1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% @author Richard Carlsson <richardc@it.uu.se>
%% @copyright 1999-2004 Richard Carlsson
%% @doc Abstract environments, supporting self-referential bindings and
%% automatic new-key generation.
%% The current implementation is based on Erlang standard library
%% dictionaries.
%%% -define(DEBUG, true).
-module(rec_env).
-export([bind/3, bind_list/3, bind_recursive/4, delete/2, empty/0,
get/2, is_defined/2, is_empty/1, keys/1, lookup/2, new_key/1,
new_key/2, new_keys/2, new_keys/3, size/1, to_list/1]).
-export_type([environment/0]).
-ifdef(DEBUG).
-export([test/1, test_custom/1, test_custom/2]).
-endif.
-ifdef(DEBUG).
%% Code for testing:
%%@hidden
test(N) ->
test_0(integer, N).
%%@hidden
test_custom(N) ->
F = fun (X) -> list_to_atom("X"++integer_to_list(X)) end,
test_custom(F, N).
%%@hidden
test_custom(F, N) ->
test_0({custom, F}, N).
test_0(Type, N) ->
put(new_key_calls, 0),
put(new_key_retries, 0),
put(new_key_max, 0),
Env = test_1(Type, N, empty()),
io:fwrite("\ncalls: ~w.\n", [get(new_key_calls)]),
io:fwrite("\nretries: ~w.\n", [get(new_key_retries)]),
io:fwrite("\nmax: ~w.\n", [get(new_key_max)]),
dict:to_list(element(1,Env)).
test_1(integer = Type, N, Env) when is_integer(N), N > 0 ->
Key = new_key(Env),
test_1(Type, N - 1, bind(Key, value, Env));
test_1({custom, F} = Type, N, Env) when is_integer(N), N > 0 ->
Key = new_key(F, Env),
test_1(Type, N - 1, bind(Key, value, Env));
test_1(_,0, Env) ->
Env.
-endif.
%% Representation:
%%
%% environment() = [Mapping]
%%
%% Mapping = {map, Dict} | {rec, Dict, Dict}
%% Dict = dict:dictionary()
%%
%% An empty environment is a list containing a single `{map, Dict}'
%% element - empty lists are not valid environments. To find a key in an
%% environment, it is searched for in each mapping in the list, in
%% order, until it the key is found in some mapping, or the end of the
%% list is reached. In a 'rec' mapping, we keep the original dictionary
%% together with a version where entries may have been deleted - this
%% makes it possible to garbage collect the entire 'rec' mapping when
%% all its entries are unused (for example, by being shadowed by later
%% definitions).
%% =====================================================================
%% @type environment(). An abstract environment.
-type mapping() :: {'map', dict()} | {'rec', dict(), dict()}.
-type environment() :: [mapping(),...].
%% =====================================================================
%% @spec empty() -> environment()
%%
%% @doc Returns an empty environment.
-spec empty() -> environment().
empty() ->
[{map, dict:new()}].
%% =====================================================================
%% @spec is_empty(Env::environment()) -> boolean()
%%
%% @doc Returns <code>true</code> if the environment is empty, otherwise
%% <code>false</code>.
-spec is_empty(environment()) -> boolean().
is_empty([{map, Dict} | Es]) ->
N = dict:size(Dict),
if N =/= 0 -> false;
Es =:= [] -> true;
true -> is_empty(Es)
end;
is_empty([{rec, Dict, _} | Es]) ->
N = dict:size(Dict),
if N =/= 0 -> false;
Es =:= [] -> true;
true -> is_empty(Es)
end.
%% =====================================================================
%% @spec size(Env::environment()) -> integer()
%%
%% @doc Returns the number of entries in an environment.
%% (The name 'size' cannot be used in local calls, since there exists a
%% built-in function with the same name.)
-spec size(environment()) -> non_neg_integer().
size(Env) ->
env_size(Env).
env_size([{map, Dict}]) ->
dict:size(Dict);
env_size([{map, Dict} | Env]) ->
dict:size(Dict) + env_size(Env);
env_size([{rec, Dict, _Dict0} | Env]) ->
dict:size(Dict) + env_size(Env).
%% =====================================================================
%% @spec is_defined(Key, Env) -> boolean()
%%
%% Key = term()
%% Env = environment()
%%
%% @doc Returns <code>true</code> if <code>Key</code> is bound in the
%% environment, otherwise <code>false</code>.
-spec is_defined(term(), environment()) -> boolean().
is_defined(Key, [{map, Dict} | Env]) ->
case dict:is_key(Key, Dict) of
true ->
true;
false when Env =:= [] ->
false;
false ->
is_defined(Key, Env)
end;
is_defined(Key, [{rec, Dict, _Dict0} | Env]) ->
dict:is_key(Key, Dict) orelse is_defined(Key, Env).
%% =====================================================================
%% @spec keys(Env::environment()) -> [term()]
%%
%% @doc Returns the ordered list of all keys in the environment.
-spec keys(environment()) -> [term()].
keys(Env) ->
lists:sort(keys(Env, [])).
keys([{map, Dict}], S) ->
dict:fetch_keys(Dict) ++ S;
keys([{map, Dict} | Env], S) ->
keys(Env, dict:fetch_keys(Dict) ++ S);
keys([{rec, Dict, _Dict0} | Env], S) ->
keys(Env, dict:fetch_keys(Dict) ++ S).
%% =====================================================================
%% @spec to_list(Env) -> [{Key, Value}]
%%
%% Env = environment()
%% Key = term()
%% Value = term()
%%
%% @doc Returns an ordered list of <code>{Key, Value}</code> pairs for
%% all keys in <code>Env</code>. <code>Value</code> is the same as that
%% returned by {@link get/2}.
-spec to_list(environment()) -> [{term(), term()}].
to_list(Env) ->
lists:sort(to_list(Env, [])).
to_list([{map, Dict}], S) ->
dict:to_list(Dict) ++ S;
to_list([{map, Dict} | Env], S) ->
to_list(Env, dict:to_list(Dict) ++ S);
to_list([{rec, Dict, _Dict0} | Env], S) ->
to_list(Env, dict:to_list(Dict) ++ S).
%% =====================================================================
%% @spec bind(Key, Value, Env) -> environment()
%%
%% Key = term()
%% Value = term()
%% Env = environment()
%%
%% @doc Make a nonrecursive entry. This binds <code>Key</code> to
%% <code>Value</code>. If the key already existed in the environment,
%% the old entry is replaced.
%% Note that deletion is done to free old bindings so they can be
%% garbage collected.
-spec bind(term(), term(), environment()) -> environment().
bind(Key, Value, [{map, Dict}]) ->
[{map, dict:store(Key, Value, Dict)}];
bind(Key, Value, [{map, Dict} | Env]) ->
[{map, dict:store(Key, Value, Dict)} | delete_any(Key, Env)];
bind(Key, Value, Env) ->
[{map, dict:store(Key, Value, dict:new())} | delete_any(Key, Env)].
%% =====================================================================
%% @spec bind_list(Keys, Values, Env) -> environment()
%%
%% Keys = [term()]
%% Values = [term()]
%% Env = environment()
%%
%% @doc Make N nonrecursive entries. This binds each key in
%% <code>Keys</code> to the corresponding value in
%% <code>Values</code>. If some key already existed in the environment,
%% the previous entry is replaced. If <code>Keys</code> does not have
%% the same length as <code>Values</code>, an exception is generated.
-spec bind_list([term()], [term()], environment()) -> environment().
bind_list(Ks, Vs, [{map, Dict}]) ->
[{map, store_list(Ks, Vs, Dict)}];
bind_list(Ks, Vs, [{map, Dict} | Env]) ->
[{map, store_list(Ks, Vs, Dict)} | delete_list(Ks, Env)];
bind_list(Ks, Vs, Env) ->
[{map, store_list(Ks, Vs, dict:new())} | delete_list(Ks, Env)].
store_list([K | Ks], [V | Vs], Dict) ->
store_list(Ks, Vs, dict:store(K, V, Dict));
store_list([], _, Dict) ->
Dict.
delete_list([K | Ks], Env) ->
delete_list(Ks, delete_any(K, Env));
delete_list([], Env) ->
Env.
%% By not calling `delete' unless we have to, we avoid unnecessary
%% rewriting of the data.
delete_any(Key, Env) ->
case is_defined(Key, Env) of
true ->
delete(Key, Env);
false ->
Env
end.
%% =====================================================================
%% @spec delete(Key, Env) -> environment()
%%
%% Key = term()
%% Env = environment()
%%
%% @doc Delete an entry. This removes <code>Key</code> from the
%% environment.
-spec delete(term(), environment()) -> environment().
delete(Key, [{map, Dict} = E | Env]) ->
case dict:is_key(Key, Dict) of
true ->
[{map, dict:erase(Key, Dict)} | Env];
false ->
delete_1(Key, Env, E)
end;
delete(Key, [{rec, Dict, Dict0} = E | Env]) ->
case dict:is_key(Key, Dict) of
true ->
%% The Dict0 component must be preserved as it is until all
%% keys in Dict have been deleted.
Dict1 = dict:erase(Key, Dict),
case dict:size(Dict1) of
0 ->
Env; % the whole {rec,...} is now garbage
_ ->
[{rec, Dict1, Dict0} | Env]
end;
false ->
[E | delete(Key, Env)]
end.
%% This is just like above, except we pass on the preceding 'map'
%% mapping in the list to enable merging when removing 'rec' mappings.
delete_1(Key, [{rec, Dict, Dict0} = E | Env], E1) ->
case dict:is_key(Key, Dict) of
true ->
Dict1 = dict:erase(Key, Dict),
case dict:size(Dict1) of
0 ->
concat(E1, Env);
_ ->
[E1, {rec, Dict1, Dict0} | Env]
end;
false ->
[E1, E | delete(Key, Env)]
end.
concat({map, D1}, [{map, D2} | Env]) ->
[dict:merge(fun (_K, V1, _V2) -> V1 end, D1, D2) | Env];
concat(E1, Env) ->
[E1 | Env].
%% =====================================================================
%% @spec bind_recursive(Keys, Values, Fun, Env) -> NewEnv
%%
%% Keys = [term()]
%% Values = [term()]
%% Fun = (Value, Env) -> term()
%% Env = environment()
%% NewEnv = environment()
%%
%% @doc Make N recursive entries. This binds each key in
%% <code>Keys</code> to the value of <code>Fun(Value, NewEnv)</code> for
%% the corresponding <code>Value</code>. If <code>Keys</code> does not
%% have the same length as <code>Values</code>, an exception is
%% generated. If some key already existed in the environment, the old
%% entry is replaced.
%%
%% <p>Note: the function <code>Fun</code> is evaluated each time one of
%% the stored keys is looked up, but only then.</p>
%%
%% <p>Examples:
%%<pre>
%% NewEnv = bind_recursive([foo, bar], [1, 2],
%% fun (V, E) -> V end,
%% Env)</pre>
%%
%% This does nothing interesting; <code>get(foo, NewEnv)</code> yields
%% <code>1</code> and <code>get(bar, NewEnv)</code> yields
%% <code>2</code>, but there is more overhead than if the {@link
%% bind_list/3} function had been used.
%%
%% <pre>
%% NewEnv = bind_recursive([foo, bar], [1, 2],
%% fun (V, E) -> {V, E} end,
%% Env)</pre>
%%
%% Here, however, <code>get(foo, NewEnv)</code> will yield <code>{1,
%% NewEnv}</code> and <code>get(bar, NewEnv)</code> will yield <code>{2,
%% NewEnv}</code>, i.e., the environment <code>NewEnv</code> contains
%% recursive bindings.</p>
-spec bind_recursive([term()], [term()],
fun((term(), environment()) -> term()),
environment()) -> environment().
bind_recursive([], [], _, Env) ->
Env;
bind_recursive(Ks, Vs, F, Env) ->
F1 = fun (V) ->
fun (Dict) -> F(V, [{rec, Dict, Dict} | Env]) end
end,
Dict = bind_recursive_1(Ks, Vs, F1, dict:new()),
[{rec, Dict, Dict} | Env].
bind_recursive_1([K | Ks], [V | Vs], F, Dict) ->
bind_recursive_1(Ks, Vs, F, dict:store(K, F(V), Dict));
bind_recursive_1([], [], _, Dict) ->
Dict.
%% =====================================================================
%% @spec lookup(Key, Env) -> error | {ok, Value}
%%
%% Key = term()
%% Env = environment()
%% Value = term()
%%
%% @doc Returns <code>{ok, Value}</code> if <code>Key</code> is bound to
%% <code>Value</code> in <code>Env</code>, and <code>error</code>
%% otherwise.
-spec lookup(term(), environment()) -> 'error' | {'ok', term()}.
lookup(Key, [{map, Dict} | Env]) ->
case dict:find(Key, Dict) of
{ok, _}=Value ->
Value;
error when Env =:= [] ->
error;
error ->
lookup(Key, Env)
end;
lookup(Key, [{rec, Dict, Dict0} | Env]) ->
case dict:find(Key, Dict) of
{ok, F} ->
{ok, F(Dict0)};
error ->
lookup(Key, Env)
end.
%% =====================================================================
%% @spec get(Key, Env) -> Value
%%
%% Key = term()
%% Env = environment()
%% Value = term()
%%
%% @doc Returns the value that <code>Key</code> is bound to in
%% <code>Env</code>. Throws <code>{undefined, Key}</code> if the key
%% does not exist in <code>Env</code>.
-spec get(term(), environment()) -> term().
get(Key, Env) ->
case lookup(Key, Env) of
{ok, Value} -> Value;
error -> throw({undefined, Key})
end.
%% =====================================================================
%% The key-generating algorithm could possibly be further improved. The
%% important thing to keep in mind is, that when we need a new key, we
%% are generally in mid-traversal of a syntax tree, and existing names
%% in the tree may be closely grouped and evenly distributed or even
%% forming a compact range (often having been generated by a "gensym",
%% or by this very algorithm itself). This means that if we generate an
%% identifier whose value is too close to those already seen (i.e.,
%% which are in the environment), it is very probable that we will
%% shadow a not-yet-seen identifier further down in the tree, the result
%% being that we induce another later renaming, and end up renaming most
%% of the identifiers, completely contrary to our intention. We need to
%% generate new identifiers in a way that avoids such systematic
%% collisions.
%%
%% One way of getting a new key to try when the previous attempt failed
%% is of course to e.g. add one to the last tried value. However, in
%% general it's a bad idea to try adjacent identifiers: the percentage
%% of retries will typically increase a lot, so you may lose big on the
%% extra lookups while gaining only a little from the quicker
%% computation.
%%
%% We want an initial range that is large enough for most typical cases.
%% If we start with, say, a range of 10, we might quickly use up most of
%% the values in the range 1-10 (or 1-100) for new top-level variables -
%% but as we start traversing the syntax tree, it is quite likely that
%% exactly those variables will be encountered again (this depends on
%% how the names in the tree were created), and will then need to be
%% renamed. If we instead begin with a larger range, it is less likely
%% that any top-level names that we introduce will shadow names that we
%% will find in the tree. Of course we cannot know how large is large
%% enough: for any initial range, there is some syntax tree that uses
%% all the values in that range, and thus any top-level names introduced
%% will shadow names in the tree. The point is to avoid this happening
%% all the time - a range of about 1000 seems enough for most programs.
%%
%% The following values have been shown to work well:
-define(MINIMUM_RANGE, 1000).
-define(START_RANGE_FACTOR, 50).
-define(MAX_RETRIES, 2). % retries before enlarging range
-define(ENLARGE_FACTOR, 10). % range enlargment factor
-ifdef(DEBUG).
%% If you want to use these process dictionary counters, make sure to
%% initialise them to zero before you call any of the key-generating
%% functions.
%%
%% new_key_calls total number of calls
%% new_key_retries failed key generation attempts
%% new_key_max maximum generated integer value
%%
-define(measure_calls(),
put(new_key_calls, 1 + get(new_key_calls))).
-define(measure_max_key(N),
case N > get(new_key_max) of
true ->
put(new_key_max, N);
false ->
ok
end).
-define(measure_retries(N),
put(new_key_retries, get(new_key_retries) + N)).
-else.
-define(measure_calls(), ok).
-define(measure_max_key(N), ok).
-define(measure_retries(N), ok).
-endif.
%% =====================================================================
%% @spec new_key(Env::environment()) -> integer()
%%
%% @doc Returns an integer which is not already used as key in the
%% environment. New integers are generated using an algorithm which
%% tries to keep the values randomly distributed within a reasonably
%% small range relative to the number of entries in the environment.
%%
%% <p>This function uses the Erlang standard library module
%% <code>random</code> to generate new keys.</p>
%%
%% <p>Note that only the new key is returned; the environment itself is
%% not updated by this function.</p>
-spec new_key(environment()) -> integer().
new_key(Env) ->
new_key(fun (X) -> X end, Env).
%% =====================================================================
%% @spec new_key(Function, Env) -> term()
%%
%% Function = (integer()) -> term()
%% Env = environment()
%%
%% @doc Returns a term which is not already used as key in the
%% environment. The term is generated by applying <code>Function</code>
%% to an integer generated as in {@link new_key/1}.
%%
%% <p>Note that only the generated term is returned; the environment
%% itself is not updated by this function.</p>
-spec new_key(fun((integer()) -> term()), environment()) -> term().
new_key(F, Env) ->
?measure_calls(),
R = start_range(Env),
%% io:fwrite("Start range: ~w.\n", [R]),
new_key(R, F, Env).
new_key(R, F, Env) ->
new_key(generate(R, R), R, 0, F, Env).
new_key(N, R, T, F, Env) when T < ?MAX_RETRIES ->
A = F(N),
case is_defined(A, Env) of
true ->
%% io:fwrite("CLASH: ~w.\n", [A]),
new_key(generate(N, R), R, T + 1, F, Env);
false ->
?measure_max_key(N),
?measure_retries(T),
%% io:fwrite("New: ~w.\n", [N]),
A
end;
new_key(N, R, _T, F, Env) ->
%% Too many retries - enlarge the range and start over.
?measure_retries((_T + 1)),
R1 = trunc(R * ?ENLARGE_FACTOR),
%% io:fwrite("**NEW RANGE**: ~w.\n", [R1]),
new_key(generate(N, R1), R1, 0, F, Env).
start_range(Env) ->
erlang:max(env_size(Env) * ?START_RANGE_FACTOR, ?MINIMUM_RANGE).
%% The previous key might or might not be used to compute the next key
%% to be tried. It is currently not used.
%%
%% In order to avoid causing cascading renamings, it is important that
%% this function does not generate values in order, but
%% (pseudo-)randomly distributed over the range.
generate(_N, Range) ->
random:uniform(Range). % works well
%% =====================================================================
%% @spec new_keys(N, Env) -> [integer()]
%%
%% N = integer()
%% Env = environment()
%%
%% @doc Returns a list of <code>N</code> distinct integers that are not
%% already used as keys in the environment. See {@link new_key/1} for
%% details.
-spec new_keys(integer(), environment()) -> [integer()].
new_keys(N, Env) when is_integer(N) ->
new_keys(N, fun (X) -> X end, Env).
%% =====================================================================
%% @spec new_keys(N, Function, Env) -> [term()]
%%
%% N = integer()
%% Function = (integer()) -> term()
%% Env = environment()
%%
%% @doc Returns a list of <code>N</code> distinct terms that are not
%% already used as keys in the environment. See {@link new_key/3} for
%% details.
-spec new_keys(integer(), fun((integer()) -> term()), environment()) -> [term()].
new_keys(N, F, Env) when is_integer(N) ->
R = start_range(Env),
new_keys(N, [], R, F, Env).
new_keys(N, Ks, R, F, Env) when N > 0 ->
Key = new_key(R, F, Env),
Env1 = bind(Key, true, Env), % dummy binding
new_keys(N - 1, [Key | Ks], R, F, Env1);
new_keys(0, Ks, _, _, _) ->
Ks.
|