|T], Acc) ->
B = {block,[{set,[],[],Line}|B1]},
embed_lines([B|T], Acc);
embed_lines([I|Is], Acc) ->
embed_lines(Is, [I|Acc]);
embed_lines([], Acc) -> Acc.
opt_blocks([{block,Bl0}|Is]) ->
%% The live annotation at the beginning is not useful.
[{'%live',_,_}|Bl] = Bl0,
[{block,opt_block(Bl)}|opt_blocks(Is)];
opt_blocks([I|Is]) ->
[I|opt_blocks(Is)];
opt_blocks([]) -> [].
opt_block(Is0) ->
Is = find_fixpoint(fun(Is) ->
opt_tuple_element(opt(Is))
end, Is0),
opt_alloc(Is).
find_fixpoint(OptFun, Is0) ->
case OptFun(Is0) of
Is0 -> Is0;
Is1 -> find_fixpoint(OptFun, Is1)
end.
%% move_allocates(Is0) -> Is
%% Move allocate instructions upwards in the instruction stream
%% (within the same block), in the hope of getting more possibilities
%% for optimizing away moves later.
%%
%% For example, we can transform the following instructions:
%%
%% get_tuple_element x(1) Element => x(2)
%% allocate_zero StackSize 3 %% x(0), x(1), x(2) are live
%%
%% to the following instructions:
%%
%% allocate_zero StackSize 2 %% x(0) and x(1) are live
%% get_tuple_element x(1) Element => x(2)
%%
%% NOTE: Since the beam_reorder pass has been run, it is no longer
%% safe to assume that if x(N) is initialized, then all lower-numbered
%% x registers are also initialized.
%%
%% For example, in general it is not safe to transform the following
%% instructions:
%%
%% get_tuple_element x(0) Element => x(1)
%% allocate_zero StackSize 3 %x(0), x(1), x(2) are live
%%
%% to the following instructions:
%%
%% allocate_zero StackSize 3
%% get_tuple_element x(0) Element => x(1)
%%
%% The transformation is safe if and only if x(1) has been
%% initialized previously. Unfortunately, beam_reorder may have moved
%% a get_tuple_element instruction so that x(1) is not always
%% initialized when this code is reached. To find whether or not x(1)
%% is initialized, we would need to analyze all code preceding these
%% two instructions (across branches). Since we currently don't have
%% any practical mechanism for doing that, we will have to
%% conservatively assume that the transformation is unsafe.
move_allocates([{block,Bl0}|Is]) ->
Bl = move_allocates_1(reverse(Bl0), []),
[{block,Bl}|move_allocates(Is)];
move_allocates([I|Is]) ->
[I|move_allocates(Is)];
move_allocates([]) -> [].
move_allocates_1([I|Is], [{set,[],[],{alloc,Live0,Info}}|Acc]=Acc0) ->
case {alloc_may_pass(I),alloc_live_regs(I, Live0)} of
{false,_} ->
move_allocates_1(Is, [I|Acc0]);
{true,not_possible} ->
move_allocates_1(Is, [I|Acc0]);
{true,Live} when is_integer(Live) ->
A = {set,[],[],{alloc,Live,Info}},
move_allocates_1(Is, [A,I|Acc])
end;
move_allocates_1([I|Is], Acc) ->
move_allocates_1(Is, [I|Acc]);
move_allocates_1([], Acc) -> Acc.
alloc_may_pass({set,_,_,{alloc,_,_}}) -> false;
alloc_may_pass({set,_,_,{set_tuple_element,_}}) -> false;
alloc_may_pass({set,_,_,put_list}) -> false;
alloc_may_pass({set,_,_,put}) -> false;
alloc_may_pass({set,_,_,_}) -> true.
%% opt([Instruction]) -> [Instruction]
%% Optimize the instruction stream inside a basic block.
opt([{set,[X],[X],move}|Is]) -> opt(Is);
opt([{set,[X],_,move},{set,[X],_,move}=I|Is]) ->
opt([I|Is]);
opt([{set,[{x,0}],[S1],move}=I1,{set,[D2],[{x,0}],move}|Is]) ->
opt([I1,{set,[D2],[S1],move}|Is]);
opt([{set,[{x,0}],[S1],move}=I1,{set,[D2],[S2],move}|Is0]) when S1 =/= D2 ->
%% Place move S x0 at the end of move sequences so that
%% loader can merge with the following instruction
{Ds,Is} = opt_moves([D2], Is0),
[{set,Ds,[S2],move}|opt([I1|Is])];
opt([{set,_,_,{line,_}}=Line1,
{set,[D1],[{integer,Idx1},Reg],{bif,element,{f,0}}}=I1,
{set,_,_,{line,_}}=Line2,
{set,[D2],[{integer,Idx2},Reg],{bif,element,{f,0}}}=I2|Is])
when Idx1 < Idx2, D1 =/= D2, D1 =/= Reg, D2 =/= Reg ->
opt([Line2,I2,Line1,I1|Is]);
opt([{set,Ds0,Ss,Op}|Is0]) ->
{Ds,Is} = opt_moves(Ds0, Is0),
[{set,Ds,Ss,Op}|opt(Is)];
opt([{'%live',_,_}=I|Is]) ->
[I|opt(Is)];
opt([]) -> [].
%% opt_moves([Dest], [Instruction]) -> {[Dest],[Instruction]}
%% For each Dest, does the optimization described in opt_move/2.
opt_moves([], Is0) -> {[],Is0};
opt_moves([D0]=Ds, Is0) ->
case opt_move(D0, Is0) of
not_possible -> {Ds,Is0};
{D1,Is} -> {[D1],Is}
end;
opt_moves([X0,Y0], Is0) ->
{X,Is2} = case opt_move(X0, Is0) of
not_possible -> {X0,Is0};
{Y0,_} -> {X0,Is0};
{_X1,_Is1} = XIs1 -> XIs1
end,
case opt_move(Y0, Is2) of
not_possible -> {[X,Y0],Is2};
{X,_} -> {[X,Y0],Is2};
{Y,Is} -> {[X,Y],Is}
end.
%% opt_move(Dest, [Instruction]) -> {UpdatedDest,[Instruction]} | not_possible
%% If there is a {move,Dest,FinalDest} instruction
%% in the instruction stream, remove the move instruction
%% and let FinalDest be the destination.
opt_move(Dest, Is) ->
opt_move_1(Dest, Is, []).
opt_move_1(R, [{set,[D],[R],move}|Is0], Acc) ->
%% Provided that the source register is killed by instructions
%% that follow, the optimization is safe.
case eliminate_use_of_from_reg(Is0, R, D, []) of
{yes,Is} -> opt_move_rev(D, Acc, Is);
no -> not_possible
end;
opt_move_1(_R, [{set,_,_,{alloc,_,_}}|_], _) ->
%% The optimization is either not possible or not safe.
%%
%% If R is an X register killed by allocation, the optimization is
%% not safe. On the other hand, if the X register is killed, there
%% will not follow a 'move' instruction with this X register as
%% the source.
%%
%% If R is a Y register, the optimization is still not safe
%% because the new target register is an X register that cannot
%% safely pass the alloc instruction.
not_possible;
opt_move_1(R, [{set,_,_,_}=I|Is], Acc) ->
%% If the source register is either killed or used by this
%% instruction, the optimimization is not possible.
case is_killed_or_used(R, I) of
true -> not_possible;
false -> opt_move_1(R, Is, [I|Acc])
end;
opt_move_1(_, _, _) ->
not_possible.
%% opt_tuple_element([Instruction]) -> [Instruction]
%% If possible, move get_tuple_element instructions forward
%% in the instruction stream to a move instruction, eliminating
%% the move instruction. Example:
%%
%% get_tuple_element Tuple Pos Dst1
%% ...
%% move Dst1 Dst2
%%
%% This code may be possible to rewrite to:
%%
%% %%(Moved get_tuple_element instruction)
%% ...
%% get_tuple_element Tuple Pos Dst2
%%
opt_tuple_element([{set,[D],[S],{get_tuple_element,_}}=I|Is0]) ->
case opt_tuple_element_1(Is0, I, {S,D}, []) of
no ->
[I|opt_tuple_element(Is0)];
{yes,Is} ->
opt_tuple_element(Is)
end;
opt_tuple_element([I|Is]) ->
[I|opt_tuple_element(Is)];
opt_tuple_element([]) -> [].
opt_tuple_element_1([{set,_,_,{alloc,_,_}}|_], _, _, _) ->
no;
opt_tuple_element_1([{set,_,_,{try_catch,_,_}}|_], _, _, _) ->
no;
opt_tuple_element_1([{set,[D],[S],move}|Is0], I0, {_,S}, Acc) ->
case eliminate_use_of_from_reg(Is0, S, D, []) of
no ->
no;
{yes,Is} ->
{set,[S],Ss,Op} = I0,
I = {set,[D],Ss,Op},
{yes,reverse(Acc, [I|Is])}
end;
opt_tuple_element_1([{set,Ds,Ss,_}=I|Is], MovedI, {S,D}=Regs, Acc) ->
case member(S, Ds) orelse member(D, Ss) of
true ->
no;
false ->
opt_tuple_element_1(Is, MovedI, Regs, [I|Acc])
end;
opt_tuple_element_1(_, _, _, _) -> no.
%% Reverse the instructions, while checking that there are no
%% instructions that would interfere with using the new destination
%% register (D).
opt_move_rev(D, [I|Is], Acc) ->
case is_killed_or_used(D, I) of
true -> not_possible;
false -> opt_move_rev(D, Is, [I|Acc])
end;
opt_move_rev(D, [], Acc) -> {D,Acc}.
%% is_killed_or_used(Register, {set,_,_,_}) -> bool()
%% Test whether the register is used by the instruction.
is_killed_or_used(R, {set,Ss,Ds,_}) ->
member(R, Ds) orelse member(R, Ss).
%% eliminate_use_of_from_reg([Instruction], FromRegister, ToRegister, Acc) ->
%% {yes,Is} | no
%% Eliminate any use of FromRegister in the instruction sequence
%% by replacing uses of FromRegister with ToRegister. If FromRegister
%% is referenced by an allocation instruction, return 'no' to indicate
%% that FromRegister is still used and that the optimization is not
%% possible.
eliminate_use_of_from_reg([{set,_,_,{alloc,Live,_}}|_]=Is0, {x,X}, _, Acc) ->
if
X < Live ->
no;
true ->
{yes,reverse(Acc, Is0)}
end;
eliminate_use_of_from_reg([{set,Ds,Ss0,Op}=I0|Is], From, To, Acc) ->
I = case member(From, Ss0) of
true ->
Ss = [case S of
From -> To;
_ -> S
end || S <- Ss0],
{set,Ds,Ss,Op};
false ->
I0
end,
case member(From, Ds) of
true ->
{yes,reverse(Acc, [I|Is])};
false ->
eliminate_use_of_from_reg(Is, From, To, [I|Acc])
end;
eliminate_use_of_from_reg([I]=Is, From, _To, Acc) ->
case beam_utils:is_killed_block(From, [I]) of
true ->
{yes,reverse(Acc, Is)};
false ->
no
end.
%% opt_alloc(Instructions) -> Instructions'
%% Optimises all allocate instructions.
opt_alloc([{set,[],[],{alloc,Live0,Info0}},
{set,[],[],{alloc,Live,Info}}|Is]) ->
Live = Live0, %Assertion.
Alloc = combine_alloc(Info0, Info),
I = {set,[],[],{alloc,Live,Alloc}},
opt_alloc([I|Is]);
opt_alloc([{set,[],[],{alloc,R,{_,Ns,Nh,[]}}}|Is]) ->
[{set,[],[],opt_alloc(Is, Ns, Nh, R)}|Is];
opt_alloc([I|Is]) -> [I|opt_alloc(Is)];
opt_alloc([]) -> [].
combine_alloc({_,Ns,Nh1,Init}, {_,nostack,Nh2,[]}) ->
{zero,Ns,beam_utils:combine_heap_needs(Nh1, Nh2),Init}.
%% opt_alloc(Instructions, FrameSize, HeapNeed, LivingRegs) -> [Instr]
%% Generates the optimal sequence of instructions for
%% allocating and initalizing the stack frame and needed heap.
opt_alloc(_Is, nostack, Nh, LivingRegs) ->
{alloc,LivingRegs,{nozero,nostack,Nh,[]}};
opt_alloc(Is, Ns, Nh, LivingRegs) ->
InitRegs = init_yreg(Is, 0),
case count_ones(InitRegs) of
N when N*2 > Ns ->
{alloc,LivingRegs,{nozero,Ns,Nh,gen_init(Ns, InitRegs)}};
_ ->
{alloc,LivingRegs,{zero,Ns,Nh,[]}}
end.
gen_init(Fs, Regs) -> gen_init(Fs, Regs, 0, []).
gen_init(SameFs, _Regs, SameFs, Acc) -> reverse(Acc);
gen_init(Fs, Regs, Y, Acc) when Regs band 1 =:= 0 ->
gen_init(Fs, Regs bsr 1, Y+1, [{init,{y,Y}}|Acc]);
gen_init(Fs, Regs, Y, Acc) ->
gen_init(Fs, Regs bsr 1, Y+1, Acc).
%% init_yreg(Instructions, RegSet) -> RegSetInitialized
%% Calculate the set of initialized y registers.
init_yreg([{set,_,_,{bif,_,_}}|_], Reg) -> Reg;
init_yreg([{set,_,_,{alloc,_,{gc_bif,_,_}}}|_], Reg) -> Reg;
init_yreg([{set,_,_,{alloc,_,{put_map,_,_}}}|_], Reg) -> Reg;
init_yreg([{set,Ds,_,_}|Is], Reg) -> init_yreg(Is, add_yregs(Ds, Reg));
init_yreg(_Is, Reg) -> Reg.
add_yregs(Ys, Reg) -> foldl(fun(Y, R0) -> add_yreg(Y, R0) end, Reg, Ys).
add_yreg({y,Y}, Reg) -> Reg bor (1 bsl Y);
add_yreg(_, Reg) -> Reg.
count_ones(Bits) -> count_ones(Bits, 0).
count_ones(0, Acc) -> Acc;
count_ones(Bits, Acc) ->
count_ones(Bits bsr 1, Acc + (Bits band 1)).
%% Calculate the new number of live registers when we move an allocate
%% instruction upwards, passing a 'set' instruction.
alloc_live_regs({set,Ds,Ss,_}, Regs0) ->
Rset = x_live(Ss, x_dead(Ds, (1 bsl Regs0)-1)),
live_regs(0, Rset).
live_regs(N, 0) ->
N;
live_regs(N, Regs) when Regs band 1 =:= 1 ->
live_regs(N+1, Regs bsr 1);
live_regs(_, _) ->
not_possible.
x_dead([{x,N}|Rs], Regs) -> x_dead(Rs, Regs band (bnot (1 bsl N)));
x_dead([_|Rs], Regs) -> x_dead(Rs, Regs);
x_dead([], Regs) -> Regs.
x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N));
x_live([_|Rs], Regs) -> x_live(Rs, Regs);
x_live([], Regs) -> Regs.
|