aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_ssa_dead.erl
blob: 88767456a3b713af0e70928d92d031b6f609a214 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Dead code is code that is executed but has no effect. This
%% optimization pass either removes dead code or jumps around it,
%% potentially making it unreachable so that it can be dropped
%% the next time beam_ssa:linearize/1 is called.
%%

-module(beam_ssa_dead).
-export([opt/1]).

-include("beam_ssa.hrl").
-import(lists, [append/1,keymember/3,last/1,member/2,
                takewhile/2,reverse/1]).

-type used_vars() :: #{beam_ssa:label():=ordsets:ordset(beam_ssa:var_name())}.

-type basic_type_test() :: atom() | {'is_tagged_tuple',pos_integer(),atom()}.
-type type_test() :: basic_type_test() | {'not',basic_type_test()}.
-type op_name() :: atom().
-type basic_rel_op() :: {op_name(),beam_ssa:b_var(),beam_ssa:value()} |
                         {basic_type_test(),beam_ssa:value()}.
-type rel_op() :: {op_name(),beam_ssa:b_var(),beam_ssa:value()} |
                  {type_test(),beam_ssa:value()}.

-record(st,
        {bs :: beam_ssa:block_map(),
         us :: used_vars(),
         skippable :: #{beam_ssa:label():='true'},
         rel_op=none :: 'none' | rel_op(),
         target=any :: 'any' | 'one_way' | beam_ssa:label()
        }).

-spec opt([{Label0,Block0}]) -> [{Label,Block}] when
      Label0 :: beam_ssa:label(),
      Block0 :: beam_ssa:b_blk(),
      Label :: beam_ssa:label(),
      Block :: beam_ssa:b_blk().

opt(Linear) ->
    {Used,Skippable} = used_vars(Linear),
    Blocks0 = maps:from_list(Linear),
    St0 = #st{bs=Blocks0,us=Used,skippable=Skippable},
    St = shortcut_opt(St0),
    #st{bs=Blocks} = combine_eqs(St#st{us=#{}}),
    beam_ssa:linearize(Blocks).

%%%
%%% Shortcut br/switch targets.
%%%
%%% A br/switch may branch to another br/switch that in turn always
%%% branches to another target. Rewrite br/switch to refer to the
%%% ultimate targets directly. That will save execution time, but
%%% could also reduce the size of the code if some of the original
%%% targets become unreachable and be deleted.
%%%
%%% When rewriting branches, we must be careful not to skip instructions
%%% that have side effects or that bind variables that will be used
%%% at the new target.
%%%
%%% We must also avoid branching to phi nodes.  The reason is
%%% twofold. First, we might create a critical edge which is strictly
%%% forbidden. Second, there will be a branch from a block that is not
%%% listed in the list of predecessors in the phi node.  Those
%%% limitations could probably be overcome, but it is not clear how
%%% much that would improve the code.
%%%

shortcut_opt(#st{bs=Blocks}=St) ->
    %% Processing the blocks in reverse post order seems to give more
    %% opportunities for optimizations compared to post order. (Based on
    %% running scripts/diffable with both PO and RPO and looking at
    %% the diff.)
    %%
    %% Unfortunately, processing the blocks in reverse post order
    %% potentially makes the time complexity quadratic or even cubic if
    %% the ordset of unset variables grows large, instead of
    %% linear for post order processing. We try to still get reasonable
    %% compilation times by optimizations that will keep the constant
    %% factor as low as possible, and we try to avoid the cubic time
    %% complexity by trying to keep the set of unset variables as small
    %% as possible.

    Ls = beam_ssa:rpo(Blocks),
    shortcut_opt(Ls, #{}, St).

shortcut_opt([L|Ls], Bs, #st{bs=Blocks0}=St) ->
    #b_blk{is=Is,last=Last0} = Blk0 = get_block(L, St),
    case shortcut_terminator(Last0, Is, L, Bs, St) of
        Last0 ->
            %% No change. No need to update the block.
            shortcut_opt(Ls, Bs, St);
        Last ->
            %% The terminator was simplified in some way.
            %% Update the block.
            Blk = Blk0#b_blk{last=Last},
            Blocks = Blocks0#{L=>Blk},
            shortcut_opt(Ls, Bs, St#st{bs=Blocks})
    end;
shortcut_opt([], _, St) -> St.

shortcut_terminator(#b_br{bool=#b_literal{val=true},succ=Succ0},
                    _Is, From, Bs, St0) ->
    St = St0#st{rel_op=none},
    shortcut(Succ0, From, Bs, St);
shortcut_terminator(#b_br{bool=#b_var{}=Bool,succ=Succ0,fail=Fail0}=Br,
                    Is, From, Bs, St0) ->
    St = St0#st{target=one_way},
    RelOp = get_rel_op(Bool, Is),
    SuccBs = bind_var(Bool, #b_literal{val=true}, Bs),
    BrSucc = shortcut(Succ0, From, SuccBs, St#st{rel_op=RelOp}),
    FailBs = bind_var(Bool, #b_literal{val=false}, Bs),
    BrFail = shortcut(Fail0, From, FailBs, St#st{rel_op=invert_op(RelOp)}),
    case {BrSucc,BrFail} of
        {#b_br{bool=#b_literal{val=true},succ=Succ},
         #b_br{bool=#b_literal{val=true},succ=Fail}}
          when Succ =/= Succ0; Fail =/= Fail0 ->
            %% One or both of the targets were cut short.
            beam_ssa:normalize(Br#b_br{succ=Succ,fail=Fail});
        {_,_} ->
            %% No change.
            Br
    end;
shortcut_terminator(#b_switch{arg=Bool,list=List0}=Sw, _Is, From, Bs, St) ->
    List = shortcut_switch(List0, Bool, From, Bs, St),
    beam_ssa:normalize(Sw#b_switch{list=List});
shortcut_terminator(Last, _Is, _Bs, _From, _St) ->
    Last.

shortcut_switch([{Lit,L0}|T], Bool, From, Bs, St0) ->
    RelOp = {'=:=',Bool,Lit},
    St = St0#st{rel_op=RelOp},
    #b_br{bool=#b_literal{val=true},succ=L} =
        shortcut(L0, From, bind_var(Bool, Lit, Bs), St#st{target=one_way}),
    [{Lit,L}|shortcut_switch(T, Bool, From, Bs, St0)];
shortcut_switch([], _, _, _, _) -> [].

shortcut(L, From, Bs, St) ->
    shortcut_1(L, From, Bs, ordsets:new(), St).

shortcut_1(L, From, Bs0, UnsetVars0, St) ->
    case shortcut_2(L, From, Bs0, UnsetVars0, St) of
        none ->
            %% No more shortcuts found. Package up the previous
            %% label in an unconditional branch.
            #b_br{bool=#b_literal{val=true},succ=L,fail=L};
        {#b_br{bool=#b_var{}}=Br,_,_} ->
            %% This is a two-way branch. We can't do any better.
            Br;
        {#b_br{bool=#b_literal{val=true},succ=Succ},Bs,UnsetVars} ->
            %% This is a safe `br`, but try to find a better one.
            shortcut_1(Succ, L, Bs, UnsetVars, St)
    end.

%% Try to shortcut this block, branching to a successor.
shortcut_2(L, From, Bs0, UnsetVars0, St) ->
    #b_blk{is=Is,last=Last} = get_block(L, St),
    case eval_is(Is, From, Bs0, St) of
        none ->
            %% It is not safe to avoid this block because it
            %% has instructions with potential side effects.
            none;
        Bs ->
            %% The instructions in the block (if any) don't
            %% have any side effects and can be skipped.
            %% Evaluate the terminator.
            case eval_terminator(Last, Bs, St) of
                none ->
                    %% The terminator is not suitable (could be
                    %% because it is a switch that can't be simplified
                    %% or it is a ret instruction).
                    none;
                #b_br{}=Br ->
                    %% We have a potentially suitable br.
                    %% Now update the set of variables that will never
                    %% be set if this block will be skipped.
                    case update_unset_vars(L, Is, Br, UnsetVars0, St) of
                        unsafe ->
                            %% It is unsafe to use this br,
                            %% because it refers to a variable defined
                            %% in this block.
                            shortcut_unsafe_br(Br, L, Bs, UnsetVars0, St);
                        UnsetVars ->
                            %% Continue checking whether this br is
                            %% suitable.
                            shortcut_test_br(Br, L, Bs, UnsetVars, St)
                    end
            end
    end.

shortcut_test_br(Br, From, Bs, UnsetVars, St) ->
    case is_br_safe(UnsetVars, Br, St) of
        false ->
            shortcut_unsafe_br(Br, From, Bs, UnsetVars, St);
        true ->
            shortcut_safe_br(Br, From, Bs, UnsetVars, St)
    end.

shortcut_unsafe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) ->
    %% Branching using this `br` is unsafe, either because it
    %% is an unconditional branch to a phi node, or because
    %% one or more of the variables that are not set will be
    %% used. Try to follow branches of this `br`, to find a
    %% safe `br`.
    case Br of
        #b_br{bool=#b_literal{val=true},succ=L} ->
            case Target of
                L ->
                    %% We have reached the forced target, and it
                    %% is unsafe. Give up.
                    none;
                _ ->
                    %% Try following this branch to see whether it
                    %% leads to a safe `br`.
                    shortcut_2(L, From, Bs, UnsetVars, St)
            end;
        #b_br{bool=#b_var{},succ=Succ,fail=Fail} ->
            case {Succ,Fail} of
                {L,Target} ->
                    %% The failure label is the forced target.
                    %% Try following the success label to see
                    %% whether it also ultimately ends up at the
                    %% forced target.
                    shortcut_2(L, From, Bs, UnsetVars, St);
                {Target,L} ->
                    %% The success label is the forced target.
                    %% Try following the failure label to see
                    %% whether it also ultimately ends up at the
                    %% forced target.
                    shortcut_2(L, From, Bs, UnsetVars, St);
                {_,_} ->
                    case Target of
                        any ->
                            %% This two-way branch is unsafe. Try
                            %% reducing it to a one-way branch.
                            shortcut_two_way(Br, From, Bs, UnsetVars, St);
                        one_way ->
                            %% This two-way branch is unsafe. Try
                            %% reducing it to a one-way branch.
                            shortcut_two_way(Br, From, Bs, UnsetVars, St);
                        _ when is_integer(Target) ->
                            %% This two-way branch is unsafe, and
                            %% there already is a forced target.
                            %% Give up.
                            none
                    end
            end
    end.

shortcut_safe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) ->
    %% This `br` instruction is safe. It does not branch to a phi
    %% node, and all variables that will be used are guaranteed to be
    %% defined.
    case Br of
        #b_br{bool=#b_literal{val=true},succ=L} ->
            %% This is a one-way branch.
            case Target of
                any ->
                    %% No forced target. Success!
                    {Br,Bs,UnsetVars};
                one_way ->
                    %% The target must be a one-way branch, which this
                    %% `br` is. Success!
                    {Br,Bs,UnsetVars};
                L when is_integer(Target) ->
                    %% The forced target is L. Success!
                    {Br,Bs,UnsetVars};
                _ when is_integer(Target) ->
                    %% Wrong forced target. Try following this branch
                    %% to see if it ultimately ends up at the forced
                    %% target.
                    shortcut_2(L, From, Bs, UnsetVars, St)
            end;
        #b_br{bool=#b_var{}} ->
            %% This is a two-way branch.
            if
                Target =:= any; Target =:= one_way ->
                    %% No specific forced target. Try to reduce the
                    %% two-way branch to an one-way branch.
                    case shortcut_two_way(Br, From, Bs, UnsetVars, St) of
                        none when Target =:= any ->
                            %% This `br` can't be reduced to a one-way
                            %% branch. Return the `br` as-is.
                            {Br,Bs,UnsetVars};
                        none when Target =:= one_way ->
                            %% This `br` can't be reduced to a one-way
                            %% branch. The caller wants a one-way
                            %% branch.  Give up.
                            none;
                        {_,_,_}=Res ->
                            %% This `br` was successfully reduced to a
                            %% one-way branch.
                            Res
                    end;
                is_integer(Target) ->
                    %% There is a forced target, which can't
                    %% be reached because this `br` is a two-way
                    %% branch. Give up.
                    none
            end
    end.

update_unset_vars(L, Is, Br, UnsetVars, #st{skippable=Skippable}) ->
    case is_map_key(L, Skippable) of
        true ->
            %% None of the variables used in this block are used in
            %% the successors. Thus, there is no need to add the
            %% variables to the set of unset variables.
            case Br of
                #b_br{bool=#b_var{}=Bool} ->
                    case keymember(Bool, #b_set.dst, Is) of
                        true ->
                            %% Bool is a variable defined in this
                            %% block. Using the br instruction from
                            %% this block (and skipping the body of
                            %% the block) is unsafe.
                            unsafe;
                        false ->
                            %% Bool is either a variable not defined
                            %% in this block or a literal. Adding it
                            %% to the UnsetVars set would not change
                            %% the outcome of the tests in
                            %% is_br_safe/2.
                            UnsetVars
                    end;
                #b_br{} ->
                    UnsetVars
            end;
        false ->
            %% Some variables defined in this block are used by
            %% successors. We must update the set of unset variables.
            SetInThisBlock = [V || #b_set{dst=V} <- Is],
            ordsets:union(UnsetVars, ordsets:from_list(SetInThisBlock))
    end.

shortcut_two_way(#b_br{succ=Succ,fail=Fail}, From, Bs0, UnsetVars0, St0) ->
    case shortcut_2(Succ, From, Bs0, UnsetVars0, St0#st{target=Fail}) of
        {#b_br{bool=#b_literal{},succ=Fail},_,_}=Res ->
            Res;
        none ->
            St = St0#st{target=Succ},
            case shortcut_2(Fail, From, Bs0, UnsetVars0, St) of
                {#b_br{bool=#b_literal{},succ=Succ},_,_}=Res ->
                    Res;
                none ->
                    none
            end
    end.

get_block(L, St) ->
    #st{bs=#{L:=Blk}} = St,
    Blk.

is_br_safe(UnsetVars, Br, #st{us=Us}=St) ->
    %% Check that none of the unset variables will be used.
    case Br of
        #b_br{bool=#b_var{}=V,succ=Succ,fail=Fail} ->
            #{Succ:=Used0,Fail:=Used1} = Us,

            %% A two-way branch never branches to a phi node, so there
            %% is no need to check for phi nodes here.
             not member(V, UnsetVars) andalso
                ordsets:is_disjoint(Used0, UnsetVars) andalso
                ordsets:is_disjoint(Used1, UnsetVars);
        #b_br{succ=Same,fail=Same} ->
            %% An unconditional branch must not jump to
            %% a phi node.
            not is_forbidden(Same, St) andalso
                ordsets:is_disjoint(map_get(Same, Us), UnsetVars)
    end.

is_forbidden(L, St) ->
    case get_block(L, St) of
        #b_blk{is=[#b_set{op=phi}|_]} -> true;
        #b_blk{is=[#b_set{op=peek_message}|_]} -> true;
        #b_blk{} -> false
    end.


%% Evaluate the instructions in the block.
%% Return the updated bindings, or 'none' if there is
%% any instruction with potential side effects.

eval_is([#b_set{op=phi,dst=Dst,args=Args}|Is], From, Bs0, St) ->
    Val = get_phi_arg(Args, From),
    Bs = bind_var(Dst, Val, Bs0),
    eval_is(Is, From, Bs, St);
eval_is([#b_set{op={bif,_},dst=Dst}=I0|Is], From, Bs, St) ->
    I = sub(I0, Bs),
    case eval_bif(I, St) of
        #b_literal{}=Val ->
            eval_is(Is, From, bind_var(Dst, Val, Bs), St);
        none ->
            eval_is(Is, From, Bs, St)
    end;
eval_is([#b_set{op=Op,dst=Dst}=I|Is], From, Bs, St)
  when Op =:= is_tagged_tuple; Op =:= is_nonempty_list ->
    #b_set{args=Args} = sub(I, Bs),
    case eval_rel_op(Op, Args, St) of
        #b_literal{}=Val ->
            eval_is(Is, From, bind_var(Dst, Val, Bs), St);
        none ->
            eval_is(Is, From, Bs, St)
    end;
eval_is([#b_set{}=I|Is], From, Bs, St) ->
    case beam_ssa:no_side_effect(I) of
        true ->
            %% This instruction has no side effects. It can
            %% safely be omitted.
            eval_is(Is, From, Bs, St);
        false ->
            %% This instruction may have some side effect.
            %% It is not safe to avoid this instruction.
            none
    end;
eval_is([], _From, Bs, _St) -> Bs.

get_phi_arg([{Val,From}|_], From) -> Val;
get_phi_arg([_|As], From) -> get_phi_arg(As, From).

eval_terminator(#b_br{bool=#b_var{}=Bool}=Br, Bs, _St) ->
    case get_value(Bool, Bs) of
        #b_literal{val=Val}=Lit ->
            case is_boolean(Val) of
                true ->
                    beam_ssa:normalize(Br#b_br{bool=Lit});
                false ->
                    %% Non-boolean literal. This means that this `br`
                    %% terminator will never actually be reached with
                    %% these bindings. (There must be a previous two-way
                    %% branch that branches the other way when Bool
                    %% is bound to a non-boolean literal.)
                    none
            end;
        #b_var{}=Var ->
            beam_ssa:normalize(Br#b_br{bool=Var})
    end;
eval_terminator(#b_br{bool=#b_literal{}}=Br, _Bs, _St) ->
    beam_ssa:normalize(Br);
eval_terminator(#b_switch{arg=Arg,fail=Fail,list=List}=Sw, Bs, St) ->
    case get_value(Arg, Bs) of
        #b_literal{}=Val ->
            %% Literal argument. Simplify to a `br`.
            beam_ssa:normalize(Sw#b_switch{arg=Val});
        #b_var{} ->
            %% Try optimizing the switch.
            case eval_switch(List, Arg, St, Fail) of
                none ->
                    none;
                To when is_integer(To) ->
                    %% Either one of the values in the switch
                    %% matched a previous value in a '=:=' test, or
                    %% none of the values matched a previous test.
                    #b_br{bool=#b_literal{val=true},succ=To,fail=To}
            end
    end;
eval_terminator(#b_ret{}, _Bs, _St) ->
    none.

eval_switch(List, Arg, #st{rel_op={_,Arg,_}=PrevOp}, Fail) ->
    %% There is a previous relational operator testing the same variable.
    %% Optimization may be possible.
    eval_switch_1(List, Arg, PrevOp, Fail);
eval_switch(_, _, _, _) ->
    %% There is either no previous relational operator, or it tests
    %% a different variable. Nothing to optimize.
    none.

eval_switch_1([{Lit,Lbl}|T], Arg, PrevOp, Fail) ->
    RelOp = {'=:=',Arg,Lit},
    case will_succeed(PrevOp, RelOp) of
        yes ->
            %% Success. This branch will always be taken.
            Lbl;
        no ->
            %% This branch will never be taken.
            eval_switch_1(T, Arg, PrevOp, Fail);
        maybe ->
            %% This label could be reached.
            eval_switch_1(T, Arg, PrevOp, none)
    end;
eval_switch_1([], _Arg, _PrevOp, Fail) ->
    %% Fail is now either the failure label or 'none'.
    Fail.

bind_var(Var, Val0, Bs) ->
    Val = get_value(Val0, Bs),
    Bs#{Var=>Val}.

get_value(#b_var{}=Var, Bs) ->
    case Bs of
        #{Var:=Val} -> get_value(Val, Bs);
        #{} -> Var
    end;
get_value(#b_literal{}=Lit, _Bs) -> Lit.

eval_bif(#b_set{op={bif,Bif},args=Args}, St) ->
    Arity = length(Args),
    case erl_bifs:is_pure(erlang, Bif, Arity) of
        false ->
            none;
        true ->
            case get_lit_args(Args) of
                none ->
                    %% Not literal arguments. Try to evaluate
                    %% it based on a previous relational operator.
                    eval_rel_op({bif,Bif}, Args, St);
                LitArgs ->
                    try apply(erlang, Bif, LitArgs) of
                        Val -> #b_literal{val=Val}
                    catch
                        error:_ -> none
                    end
            end
    end.

get_lit_args([#b_literal{val=Lit1}]) ->
    [Lit1];
get_lit_args([#b_literal{val=Lit1},
              #b_literal{val=Lit2}]) ->
    [Lit1,Lit2];
get_lit_args([#b_literal{val=Lit1},
              #b_literal{val=Lit2},
              #b_literal{val=Lit3}]) ->
    [Lit1,Lit2,Lit3];
get_lit_args(_) -> none.

%%%
%%% Handling of relational operators.
%%%

get_rel_op(Bool, [_|_]=Is) ->
    case last(Is) of
        #b_set{op=Op,dst=Bool,args=Args} ->
            normalize_op(Op, Args);
        #b_set{} ->
            none
    end;
get_rel_op(_, []) -> none.

%% normalize_op(Instruction) -> {Normalized,FailLabel} | error
%%    Normalized = {Operator,Variable,Variable|Literal} |
%%                 {TypeTest,Variable}
%%    Operation = '<' | '=<' | '=:=' | '=/=' | '>=' | '>'
%%    TypeTest = is_atom | is_integer ...
%%    Variable = #b_var{}
%%    Literal = #b_literal{}
%%
%%  Normalize a relational operator to facilitate further
%%  comparisons between operators. Always make the register
%%  operand the first operand. If there are two registers,
%%  order the registers in lexical order.
%%
%%  For example, this instruction:
%%
%%    #b_set{op={bif,=<},args=[#b_literal{}, #b_var{}}
%%
%%  will be normalized to:
%%
%%    {'=<',#b_var{},#b_literal{}}

-spec normalize_op(Op, Args) -> NormalizedOp | 'none' when
      Op :: beam_ssa:op(),
      Args :: [beam_ssa:value()],
      NormalizedOp :: basic_rel_op().

normalize_op(is_tagged_tuple, [Arg,#b_literal{val=Size},#b_literal{val=Tag}])
  when is_integer(Size), is_atom(Tag) ->
    {{is_tagged_tuple,Size,Tag},Arg};
normalize_op(is_nonempty_list, [Arg]) ->
    {is_nonempty_list,Arg};
normalize_op({bif,Bif}, [Arg]) ->
    case erl_internal:new_type_test(Bif, 1) of
        true -> {Bif,Arg};
        false -> none
    end;
normalize_op({bif,Bif}, [_,_]=Args) ->
    case erl_internal:comp_op(Bif, 2) of
        true ->
            normalize_op_1(Bif, Args);
        false ->
            none
    end;
normalize_op(_, _) -> none.

normalize_op_1(Bif, Args) ->
    case Args of
        [#b_literal{}=Arg1,#b_var{}=Arg2] ->
            {turn_op(Bif),Arg2,Arg1};
        [#b_var{}=Arg1,#b_literal{}=Arg2] ->
            {Bif,Arg1,Arg2};
        [#b_var{}=A,#b_var{}=B] ->
            if A < B -> {Bif,A,B};
               true -> {turn_op(Bif),B,A}
            end;
        [#b_literal{},#b_literal{}] ->
            none
    end.

-spec invert_op(basic_rel_op() | 'none') -> rel_op() | 'none'.

invert_op({Op,Arg1,Arg2}) ->
    {invert_op_1(Op),Arg1,Arg2};
invert_op({TypeTest,Arg}) ->
    {{'not',TypeTest},Arg};
invert_op(none) -> none.

invert_op_1('>=') -> '<';
invert_op_1('<') -> '>=';
invert_op_1('=<') -> '>';
invert_op_1('>') -> '=<';
invert_op_1('=:=') -> '=/=';
invert_op_1('=/=') -> '=:=';
invert_op_1('==') -> '/=';
invert_op_1('/=') -> '=='.

turn_op('<') -> '>';
turn_op('=<') -> '>=';
turn_op('>') -> '<';
turn_op('>=') -> '=<';
turn_op('=:='=Op) -> Op;
turn_op('=/='=Op) -> Op;
turn_op('=='=Op) -> Op;
turn_op('/='=Op) -> Op.

eval_rel_op(_Bif, _Args, #st{rel_op=none}) ->
    none;
eval_rel_op(Bif, Args, #st{rel_op=Prev}) ->
    case normalize_op(Bif, Args) of
        none ->
            none;
        RelOp ->
            case will_succeed(Prev, RelOp) of
                yes -> #b_literal{val=true};
                no -> #b_literal{val=false};
                maybe -> none
            end
    end.

%% will_succeed(PrevCondition, Condition) -> yes | no | maybe
%%  PrevCondition is a condition known to be true. This function
%%  will tell whether Condition will succeed.

will_succeed({_Op,_Var,_Value}=Same, {_Op,_Var,_Value}=Same) ->
    %% Repeated test.
    yes;
will_succeed({Op1,Var,#b_literal{val=A}}, {Op2,Var,#b_literal{val=B}}) ->
    will_succeed_1(Op1, A, Op2, B);
will_succeed({Op1,Var,#b_var{}=A}, {Op2,Var,#b_var{}=B}) ->
    will_succeed_vars(Op1, A, Op2, B);
will_succeed({'=:=',Var,#b_literal{val=A}}, {TypeTest,Var}) ->
    eval_type_test(TypeTest, A);
will_succeed({_,_}=Same, {_,_}=Same) ->
    %% Repeated type test.
    yes;
will_succeed({Test1,Var}, {Test2,Var}) ->
    will_succeed_test(Test1, Test2);
will_succeed({_,_}, {_,_}) ->
    maybe;
will_succeed({_,_}, {_,_,_}) ->
    maybe;
will_succeed({_,_,_}, {_,_}) ->
    maybe;
will_succeed({_,_,_}, {_,_,_}) ->
    maybe.

will_succeed_test({'not',Test1}, Test2) ->
    case Test1 =:= Test2 of
        true -> no;
        false -> maybe
    end;
will_succeed_test(is_tuple, {is_tagged_tuple,_,_}) ->
    maybe;
will_succeed_test({is_tagged_tuple,_,_}, is_tuple) ->
    yes;
will_succeed_test(is_list, is_nonempty_list) ->
    maybe;
will_succeed_test(is_nonempty_list, is_list) ->
    yes;
will_succeed_test(_T1, _T2) ->
    maybe.

will_succeed_1('=:=', A, '<', B) ->
    if
	B =< A -> no;
	true -> yes
    end;
will_succeed_1('=:=', A, '=<', B) ->
    if
	B < A -> no;
	true -> yes
    end;
will_succeed_1('=:=', A, '=:=', B) when A =/= B ->
    no;
will_succeed_1('=:=', A, '=/=', B) ->
    if
	A =:= B -> no;
	true -> yes
    end;
will_succeed_1('=:=', A, '>=', B) ->
    if
	B > A -> no;
	true -> yes
    end;
will_succeed_1('=:=', A, '>', B) ->
    if
	B >= A -> no;
	true -> yes
    end;

will_succeed_1('=/=', A, '=:=', B) when A =:= B -> no;

will_succeed_1('<', A, '=:=', B)  when B >= A -> no;
will_succeed_1('<', A, '=/=', B)  when B >= A -> yes;
will_succeed_1('<', A, '<',   B)  when B >= A -> yes;
will_succeed_1('<', A, '=<',  B)  when B >= A -> yes;
will_succeed_1('<', A, '>=',  B)  when B >= A -> no;
will_succeed_1('<', A, '>',   B)  when B >= A -> no;

will_succeed_1('=<', A, '=:=', B) when B > A  -> no;
will_succeed_1('=<', A, '=/=', B) when B > A  -> yes;
will_succeed_1('=<', A, '<',   B) when B > A  -> yes;
will_succeed_1('=<', A, '=<',  B) when B >= A -> yes;
will_succeed_1('=<', A, '>=',  B) when B > A  -> no;
will_succeed_1('=<', A, '>',   B) when B >= A -> no;

will_succeed_1('>=', A, '=:=', B) when B < A  -> no;
will_succeed_1('>=', A, '=/=', B) when B < A  -> yes;
will_succeed_1('>=', A, '<',   B) when B =< A -> no;
will_succeed_1('>=', A, '=<',  B) when B < A  -> no;
will_succeed_1('>=', A, '>=',  B) when B =< A -> yes;
will_succeed_1('>=', A, '>',   B) when B < A  -> yes;

will_succeed_1('>', A, '=:=', B)  when B =< A -> no;
will_succeed_1('>', A, '=/=', B)  when B =< A -> yes;
will_succeed_1('>', A, '<',   B)  when B =< A -> no;
will_succeed_1('>', A, '=<',  B)  when B =< A -> no;
will_succeed_1('>', A, '>=',  B)  when B =< A -> yes;
will_succeed_1('>', A, '>',   B)  when B =< A -> yes;

will_succeed_1('==', A, '==', B) ->
    if
	A == B -> yes;
	true -> no
    end;
will_succeed_1('==', A, '/=', B) ->
    if
	A == B -> no;
	true -> yes
    end;
will_succeed_1('/=', A, '/=', B) when A == B -> yes;
will_succeed_1('/=', A, '==', B) when A == B -> no;

will_succeed_1(_, _, _, _) -> maybe.

will_succeed_vars('=/=', Val, '=:=', Val) -> no;
will_succeed_vars('=:=', Val, '=/=', Val) -> no;
will_succeed_vars('=:=', Val, '>=',  Val) -> yes;
will_succeed_vars('=:=', Val, '=<',  Val) -> yes;

will_succeed_vars('/=', Val1, '==', Val2) when Val1 == Val2 -> no;
will_succeed_vars('==', Val1, '/=', Val2) when Val1 == Val2 -> no;

will_succeed_vars(_, _, _, _) -> maybe.

eval_type_test(Test, Arg) ->
    case eval_type_test_1(Test, Arg) of
        true -> yes;
        false -> no
    end.

eval_type_test_1(is_nonempty_list, Arg) ->
    case Arg of
        [_|_] -> true;
        _ -> false
    end;
eval_type_test_1({is_tagged_tuple,Sz,Tag}, Arg) ->
    if
        tuple_size(Arg) =:= Sz, element(1, Arg) =:= Tag ->
            true;
        true ->
            false
    end;
eval_type_test_1(Test, Arg) ->
    erlang:Test(Arg).

%%%
%%% Combine bif:'=:=' and switch instructions
%%% to switch instructions.
%%%
%%% Consider this code:
%%%
%%%     0:
%%%       @ssa_bool = bif:'=:=' Var, literal 1
%%%       br @ssa_bool, label 2, label 3
%%%
%%%     2:
%%%       ret literal a
%%%
%%%     3:
%%%       @ssa_bool:7 = bif:'=:=' Var, literal 2
%%%       br @ssa_bool:7, label 4, label 999
%%%
%%%     4:
%%%       ret literal b
%%%
%%%     999:
%%%       .
%%%       .
%%%       .
%%%
%%% The two bif:'=:=' instructions can be combined
%%% to a switch:
%%%
%%%     0:
%%%       switch Var, label 999, [ { literal 1, label 2 },
%%%                                { literal 2, label 3 } ]
%%%
%%%     2:
%%%       ret literal a
%%%
%%%     4:
%%%       ret literal b
%%%
%%%     999:
%%%       .
%%%       .
%%%       .
%%%

combine_eqs(#st{bs=Blocks}=St) ->
    Ls = reverse(beam_ssa:rpo(Blocks)),
    combine_eqs_1(Ls, St).

combine_eqs_1([L|Ls], #st{bs=Blocks0}=St0) ->
    case comb_get_sw(L, St0) of
        none ->
            combine_eqs_1(Ls, St0);
        {_,Arg,_,Fail0,List0} ->
            case comb_get_sw(Fail0, St0) of
                {true,Arg,Fail1,Fail,List1} ->
                    %% Another switch/br with the same arguments was
                    %% found. Try combining them.
                    case combine_lists(Fail1, List0, List1, Blocks0) of
                        none ->
                            %% Different types of literals in the lists,
                            %% or the success cases in the first switch
                            %% could branch to the second switch
                            %% (increasing code size and repeating tests).
                            combine_eqs_1(Ls, St0);
                        List ->
                            %% Everything OK! Combine the lists.
                            Sw0 = #b_switch{arg=Arg,fail=Fail,list=List},
                            Sw = beam_ssa:normalize(Sw0),
                            Blk0 = map_get(L, Blocks0),
                            Blk = Blk0#b_blk{last=Sw},
                            Blocks = Blocks0#{L:=Blk},
                            St = St0#st{bs=Blocks},
                            combine_eqs_1(Ls, St)
                    end;
                {true,_OtherArg,_,_,_} ->
                    %% The other switch/br uses a different Arg.
                    combine_eqs_1(Ls, St0);
                {false,_,_,_,_} ->
                    %% Not safe: Bindings of variables that will be used
                    %% or execution of instructions with potential
                    %% side effects will be skipped.
                    combine_eqs_1(Ls, St0);
                none ->
                    %% No switch/br at this label.
                    combine_eqs_1(Ls, St0)
            end
    end;
combine_eqs_1([], St) -> St.

comb_get_sw(L, Blocks) ->
    comb_get_sw(L, true, Blocks).

comb_get_sw(L, Safe0, #st{bs=Blocks,skippable=Skippable}) ->
    #b_blk{is=Is,last=Last} = map_get(L, Blocks),
    Safe1 = Safe0 andalso is_map_key(L, Skippable),
    case Last of
        #b_ret{} ->
            none;
        #b_br{bool=#b_var{}=Bool,succ=Succ,fail=Fail} ->
            case comb_is(Is, Bool, Safe1) of
                {none,_} ->
                    none;
                {#b_set{op={bif,'=:='},args=[#b_var{}=Arg,#b_literal{}=Lit]},Safe} ->
                    {Safe,Arg,L,Fail,[{Lit,Succ}]};
                {#b_set{},_} ->
                    none
            end;
        #b_br{} ->
            none;
        #b_switch{arg=#b_var{}=Arg,fail=Fail,list=List} ->
            {none,Safe} = comb_is(Is, none, Safe1),
            {Safe,Arg,L,Fail,List}
    end.

comb_is([#b_set{dst=#b_var{}=Bool}=I], Bool, Safe) ->
    {I,Safe};
comb_is([#b_set{}=I|Is], Bool, Safe0) ->
    Safe = Safe0 andalso beam_ssa:no_side_effect(I),
    comb_is(Is, Bool, Safe);
comb_is([], _Bool, Safe) ->
    {none,Safe}.

%% combine_list(Fail, List1, List2, Blocks) -> List|none.
%%  Try to combine two switch lists, returning the combined
%%  list or 'none' if not possible.
%%
%%  The values in the two lists must be all of the same type.
%%
%%  The code reached from the labels in the first list must
%%  not reach the failure label (if they do, tests could
%%  be repeated).
%%

combine_lists(Fail, L1, L2, Blocks) ->
    Ls = beam_ssa:rpo([Lbl || {_,Lbl} <- L1], Blocks),
    case member(Fail, Ls) of
        true ->
            %% One or more of labels in the first list
            %% could reach the failure label. That
            %% means that the second switch/br instruction
            %% will be retained, increasing code size and
            %% potentially also execution time.
            none;
        false ->
            %% The combined switch will replace both original
            %% br/switch instructions, leading to a reduction in code
            %% size and potentially also in execution time.
            combine_lists_1(L1, L2)
    end.

combine_lists_1(List0, List1) ->
    case are_lists_compatible(List0, List1) of
        true ->
            First = maps:from_list(List0),
            List0 ++ [{Val,Lbl} || {Val,Lbl} <- List1,
                                   not is_map_key(Val, First)];
        false ->
            none
    end.

are_lists_compatible([{#b_literal{val=Val1},_}|_],
                     [{#b_literal{val=Val2},_}|_]) ->
    case lit_type(Val1) of
        none -> false;
        Type -> Type =:= lit_type(Val2)
    end.

lit_type(Val) ->
    if
        is_atom(Val) -> atom;
        is_float(Val) -> float;
        is_integer(Val) -> integer;
        true -> none
    end.

%%%
%%% Calculate used variables for each block.
%%%

used_vars(Linear) ->
    used_vars(reverse(Linear), #{}, #{}).

used_vars([{L,#b_blk{is=Is}=Blk}|Bs], UsedVars0, Skip0) ->
    %% Calculate the variables used by each block and its
    %% successors. This information is used by
    %% shortcut_opt/1.

    Successors = beam_ssa:successors(Blk),
    Used0 = used_vars_succ(Successors, L, UsedVars0, []),
    Used = used_vars_blk(Blk, Used0),
    UsedVars = used_vars_phis(Is, L, Used, UsedVars0),

    %% combine_eqs/1 needs different variable usage information than
    %% shortcut_opt/1. The Skip map will have an entry for each block
    %% that can be skipped (does not bind any variable used in
    %% successor). This information is also useful for speeding up
    %% shortcut_opt/1.

    Defined0 = [Def || #b_set{dst=Def} <- Is],
    Defined = ordsets:from_list(Defined0),
    MaySkip = ordsets:is_disjoint(Defined, Used0),
    case MaySkip of
        true ->
            Skip = Skip0#{L=>true},
            used_vars(Bs, UsedVars, Skip);
        false ->
            used_vars(Bs, UsedVars, Skip0)
    end;
used_vars([], UsedVars, Skip) ->
    {UsedVars,Skip}.

used_vars_succ([S|Ss], L, LiveMap, Live0) ->
    Key = {S,L},
    case LiveMap of
        #{Key:=Live} ->
            %% The successor has a phi node, and the value for
            %% this block in the phi node is a variable.
            used_vars_succ(Ss, L, LiveMap, ordsets:union(Live, Live0));
        #{S:=Live} ->
            %% No phi node in the successor, or the value for
            %% this block in the phi node is a literal.
            used_vars_succ(Ss, L, LiveMap, ordsets:union(Live, Live0));
        #{} ->
            %% A peek_message block which has not been processed yet.
            used_vars_succ(Ss, L, LiveMap, Live0)
    end;
used_vars_succ([], _, _, Acc) -> Acc.

used_vars_phis(Is, L, Live0, UsedVars0) ->
    UsedVars = UsedVars0#{L=>Live0},
    Phis = takewhile(fun(#b_set{op=Op}) -> Op =:= phi end, Is),
    case Phis of
        [] ->
            UsedVars;
        [_|_] ->
            PhiArgs = append([Args || #b_set{args=Args} <- Phis]),
            case [{P,V} || {#b_var{}=V,P} <- PhiArgs] of
                [_|_]=PhiVars ->
                    PhiLive0 = rel2fam(PhiVars),
                    PhiLive = [{{L,P},ordsets:union(ordsets:from_list(Vs), Live0)} ||
                                  {P,Vs} <- PhiLive0],
                    maps:merge(UsedVars, maps:from_list(PhiLive));
                [] ->
                    %% There were only literals in the phi node(s).
                    UsedVars
            end
    end.

used_vars_blk(#b_blk{is=Is,last=Last}, Used0) ->
    Used = ordsets:union(Used0, beam_ssa:used(Last)),
    used_vars_is(reverse(Is), Used).

used_vars_is([#b_set{op=phi}|Is], Used) ->
    used_vars_is(Is, Used);
used_vars_is([#b_set{dst=Dst}=I|Is], Used0) ->
    Used1 = ordsets:union(Used0, beam_ssa:used(I)),
    Used = ordsets:del_element(Dst, Used1),
    used_vars_is(Is, Used);
used_vars_is([], Used) ->
    Used.

%%%
%%% Common utilities.
%%%

sub(#b_set{args=Args}=I, Sub) ->
    I#b_set{args=[sub_arg(A, Sub) || A <- Args]}.

sub_arg(#b_var{}=Old, Sub) ->
    case Sub of
        #{Old:=New} -> New;
        #{} -> Old
    end;
sub_arg(Old, _Sub) -> Old.

rel2fam(S0) ->
    S1 = sofs:relation(S0),
    S = sofs:rel2fam(S1),
    sofs:to_external(S).