1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2002-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(beam_dead).
-export([module/2]).
%%% Dead code is code that is executed but has no effect. This
%%% optimization pass either removes dead code or jumps around it,
%%% potentially making it unreachable and a target for the
%%% the beam_jump pass.
-import(lists, [mapfoldl/3,reverse/1]).
-spec module(beam_utils:module_code(), [compile:option()]) ->
{'ok',beam_utils:module_code()}.
module({Mod,Exp,Attr,Fs0,_}, _Opts) ->
{Fs1,Lc1} = beam_clean:clean_labels(Fs0),
{Fs,Lc} = mapfoldl(fun function/2, Lc1, Fs1),
%%{Fs,Lc} = {Fs1,Lc1},
{ok,{Mod,Exp,Attr,Fs,Lc}}.
function({function,Name,Arity,CLabel,Is0}, Lc0) ->
try
Is1 = beam_jump:remove_unused_labels(Is0),
%% Initialize label information with the code
%% for the func_info label. Without it, a register
%% may seem to be live when it is not.
[{label,L}|FiIs] = Is1,
D0 = beam_utils:empty_label_index(),
D = beam_utils:index_label(L, FiIs, D0),
%% Optimize away dead code.
{Is2,Lc} = forward(Is1, Lc0),
Is3 = backward(Is2, D),
Is = move_move_into_block(Is3, []),
{{function,Name,Arity,CLabel,Is},Lc}
catch
Class:Error:Stack ->
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
%% 'move' instructions outside of blocks may thwart the jump optimizer.
%% Move them back into the block.
move_move_into_block([{block,Bl0},{move,S,D}|Is], Acc) ->
Bl = Bl0 ++ [{set,[D],[S],move}],
move_move_into_block([{block,Bl}|Is], Acc);
move_move_into_block([{move,S,D}|Is], Acc) ->
Bl = [{set,[D],[S],move}],
move_move_into_block([{block,Bl}|Is], Acc);
move_move_into_block([I|Is], Acc) ->
move_move_into_block(Is, [I|Acc]);
move_move_into_block([], Acc) -> reverse(Acc).
%%%
%%% Scan instructions in execution order and remove redundant 'move'
%%% instructions. 'move' instructions are redundant if we know that
%%% the register already contains the value being assigned, as in the
%%% following code:
%%%
%%% test is_eq_exact SomeLabel Src Dst
%%% move Src Dst
%%%
%%% or in:
%%%
%%% test is_nil SomeLabel Dst
%%% move nil Dst
%%%
%%% or in:
%%%
%%% select_val Register FailLabel [... Literal => L1...]
%%% .
%%% .
%%% .
%%% L1: move Literal Register
%%%
%%% Also add extra labels to help the second backward pass.
%%%
forward(Is, Lc) ->
forward(Is, #{}, Lc, []).
forward([{move,_,_}=Move|[{label,L}|_]=Is], D, Lc, Acc) ->
%% move/2 followed by jump/1 is optimized by backward/3.
forward([Move,{jump,{f,L}}|Is], D, Lc, Acc);
forward([{bif,_,_,_,_}=Bif|[{label,L}|_]=Is], D, Lc, Acc) ->
%% bif/4 followed by jump/1 is optimized by backward/3.
forward([Bif,{jump,{f,L}}|Is], D, Lc, Acc);
forward([{block,[]}|Is], D, Lc, Acc) ->
%% Empty blocks can prevent optimizations.
forward(Is, D, Lc, Acc);
forward([{select,select_val,Reg,_,List}=I|Is], D0, Lc, Acc) ->
D = update_value_dict(List, Reg, D0),
forward(Is, D, Lc, [I|Acc]);
forward([{label,Lbl}=LblI,{block,[{set,[Dst],[Lit],move}|BlkIs]}=Blk|Is], D, Lc, Acc) ->
%% Assumption: The target labels in a select_val/3 instruction
%% cannot be reached in any other way than through the select_val/3
%% instruction (i.e. there can be no fallthrough to such label and
%% it cannot be referenced by, for example, a jump/1 instruction).
Key = {Lbl,Dst},
Block = case D of
#{Key := Lit} -> {block,BlkIs}; %Safe to remove move instruction.
_ -> Blk %Must keep move instruction.
end,
forward([Block|Is], D, Lc, [LblI|Acc]);
forward([{label,Lbl}=LblI|[{move,Lit,Dst}|Is1]=Is0], D, Lc, Acc) ->
%% Assumption: The target labels in a select_val/3 instruction
%% cannot be reached in any other way than through the select_val/3
%% instruction (i.e. there can be no fallthrough to such label and
%% it cannot be referenced by, for example, a jump/1 instruction).
Is = case maps:find({Lbl,Dst}, D) of
{ok,Lit} -> Is1; %Safe to remove move instruction.
_ -> Is0 %Keep move instruction.
end,
forward(Is, D, Lc, [LblI|Acc]);
forward([{test,is_eq_exact,_,[Same,Same]}|Is], D, Lc, Acc) ->
forward(Is, D, Lc, Acc);
forward([{test,is_eq_exact,_,[Dst,Src]}=I,
{block,[{set,[Dst],[Src],move}|Bl]}|Is], D, Lc, Acc) ->
forward([I,{block,Bl}|Is], D, Lc, Acc);
forward([{test,is_nil,_,[Dst]}=I,
{block,[{set,[Dst],[nil],move}|Bl]}|Is], D, Lc, Acc) ->
forward([I,{block,Bl}|Is], D, Lc, Acc);
forward([{test,is_eq_exact,_,[Dst,Src]}=I,{move,Src,Dst}|Is], D, Lc, Acc) ->
forward([I|Is], D, Lc, Acc);
forward([{test,is_nil,_,[Dst]}=I,{move,nil,Dst}|Is], D, Lc, Acc) ->
forward([I|Is], D, Lc, Acc);
forward([{test,_,_,_}=I|Is]=Is0, D, Lc, Acc) ->
%% Help the second, backward pass to by inserting labels after
%% relational operators so that they can be skipped if they are
%% known to be true.
case useful_to_insert_label(Is0) of
false -> forward(Is, D, Lc, [I|Acc]);
true -> forward(Is, D, Lc+1, [{label,Lc},I|Acc])
end;
forward([I|Is], D, Lc, Acc) ->
forward(Is, D, Lc, [I|Acc]);
forward([], _, Lc, Acc) -> {Acc,Lc}.
update_value_dict([Lit,{f,Lbl}|T], Reg, D0) ->
Key = {Lbl,Reg},
D = case D0 of
#{Key := inconsistent} -> D0;
#{Key := _} -> D0#{Key := inconsistent};
_ -> D0#{Key => Lit}
end,
update_value_dict(T, Reg, D);
update_value_dict([], _, D) -> D.
useful_to_insert_label([_,{label,_}|_]) ->
false;
useful_to_insert_label([{test,Op,_,_}|_]) ->
case Op of
is_lt -> true;
is_ge -> true;
is_eq_exact -> true;
is_ne_exact -> true;
_ -> false
end.
%%%
%%% Scan instructions in reverse execution order and try to
%%% shortcut branch instructions.
%%%
%%% For example, in this code:
%%%
%%% move Literal Register
%%% jump L1
%%% .
%%% .
%%% .
%%% L1: test is_{integer,atom} FailLabel Register
%%% select_val {x,0} FailLabel [... Literal => L2...]
%%% .
%%% .
%%% .
%%% L2: ...
%%%
%%% the 'selectval' instruction will always transfer control to L2,
%%% so we can just as well jump to L2 directly by rewriting the
%%% first part of the sequence like this:
%%%
%%% move Literal Register
%%% jump L2
%%%
%%% If register Register is killed at label L2, we can remove the
%%% 'move' instruction, leaving just the 'jump' instruction:
%%%
%%% jump L2
%%%
%%% These transformations may leave parts of the code unreachable.
%%% The beam_jump pass will remove the unreachable code.
backward(Is, D) ->
backward(Is, D, []).
backward([{test,is_eq_exact,Fail,[Dst,{integer,Arity}]}=I|
[{bif,tuple_size,Fail,[Reg],Dst}|Is]=Is0], D, Acc) ->
%% Provided that Dst is killed following this sequence,
%% we can rewrite the instructions like this:
%%
%% bif tuple_size Fail Reg Dst ==> is_tuple Fail Reg
%% is_eq_exact Fail Dst Integer test_arity Fail Reg Integer
%%
%% (still two instructions, but they they will be combined to
%% one by the loader).
case beam_utils:is_killed(Dst, Acc, D) andalso (Arity bsr 32) =:= 0 of
false ->
%% Not safe because the register Dst is not killed
%% (probably cannot not happen in practice) or the arity
%% does not fit in 32 bits (the loader will fail to load
%% the module). We must move the first instruction to the
%% accumulator to avoid an infinite loop.
backward(Is0, D, [I|Acc]);
true ->
%% Safe.
backward([{test,test_arity,Fail,[Reg,Arity]},
{test,is_tuple,Fail,[Reg]}|Is], D, Acc)
end;
backward([{label,Lbl}=L|Is], D, Acc) ->
backward(Is, beam_utils:index_label(Lbl, Acc, D), [L|Acc]);
backward([{select,select_val,Reg,{f,Fail0},List0}|Is], D, Acc) ->
List1 = shortcut_select_list(List0, Reg, D, []),
Fail1 = shortcut_label(Fail0, D),
Fail = shortcut_bs_test(Fail1, Is, D),
List = prune_redundant(List1, Fail),
case List of
[] ->
Jump = {jump,{f,Fail}},
backward([Jump|Is], D, Acc);
[V,F] ->
Test = {test,is_eq_exact,{f,Fail},[Reg,V]},
Jump = {jump,F},
backward([Jump,Test|Is], D, Acc);
[{atom,B1},F,{atom,B2},F] when B1 =:= not B2 ->
Test = {test,is_boolean,{f,Fail},[Reg]},
Jump = {jump,F},
backward([Jump,Test|Is], D, Acc);
[_|_] ->
Sel = {select,select_val,Reg,{f,Fail},List},
backward(Is, D, [Sel|Acc])
end;
backward([{jump,{f,To0}},{move,Src,Reg}=Move|Is], D, Acc) ->
To = shortcut_select_label(To0, Reg, Src, D),
Jump = {jump,{f,To}},
case is_killed_at(Reg, To, D) of
false -> backward([Move|Is], D, [Jump|Acc]);
true -> backward([Jump|Is], D, Acc)
end;
backward([{jump,{f,To}}=J|[{bif,Op,{f,BifFail},Ops,Reg}|Is]=Is0], D, Acc) ->
try replace_comp_op(To, Reg, Op, Ops, D) of
{Test,Jump} ->
backward([Jump,Test|Is], D, Acc)
catch
throw:not_possible ->
case To =:= BifFail of
true ->
%% The bif instruction is redundant. See the comment
%% in the next clause for why there is no need to
%% test for liveness of Reg at label To.
backward([J|Is], D, Acc);
false ->
backward(Is0, D, [J|Acc])
end
end;
backward([{jump,{f,To}}=J|[{gc_bif,_,{f,To},_,_,_Dst}|Is]], D, Acc) ->
%% The gc_bif instruction is redundant, since either the gc_bif
%% instruction itself or the jump instruction will transfer control
%% to label To. Note that a gc_bif instruction does not assign its
%% destination register if the failure branch is taken; therefore,
%% the code at label To is not allowed to assume that the destination
%% register is initialized, and it is therefore no need to test
%% for liveness of the destination register at label To.
backward([J|Is], D, Acc);
backward([{test,bs_start_match2,F,Live,[R,_]=Args,Ctxt}|Is], D,
[{test,bs_match_string,F,[Ctxt,Bs]},
{test,bs_test_tail2,F,[Ctxt,0]}|Acc0]=Acc) ->
{f,To0} = F,
case beam_utils:is_killed(Ctxt, Acc0, D) of
true ->
To = shortcut_bs_context_to_binary(To0, R, D),
Eq = {test,is_eq_exact,{f,To},[R,{literal,Bs}]},
backward(Is, D, [Eq|Acc0]);
false ->
To = shortcut_bs_start_match(To0, R, D),
I = {test,bs_start_match2,{f,To},Live,Args,Ctxt},
backward(Is, D, [I|Acc])
end;
backward([{test,bs_start_match2,{f,To0},Live,[Src|_]=Info,Dst}|Is], D, Acc) ->
To = shortcut_bs_start_match(To0, Src, D),
I = {test,bs_start_match2,{f,To},Live,Info,Dst},
backward(Is, D, [I|Acc]);
backward([{test,Op,{f,To0},Ops0}|Is], D, Acc) ->
To1 = shortcut_bs_test(To0, Is, D),
To2 = shortcut_label(To1, D),
To3 = shortcut_rel_op(To2, Op, Ops0, D),
%% Try to shortcut a repeated test:
%%
%% test Op {f,Fail1} Operands test Op {f,Fail2} Operands
%% . . . ==> ...
%% Fail1: test Op {f,Fail2} Operands Fail1: test Op {f,Fail2} Operands
%%
To = case beam_utils:code_at(To3, D) of
[{test,Op,{f,To4},Ops}|_] ->
case equal_ops(Ops0, Ops) of
true -> To4;
false -> To3
end;
_Code ->
To3
end,
I = case Op of
is_eq_exact -> combine_eqs(To, Ops0, D, Acc);
_ -> {test,Op,{f,To},Ops0}
end,
case {I,Acc} of
{{test,is_atom,Fail,Ops0},[{test,is_boolean,Fail,Ops0}|_]} ->
%% An is_atom test before an is_boolean test (with the
%% same failure label) is redundant.
backward(Is, D, Acc);
{{test,is_atom,Fail,[R]},
[{test,is_eq_exact,Fail,[R,{atom,_}]}|_]} ->
%% An is_atom test before a comparison with an atom (with
%% the same failure label) is redundant.
backward(Is, D, Acc);
{{test,is_integer,Fail,[R]},
[{test,is_eq_exact,Fail,[R,{integer,_}]}|_]} ->
%% An is_integer test before a comparison with an integer
%% (with the same failure label) is redundant.
backward(Is, D, Acc);
{{test,_,_,_},_} ->
%% Still a test instruction. Done.
backward(Is, D, [I|Acc]);
{_,_} ->
%% Rewritten to a select_val. Rescan.
backward([I|Is], D, Acc)
end;
backward([{test,Op,{f,To0},Live,Ops0,Dst}|Is], D, Acc) ->
To1 = shortcut_bs_test(To0, Is, D),
To2 = shortcut_label(To1, D),
%% Try to shortcut a repeated test:
%%
%% test Op {f,Fail1} _ Ops _ test Op {f,Fail2} _ Ops _
%% . . . ==> ...
%% Fail1: test Op {f,Fail2} _ Ops _ Fail1: test Op {f,Fail2} _ Ops _
%%
To = case beam_utils:code_at(To2, D) of
[{test,Op,{f,To3},_,Ops,_}|_] ->
case equal_ops(Ops0, Ops) of
true -> To3;
false -> To2
end;
_Code ->
To2
end,
I = {test,Op,{f,To},Live,Ops0,Dst},
backward(Is, D, [I|Acc]);
backward([{kill,_}=I|Is], D, [{line,_},Exit|_]=Acc) ->
case beam_jump:is_exit_instruction(Exit) of
false -> backward(Is, D, [I|Acc]);
true -> backward(Is, D, Acc)
end;
backward([{bif,'or',{f,To0},[Dst,{atom,false}],Dst}=I|Is], D,
[{test,is_eq_exact,{f,To},[Dst,{atom,true}]}|_]=Acc) ->
case shortcut_label(To0, D) of
To ->
backward(Is, D, Acc);
_ ->
backward(Is, D, [I|Acc])
end;
backward([I|Is], D, Acc) ->
backward(Is, D, [I|Acc]);
backward([], _D, Acc) -> Acc.
equal_ops([{field_flags,FlA0}|T0], [{field_flags,FlB0}|T1]) ->
FlA = lists:keydelete(anno, 1, FlA0),
FlB = lists:keydelete(anno, 1, FlB0),
FlA =:= FlB andalso equal_ops(T0, T1);
equal_ops([Op|T0], [Op|T1]) ->
equal_ops(T0, T1);
equal_ops([], []) -> true;
equal_ops(_, _) -> false.
shortcut_select_list([Lit,{f,To0}|T], Reg, D, Acc) ->
To = shortcut_select_label(To0, Reg, Lit, D),
shortcut_select_list(T, Reg, D, [{f,To},Lit|Acc]);
shortcut_select_list([], _, _, Acc) -> reverse(Acc).
shortcut_label(0, _) ->
0;
shortcut_label(To0, D) ->
case beam_utils:code_at(To0, D) of
[{jump,{f,To}}|_] -> shortcut_label(To, D);
_ -> To0
end.
shortcut_select_label(To, Reg, Lit, D) ->
shortcut_rel_op(To, is_ne_exact, [Reg,Lit], D).
prune_redundant([_,{f,Fail}|T], Fail) ->
prune_redundant(T, Fail);
prune_redundant([V,F|T], Fail) ->
[V,F|prune_redundant(T, Fail)];
prune_redundant([], _) -> [].
%% Replace a comparison operator with a test instruction and a jump.
%% For example, if we have this code:
%%
%% bif '=:=' Fail Src1 Src2 {x,0}
%% jump L1
%% .
%% .
%% .
%% L1: select_val {x,0} FailLabel [... true => L2..., ...false => L3...]
%%
%% the first two instructions can be replaced with
%%
%% test is_eq_exact L3 Src1 Src2
%% jump L2
%%
%% provided that {x,0} is killed at both L2 and L3.
replace_comp_op(To, Reg, Op, Ops, D) ->
False = comp_op_find_shortcut(To, Reg, {atom,false}, D),
True = comp_op_find_shortcut(To, Reg, {atom,true}, D),
{bif_to_test(Op, Ops, False),{jump,{f,True}}}.
comp_op_find_shortcut(To0, Reg, Val, D) ->
case shortcut_select_label(To0, Reg, Val, D) of
To0 ->
not_possible();
To ->
case is_killed_at(Reg, To, D) of
false -> not_possible();
true -> To
end
end.
bif_to_test(Name, Args, Fail) ->
try
beam_utils:bif_to_test(Name, Args, {f,Fail})
catch
error:_ -> not_possible()
end.
not_possible() -> throw(not_possible).
%% combine_eqs(To, Operands, Acc) -> Instruction.
%% Combine two is_eq_exact instructions or (an is_eq_exact
%% instruction and a select_val instruction) to a select_val
%% instruction if possible.
%%
%% Example:
%%
%% is_eq_exact F1 Reg Lit1 select_val Reg F2 [ Lit1 L1
%% L1: . Lit2 L2 ]
%% .
%% . ==>
%% .
%% F1: is_eq_exact F2 Reg Lit2 F1: is_eq_exact F2 Reg Lit2
%% L2: .... L2:
%%
combine_eqs(To, [Reg,{Type,_}=Lit1]=Ops, D, Acc)
when Type =:= atom; Type =:= integer ->
Next = case Acc of
[{label,Lbl}|_] -> Lbl;
[{jump,{f,Lbl}}|_] -> Lbl
end,
case beam_utils:code_at(To, D) of
[{test,is_eq_exact,{f,F2},[Reg,{Type,_}=Lit2]},
{label,L2}|_] when Lit1 =/= Lit2 ->
{select,select_val,Reg,{f,F2},[Lit1,{f,Next},Lit2,{f,L2}]};
[{test,is_eq_exact,{f,F2},[Reg,{Type,_}=Lit2]},
{jump,{f,L2}}|_] when Lit1 =/= Lit2 ->
{select,select_val,Reg,{f,F2},[Lit1,{f,Next},Lit2,{f,L2}]};
[{select,select_val,Reg,{f,F2},[{Type,_}|_]=List0}|_] ->
List = remove_from_list(Lit1, List0),
{select,select_val,Reg,{f,F2},[Lit1,{f,Next}|List]};
_Is ->
{test,is_eq_exact,{f,To},Ops}
end;
combine_eqs(To, Ops, _D, _Acc) ->
{test,is_eq_exact,{f,To},Ops}.
remove_from_list(Lit, [Lit,{f,_}|T]) ->
T;
remove_from_list(Lit, [Val,{f,_}=Fail|T]) ->
[Val,Fail|remove_from_list(Lit, T)];
remove_from_list(_, []) -> [].
%% shortcut_bs_test(TargetLabel, ReversedInstructions, D) -> TargetLabel'
%% Try to shortcut the failure label for bit syntax matching.
shortcut_bs_test(To, Is, D) ->
shortcut_bs_test_1(beam_utils:code_at(To, D), Is, To, D).
shortcut_bs_test_1([{bs_restore2,Reg,SavePoint},
{label,_},
{test,bs_test_tail2,{f,To},[_,TailBits]}|_],
PrevIs, To0, D) ->
case count_bits_matched(PrevIs, {Reg,SavePoint}, 0) of
Bits when Bits > TailBits ->
%% This instruction will fail. We know because a restore has been
%% done from the previous point SavePoint in the binary, and we
%% also know that the binary contains at least Bits bits from
%% SavePoint.
%%
%% Since we will skip a bs_restore2 if we shortcut to label To,
%% we must now make sure that code at To does not depend on
%% the position in the context in any way.
case shortcut_bs_pos_used(To, Reg, D) of
false -> To;
true -> To0
end;
_Bits ->
To0
end;
shortcut_bs_test_1([_|_], _, To, _) -> To.
%% counts_bits_matched(ReversedInstructions, SavePoint, Bits) -> Bits'
%% Given a reversed instruction stream, determine the minimum number
%% of bits that will be matched by bit syntax instructions up to the
%% given save point.
count_bits_matched([{test,bs_get_utf8,{f,_},_,_,_}|Is], SavePoint, Bits) ->
count_bits_matched(Is, SavePoint, Bits+8);
count_bits_matched([{test,bs_get_utf16,{f,_},_,_,_}|Is], SavePoint, Bits) ->
count_bits_matched(Is, SavePoint, Bits+16);
count_bits_matched([{test,bs_get_utf32,{f,_},_,_,_}|Is], SavePoint, Bits) ->
count_bits_matched(Is, SavePoint, Bits+32);
count_bits_matched([{test,_,_,_,[_,Sz,U,{field_flags,_}],_}|Is], SavePoint, Bits) ->
case Sz of
{integer,N} -> count_bits_matched(Is, SavePoint, Bits+N*U);
_ -> count_bits_matched(Is, SavePoint, Bits)
end;
count_bits_matched([{test,bs_match_string,_,[_,Bs]}|Is], SavePoint, Bits) ->
count_bits_matched(Is, SavePoint, Bits+bit_size(Bs));
count_bits_matched([{test,_,_,_}|Is], SavePoint, Bits) ->
count_bits_matched(Is, SavePoint, Bits);
count_bits_matched([{bs_save2,Reg,SavePoint}|_], {Reg,SavePoint}, Bits) ->
%% The save point we are looking for - we are done.
Bits;
count_bits_matched([_|_], _, Bits) -> Bits.
shortcut_bs_pos_used(To, Reg, D) ->
shortcut_bs_pos_used_1(beam_utils:code_at(To, D), Reg, D).
shortcut_bs_pos_used_1([{bs_context_to_binary,Reg}|_], Reg, _) ->
false;
shortcut_bs_pos_used_1(Is, Reg, D) ->
not beam_utils:is_killed(Reg, Is, D).
%% shortcut_bs_start_match(TargetLabel, Reg) -> TargetLabel
%% A failing bs_start_match2 instruction means that the source (Reg)
%% cannot be a binary. That means that it is safe to skip
%% bs_context_to_binary instructions operating on Reg, and
%% bs_start_match2 instructions operating on Reg.
shortcut_bs_start_match(To, Reg, D) ->
shortcut_bs_start_match_1(beam_utils:code_at(To, D), Reg, To, D).
shortcut_bs_start_match_1([{bs_context_to_binary,Reg}|Is], Reg, To, D) ->
shortcut_bs_start_match_1(Is, Reg, To, D);
shortcut_bs_start_match_1([{jump,{f,To}}|_], Reg, _, D) ->
Code = beam_utils:code_at(To, D),
shortcut_bs_start_match_1(Code, Reg, To, D);
shortcut_bs_start_match_1([{test,bs_start_match2,{f,To},_,[Reg|_],_}|_],
Reg, _, D) ->
Code = beam_utils:code_at(To, D),
shortcut_bs_start_match_1(Code, Reg, To, D);
shortcut_bs_start_match_1(_, _, To, _) ->
To.
%% shortcut_bs_context_to_binary(TargetLabel, Reg) -> TargetLabel
%% If a bs_start_match2 instruction has been eliminated, the
%% bs_context_to_binary instruction can be eliminated too.
shortcut_bs_context_to_binary(To, Reg, D) ->
shortcut_bs_ctb_1(beam_utils:code_at(To, D), Reg, To, D).
shortcut_bs_ctb_1([{bs_context_to_binary,Reg}|Is], Reg, To, D) ->
shortcut_bs_ctb_1(Is, Reg, To, D);
shortcut_bs_ctb_1([{jump,{f,To}}|_], Reg, _, D) ->
Code = beam_utils:code_at(To, D),
shortcut_bs_ctb_1(Code, Reg, To, D);
shortcut_bs_ctb_1(_, _, To, _) ->
To.
%% shortcut_rel_op(FailLabel, Operator, [Operand], D) -> FailLabel'
%% Try to shortcut the given test instruction. Example:
%%
%% is_ge L1 {x,0} 48
%% .
%% .
%% .
%% L1: is_ge L2 {x,0} 65
%%
%% The first test instruction can be rewritten to "is_ge L2 {x,0} 48"
%% since the instruction at L1 will also fail.
%%
%% If there are instructions between L1 and the other test instruction
%% it may still be possible to do the shortcut. For example:
%%
%% L1: is_eq_exact L3 {x,0} 92
%% is_ge L2 {x,0} 65
%%
%% Since the first test instruction failed, we know that {x,0} must
%% be less than 48; therefore, we know that {x,0} cannot be equal to
%% 92 and the jump to L3 cannot happen.
shortcut_rel_op(To, Op, Ops, D) ->
case normalize_op({test,Op,{f,To},Ops}) of
{{NormOp,A,B},_} ->
Normalized = {negate_op(NormOp),A,B},
shortcut_rel_op_fp(To, Normalized, D);
{_,_} ->
To;
error ->
To
end.
shortcut_rel_op_fp(To0, Normalized, D) ->
Code = beam_utils:code_at(To0, D),
case shortcut_any_label(Code, Normalized) of
error ->
To0;
To ->
shortcut_rel_op_fp(To, Normalized, D)
end.
%% shortcut_any_label([Instruction], PrevCondition) -> FailLabel | error
%% Using PrevCondition (a previous condition known to be true),
%% try to shortcut to another failure label.
shortcut_any_label([{jump,{f,Lbl}}|_], _Prev) ->
Lbl;
shortcut_any_label([{label,Lbl}|_], _Prev) ->
Lbl;
shortcut_any_label([{select,select_val,R,{f,Fail},L}|_], Prev) ->
shortcut_selectval(L, R, Fail, Prev);
shortcut_any_label([I|Is], Prev) ->
case normalize_op(I) of
error ->
error;
{Normalized,Fail} ->
%% We have a relational operator.
case will_succeed(Prev, Normalized) of
no ->
%% This test instruction will always branch
%% to Fail.
Fail;
yes ->
%% This test instruction will never branch,
%% so we will look at the next instruction.
shortcut_any_label(Is, Prev);
maybe ->
%% May or may not branch. From now on, we can only
%% shortcut to the this specific failure label
%% Fail.
shortcut_specific_label(Is, Fail, Prev)
end
end.
%% shortcut_specific_label([Instruction], FailLabel, PrevCondition) ->
%% FailLabel | error
%% We have previously encountered a test instruction that may or
%% may not branch to FailLabel. Therefore we are only allowed
%% to do the shortcut to the same fail label (FailLabel).
shortcut_specific_label([{label,_}|Is], Fail, Prev) ->
shortcut_specific_label(Is, Fail, Prev);
shortcut_specific_label([{select,select_val,R,{f,F},L}|_], Fail, Prev) ->
case shortcut_selectval(L, R, F, Prev) of
Fail -> Fail;
_ -> error
end;
shortcut_specific_label([I|Is], Fail, Prev) ->
case normalize_op(I) of
error ->
error;
{Normalized,Fail} ->
case will_succeed(Prev, Normalized) of
no ->
%% Will branch to FailLabel.
Fail;
yes ->
%% Will definitely never branch.
shortcut_specific_label(Is, Fail, Prev);
maybe ->
%% May branch, but still OK since it will branch
%% to FailLabel.
shortcut_specific_label(Is, Fail, Prev)
end;
{Normalized,_} ->
%% This test instruction will branch to a different
%% fail label, if it branches at all.
case will_succeed(Prev, Normalized) of
yes ->
%% Still OK, since the branch will never be
%% taken.
shortcut_specific_label(Is, Fail, Prev);
no ->
%% Give up. The branch will definitely be taken
%% to a different fail label.
error;
maybe ->
%% Give up. If the branch is taken, it will be
%% to a different fail label.
error
end
end.
%% shortcut_selectval(List, Reg, Fail, PrevCond) -> FailLabel | error
%% Try to shortcut a selectval instruction. A selectval instruction
%% is equivalent to the following instruction sequence:
%%
%% is_ne_exact L1 Reg Value1
%% .
%% .
%% .
%% is_ne_exact LN Reg ValueN
%% jump DefaultFailLabel
%%
shortcut_selectval([Val,{f,Lbl}|T], R, Fail, Prev) ->
case will_succeed(Prev, {'=/=',R,get_literal(Val)}) of
yes -> shortcut_selectval(T, R, Fail, Prev);
no -> Lbl;
maybe -> error
end;
shortcut_selectval([], _, Fail, _) -> Fail.
%% will_succeed(PrevCondition, Condition) -> yes | no | maybe
%% PrevCondition is a condition known to be true. This function
%% will tell whether Condition will succeed.
will_succeed({Op1,Reg,A}, {Op2,Reg,B}) ->
will_succeed_1(Op1, A, Op2, B);
will_succeed({'=:=',Reg,{literal,A}}, {TypeTest,Reg}) ->
case erlang:TypeTest(A) of
false -> no;
true -> yes
end;
will_succeed({_,_,_}, maybe) ->
maybe;
will_succeed({_,_,_}, Test) when is_tuple(Test) ->
maybe.
will_succeed_1('=:=', A, '<', B) ->
if
B =< A -> no;
true -> yes
end;
will_succeed_1('=:=', A, '=<', B) ->
if
B < A -> no;
true -> yes
end;
will_succeed_1('=:=', A, '=:=', B) ->
if
A =:= B -> yes;
true -> no
end;
will_succeed_1('=:=', A, '=/=', B) ->
if
A =:= B -> no;
true -> yes
end;
will_succeed_1('=:=', A, '>=', B) ->
if
B > A -> no;
true -> yes
end;
will_succeed_1('=:=', A, '>', B) ->
if
B >= A -> no;
true -> yes
end;
will_succeed_1('=/=', A, '=/=', B) when A =:= B -> yes;
will_succeed_1('=/=', A, '=:=', B) when A =:= B -> no;
will_succeed_1('<', A, '=:=', B) when B >= A -> no;
will_succeed_1('<', A, '=/=', B) when B >= A -> yes;
will_succeed_1('<', A, '<', B) when B >= A -> yes;
will_succeed_1('<', A, '=<', B) when B > A -> yes;
will_succeed_1('<', A, '>=', B) when B > A -> no;
will_succeed_1('<', A, '>', B) when B >= A -> no;
will_succeed_1('=<', A, '=:=', B) when B > A -> no;
will_succeed_1('=<', A, '=/=', B) when B > A -> yes;
will_succeed_1('=<', A, '<', B) when B > A -> yes;
will_succeed_1('=<', A, '=<', B) when B >= A -> yes;
will_succeed_1('=<', A, '>=', B) when B > A -> no;
will_succeed_1('=<', A, '>', B) when B >= A -> no;
will_succeed_1('>=', A, '=:=', B) when B < A -> no;
will_succeed_1('>=', A, '=/=', B) when B < A -> yes;
will_succeed_1('>=', A, '<', B) when B =< A -> no;
will_succeed_1('>=', A, '=<', B) when B < A -> no;
will_succeed_1('>=', A, '>=', B) when B =< A -> yes;
will_succeed_1('>=', A, '>', B) when B < A -> yes;
will_succeed_1('>', A, '=:=', B) when B =< A -> no;
will_succeed_1('>', A, '=/=', B) when B =< A -> yes;
will_succeed_1('>', A, '<', B) when B =< A -> no;
will_succeed_1('>', A, '=<', B) when B < A -> no;
will_succeed_1('>', A, '>=', B) when B =< A -> yes;
will_succeed_1('>', A, '>', B) when B < A -> yes;
will_succeed_1(_, _, _, _) -> maybe.
%% normalize_op(Instruction) -> {Normalized,FailLabel} | error
%% Normalized = {Operator,Register,Literal} |
%% {TypeTest,Register} |
%% maybe
%% Operation = '<' | '=<' | '=:=' | '=/=' | '>=' | '>'
%% TypeTest = is_atom | is_integer ...
%% Literal = {literal,Term}
%%
%% Normalize a relational operator to facilitate further
%% comparisons between operators. Always make the register
%% operand the first operand. Thus the following instruction:
%%
%% {test,is_ge,{f,99},{integer,13},{x,0}}
%%
%% will be normalized to:
%%
%% {'=<',{x,0},{literal,13}}
%%
%% NOTE: Bit syntax test instructions are scary. They may change the
%% state of match contexts and update registers, so we don't dare
%% mess with them.
normalize_op({test,is_ge,{f,Fail},Ops}) ->
normalize_op_1('>=', Ops, Fail);
normalize_op({test,is_lt,{f,Fail},Ops}) ->
normalize_op_1('<', Ops, Fail);
normalize_op({test,is_eq_exact,{f,Fail},Ops}) ->
normalize_op_1('=:=', Ops, Fail);
normalize_op({test,is_ne_exact,{f,Fail},Ops}) ->
normalize_op_1('=/=', Ops, Fail);
normalize_op({test,is_nil,{f,Fail},[R]}) ->
normalize_op_1('=:=', [R,nil], Fail);
normalize_op({test,Op,{f,Fail},[R]}) ->
case erl_internal:new_type_test(Op, 1) of
true -> {{Op,R},Fail};
false -> {maybe,Fail}
end;
normalize_op({test,_,{f,Fail},_}=I) ->
case beam_utils:is_pure_test(I) of
true -> {maybe,Fail};
false -> error
end;
normalize_op(_) ->
error.
normalize_op_1(Op, [Op1,Op2], Fail) ->
case {get_literal(Op1),get_literal(Op2)} of
{error,error} ->
%% Both operands are registers.
{maybe,Fail};
{error,Lit} ->
{{Op,Op1,Lit},Fail};
{Lit,error} ->
{{turn_op(Op),Op2,Lit},Fail};
{_,_} ->
%% Both operands are literals. Can probably only
%% happen if the Core Erlang optimizations passes were
%% turned off, so don't bother trying to do something
%% smart here.
{maybe,Fail}
end.
turn_op('<') -> '>';
turn_op('>=') -> '=<';
turn_op('=:='=Op) -> Op;
turn_op('=/='=Op) -> Op.
negate_op('>=') -> '<';
negate_op('<') -> '>=';
negate_op('=<') -> '>';
negate_op('>') -> '=<';
negate_op('=:=') -> '=/=';
negate_op('=/=') -> '=:='.
get_literal({atom,Val}) ->
{literal,Val};
get_literal({integer,Val}) ->
{literal,Val};
get_literal({float,Val}) ->
{literal,Val};
get_literal(nil) ->
{literal,[]};
get_literal({literal,_}=Lit) ->
Lit;
get_literal({_,_}) -> error.
%%%
%%% Removing stores to Y registers is not always safe
%%% if there is an instruction that causes an exception
%%% within a catch. In practice, there are few or no
%%% opportunities for removing stores to Y registers anyway
%%% if sys_core_fold has been run.
%%%
is_killed_at({x,_}=Reg, Lbl, D) ->
beam_utils:is_killed_at(Reg, Lbl, D);
is_killed_at({y,_}, _, _) ->
false.
|