1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Converts intermediate assembly code to final format.
-module(beam_flatten).
-export([module/2]).
-import(lists, [reverse/1,reverse/2]).
module({Mod,Exp,Attr,Fs,Lc}, _Opt) ->
{ok,{Mod,Exp,Attr,[function(F) || F <- Fs],Lc}}.
function({function,Name,Arity,CLabel,Is0}) ->
Is1 = block(Is0),
Is = opt(Is1),
{function,Name,Arity,CLabel,Is}.
block(Is) ->
block(Is, []).
block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc));
block([I|Is], Acc) -> block(Is, [I|Acc]);
block([], Acc) -> reverse(Acc).
norm_block([{set,[],[],{alloc,R,Alloc}}|Is], Acc0) ->
case insert_alloc_in_bs_init(Acc0, Alloc) of
impossible ->
norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0));
Acc ->
norm_block(Is, Acc)
end;
norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]);
norm_block([], Acc) -> Acc.
norm({set,[D],As,{bif,N,F}}) -> {bif,N,F,As,D};
norm({set,[D],As,{alloc,R,{gc_bif,N,F}}}) -> {gc_bif,N,F,R,As,D};
norm({set,[D],[],init}) -> {init,D};
norm({set,[D],[S],move}) -> {move,S,D};
norm({set,[D],[S],fmove}) -> {fmove,S,D};
norm({set,[D],[S],fconv}) -> {fconv,S,D};
norm({set,[D],[S1,S2],put_list}) -> {put_list,S1,S2,D};
norm({set,[D],[],{put_tuple,A}}) -> {put_tuple,A,D};
norm({set,[],[S],put}) -> {put,S};
norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D};
norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I};
norm({set,[D1,D2],[S],get_list}) -> {get_list,S,D1,D2};
norm({set,[D],[S|Puts],{alloc,R,{put_map,Op,F}}}) ->
{put_map,F,Op,S,D,R,{list,Puts}};
norm({set,Gets,[S],{get_map_elements,F}}) ->
{get_map_elements,F,S,{list,Gets}};
norm({set,[],[],remove_message}) -> remove_message;
norm({set,[],[],fclearerror}) -> fclearerror;
norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}}.
norm_allocate({_Zero,nostack,Nh,[]}, Regs) ->
[{test_heap,Nh,Regs}];
norm_allocate({zero,0,Nh,[]}, Regs) ->
norm_allocate({nozero,0,Nh,[]}, Regs);
norm_allocate({zero,Ns,0,[]}, Regs) ->
[{allocate_zero,Ns,Regs}];
norm_allocate({zero,Ns,Nh,[]}, Regs) ->
[{allocate_heap_zero,Ns,Nh,Regs}];
norm_allocate({nozero,Ns,0,Inits}, Regs) ->
[{allocate,Ns,Regs}|Inits];
norm_allocate({nozero,Ns,Nh,Inits}, Regs) ->
[{allocate_heap,Ns,Nh,Regs}|Inits].
%% insert_alloc_in_bs_init(ReverseInstructionStream, AllocationInfo) ->
%% impossible | ReverseInstructionStream'
%% A bs_init/6 instruction should not be followed by a test heap instruction.
%% Given the AllocationInfo from a test heap instruction, merge the
%% allocation amounts into the previous bs_init/6 instruction (if any).
%%
insert_alloc_in_bs_init([{bs_put,_,_,_}=I|Is], Alloc) ->
%% The instruction sequence ends with an bs_put/4 instruction.
%% We'll need to search backwards for the bs_init/6 instruction.
insert_alloc_1(Is, Alloc, [I]);
insert_alloc_in_bs_init(_, _) -> impossible.
insert_alloc_1([{bs_init=Op,Fail,Info0,Live,Ss,Dst}|Is],
{_,nostack,Ws2,[]}, Acc) when is_integer(Live) ->
%% The number of extra heap words is always in the second position
%% in the Info tuple.
Ws1 = element(2, Info0),
Al = beam_utils:combine_heap_needs(Ws1, Ws2),
Info = setelement(2, Info0, Al),
I = {Op,Fail,Info,Live,Ss,Dst},
reverse(Acc, [I|Is]);
insert_alloc_1([{bs_put,_,_,_}=I|Is], Alloc, Acc) ->
insert_alloc_1(Is, Alloc, [I|Acc]).
%% opt(Is0) -> Is
%% Simple peep-hole optimization to move a {move,Any,{x,0}} past
%% any kill up to the next call instruction. (To give the loader
%% an opportunity to combine the 'move' and the 'call' instructions.)
%%
opt(Is) ->
opt_1(Is, []).
opt_1([{move,_,{x,0}}=I|Is0], Acc0) ->
case move_past_kill(Is0, I, Acc0) of
impossible -> opt_1(Is0, [I|Acc0]);
{Is,Acc} -> opt_1(Is, Acc)
end;
opt_1([I|Is], Acc) ->
opt_1(Is, [I|Acc]);
opt_1([], Acc) -> reverse(Acc).
move_past_kill([{kill,Src}|_], {move,Src,_}, _) ->
impossible;
move_past_kill([{kill,_}=I|Is], Move, Acc) ->
move_past_kill(Is, Move, [I|Acc]);
move_past_kill([{trim,N,_}=I|Is], {move,Src,Dst}=Move, Acc) ->
case Src of
{y,Y} when Y < N-> impossible;
{y,Y} -> {Is,[{move,{y,Y-N},Dst},I|Acc]};
_ -> {Is,[Move,I|Acc]}
end;
move_past_kill(Is, Move, Acc) ->
{Is,[Move|Acc]}.
|