1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
|
<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1999</year><year>2013</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>crypto</title>
<prepared>Peter Högfeldt</prepared>
<docno></docno>
<date>2000-06-20</date>
<rev>B</rev>
</header>
<module>crypto</module>
<modulesummary>Crypto Functions</modulesummary>
<description>
<p>This module provides a set of cryptographic functions.
</p>
<p>References:</p>
<list type="bulleted">
<item>
<p>md4: The MD4 Message Digest Algorithm (RFC 1320)</p>
</item>
<item>
<p>md5: The MD5 Message Digest Algorithm (RFC 1321)</p>
</item>
<item>
<p>sha: Secure Hash Standard (FIPS 180-2)</p>
</item>
<item>
<p>hmac: Keyed-Hashing for Message Authentication (RFC 2104)</p>
</item>
<item>
<p>des: Data Encryption Standard (FIPS 46-3)</p>
</item>
<item>
<p>aes: Advanced Encryption Standard (AES) (FIPS 197) </p>
</item>
<item>
<p>ecb, cbc, cfb, ofb, ctr: Recommendation for Block Cipher Modes
of Operation (NIST SP 800-38A).</p>
</item>
<item>
<p>rsa: Recommendation for Block Cipher Modes of Operation
(NIST 800-38A)</p>
</item>
<item>
<p>dss: Digital Signature Standard (FIPS 186-2)</p>
</item>
<item>
<p>srp: Secure Remote Password Protocol (RFC 2945)</p>
</item>
<item>
<p>ecdsa: "Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital
Signature Standard (ECDSA)", November, 2005.</p>
</item>
<item>
<p>ec: Standards for Efficient Cryptography Group (SECG), "SEC 1:
Elliptic Curve Cryptography", Version 1.0, September 2000.</p>
</item>
<item>
<p>ecdsa: American National Standards Institute (ANSI),
ANS X9.62-2005: The Elliptic Curve Digital Signature
Algorithm (ECDSA), 2005.</p>
</item>
</list>
<p>The above publications can be found at <url href="http://csrc.nist.gov/publications">NIST publications</url>, at <url href="http://www.ietf.org">IETF</url>.
</p>
<p><em>Types</em></p>
<pre>
byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]
Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]>
</pre>
<p></p>
</description>
<funcs>
<func>
<name>start() -> ok</name>
<fsummary>Start the crypto server.</fsummary>
<desc>
<p>Starts the crypto server.</p>
</desc>
</func>
<func>
<name>stop() -> ok</name>
<fsummary>Stop the crypto server.</fsummary>
<desc>
<p>Stops the crypto server.</p>
</desc>
</func>
<func>
<name>info() -> [atom()]</name>
<fsummary>Provide a list of available crypto functions.</fsummary>
<desc>
<p>Provides the available crypto functions in terms of a list
of atoms.</p>
</desc>
</func>
<func>
<name>algorithms() -> [atom()]</name>
<fsummary>Provide a list of available crypto algorithms.</fsummary>
<desc>
<p>Provides the available crypto algorithms in terms of a list
of atoms.</p>
</desc>
</func>
<func>
<name>info_lib() -> [{Name,VerNum,VerStr}]</name>
<fsummary>Provides information about the libraries used by crypto.</fsummary>
<type>
<v>Name = binary()</v>
<v>VerNum = integer()</v>
<v>VerStr = binary()</v>
</type>
<desc>
<p>Provides the name and version of the libraries used by crypto.</p>
<p><c>Name</c> is the name of the library. <c>VerNum</c> is
the numeric version according to the library's own versioning
scheme. <c>VerStr</c> contains a text variant of the version.</p>
<pre>
> <input>info_lib().</input>
[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}]
</pre>
<note><p>
From OTP R16 the <em>numeric version</em> represents the version of the OpenSSL
<em>header files</em> (<c>openssl/opensslv.h</c>) used when crypto was compiled.
The text variant represents the OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.
</p></note>
</desc>
</func>
<func>
<name>md4(Data) -> Digest</name>
<fsummary>Compute an <c>MD4</c>message digest from <c>Data</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Digest = binary()</v>
</type>
<desc>
<p>Computes an <c>MD4</c> message digest from <c>Data</c>, where
the length of the digest is 128 bits (16 bytes).</p>
</desc>
</func>
<func>
<name>md4_init() -> Context</name>
<fsummary>Creates an MD4 context</fsummary>
<type>
<v>Context = binary()</v>
</type>
<desc>
<p>Creates an MD4 context, to be used in subsequent calls to
<c>md4_update/2</c>.</p>
</desc>
</func>
<func>
<name>md4_update(Context, Data) -> NewContext</name>
<fsummary>Update an MD4 <c>Context</c>with <c>Data</c>, and return a <c>NewContext</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Context = NewContext = binary()</v>
</type>
<desc>
<p>Updates an MD4 <c>Context</c> with <c>Data</c>, and returns
a <c>NewContext</c>.</p>
</desc>
</func>
<func>
<name>md4_final(Context) -> Digest</name>
<fsummary>Finish the update of an MD4 <c>Context</c>and return the computed <c>MD4</c>message digest</fsummary>
<type>
<v>Context = Digest = binary()</v>
</type>
<desc>
<p>Finishes the update of an MD4 <c>Context</c> and returns
the computed <c>MD4</c> message digest.</p>
</desc>
</func>
<func>
<name>md5(Data) -> Digest</name>
<fsummary>Compute an <c>MD5</c>message digest from <c>Data</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Digest = binary()</v>
</type>
<desc>
<p>Computes an <c>MD5</c> message digest from <c>Data</c>, where
the length of the digest is 128 bits (16 bytes).</p>
</desc>
</func>
<func>
<name>md5_init() -> Context</name>
<fsummary>Creates an MD5 context</fsummary>
<type>
<v>Context = binary()</v>
</type>
<desc>
<p>Creates an MD5 context, to be used in subsequent calls to
<c>md5_update/2</c>.</p>
</desc>
</func>
<func>
<name>md5_update(Context, Data) -> NewContext</name>
<fsummary>Update an MD5 <c>Context</c>with <c>Data</c>, and return a <c>NewContext</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Context = NewContext = binary()</v>
</type>
<desc>
<p>Updates an MD5 <c>Context</c> with <c>Data</c>, and returns
a <c>NewContext</c>.</p>
</desc>
</func>
<func>
<name>md5_final(Context) -> Digest</name>
<fsummary>Finish the update of an MD5 <c>Context</c>and return the computed <c>MD5</c>message digest</fsummary>
<type>
<v>Context = Digest = binary()</v>
</type>
<desc>
<p>Finishes the update of an MD5 <c>Context</c> and returns
the computed <c>MD5</c> message digest.</p>
</desc>
</func>
<func>
<name>sha(Data) -> Digest</name>
<fsummary>Compute an <c>SHA</c>message digest from <c>Data</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Digest = binary()</v>
</type>
<desc>
<p>Computes an <c>SHA</c> message digest from <c>Data</c>, where
the length of the digest is 160 bits (20 bytes).</p>
</desc>
</func>
<func>
<name>sha_init() -> Context</name>
<fsummary>Create an SHA context</fsummary>
<type>
<v>Context = binary()</v>
</type>
<desc>
<p>Creates an SHA context, to be used in subsequent calls to
<c>sha_update/2</c>.</p>
</desc>
</func>
<func>
<name>sha_update(Context, Data) -> NewContext</name>
<fsummary>Update an SHA context</fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>Context = NewContext = binary()</v>
</type>
<desc>
<p>Updates an SHA <c>Context</c> with <c>Data</c>, and returns
a <c>NewContext</c>.</p>
</desc>
</func>
<func>
<name>sha_final(Context) -> Digest</name>
<fsummary>Finish the update of an SHA context</fsummary>
<type>
<v>Context = Digest = binary()</v>
</type>
<desc>
<p>Finishes the update of an SHA <c>Context</c> and returns
the computed <c>SHA</c> message digest.</p>
</desc>
</func>
<func>
<name>hash(Type, Data) -> Digest</name>
<fsummary></fsummary>
<type>
<v>Type = md4 | md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512</v>
<v>Data = iodata()</v>
<v>Digest = binary()</v>
</type>
<desc>
<p>Computes a message digest of type <c>Type</c> from <c>Data</c>.</p>
<p>May throw exception <c>notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying OpenSSL implementation.</p>
</desc>
</func>
<func>
<name>hash_init(Type) -> Context</name>
<fsummary></fsummary>
<type>
<v>Type = md4 | md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512</v>
</type>
<desc>
<p>Initializes the context for streaming hash operations. <c>Type</c> determines
which digest to use. The returned context should be used as argument
to <seealso marker="#hash_update/2">hash_update</seealso>.</p>
<p>May throw exception <c>notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying OpenSSL implementation.</p>
</desc>
</func>
<func>
<name>hash_update(Context, Data) -> NewContext</name>
<fsummary></fsummary>
<type>
<v>Data = iodata()</v>
</type>
<desc>
<p>Updates the digest represented by <c>Context</c> using the given <c>Data</c>. <c>Context</c>
must have been generated using <seealso marker="#hash_init/1">hash_init</seealso>
or a previous call to this function. <c>Data</c> can be any length. <c>NewContext</c>
must be passed into the next call to <c>hash_update</c>
or <seealso marker="#hash_final/1">hash_final</seealso>.</p>
</desc>
</func>
<func>
<name>hash_final(Context) -> Digest</name>
<fsummary></fsummary>
<type>
<v>Digest = binary()</v>
</type>
<desc>
<p>Finalizes the hash operation referenced by <c>Context</c> returned
from a previous call to <seealso marker="#hash_update/2">hash_update</seealso>.
The size of <c>Digest</c> is determined by the type of hash
function used to generate it.</p>
</desc>
</func>
<func>
<name>md5_mac(Key, Data) -> Mac</name>
<fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
<type>
<v>Key = Data = iolist() | binary()</v>
<v>Mac = binary()</v>
</type>
<desc>
<p>Computes an <c>MD5 MAC</c> message authentification code
from <c>Key</c> and <c>Data</c>, where the the length of the
Mac is 128 bits (16 bytes).</p>
</desc>
</func>
<func>
<name>md5_mac_96(Key, Data) -> Mac</name>
<fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
<type>
<v>Key = Data = iolist() | binary()</v>
<v>Mac = binary()</v>
</type>
<desc>
<p>Computes an <c>MD5 MAC</c> message authentification code
from <c>Key</c> and <c>Data</c>, where the length of the Mac
is 96 bits (12 bytes).</p>
</desc>
</func>
<func>
<name>hmac(Type, Key, Data) -> Mac</name>
<name>hmac(Type, Key, Data, MacLength) -> Mac</name>
<fsummary></fsummary>
<type>
<v>Type = md5 | sha | sha224 | sha256 | sha384 | sha512</v>
<v>Key = iodata()</v>
<v>Data = iodata()</v>
<v>MacLength = integer()</v>
<v>Mac = binary()</v>
</type>
<desc>
<p>Computes a HMAC of type <c>Type</c> from <c>Data</c> using
<c>Key</c> as the authentication key.</p> <c>MacLength</c>
will limit the size of the resultant <c>Mac</c>.
</desc>
</func>
<func>
<name>hmac_init(Type, Key) -> Context</name>
<fsummary></fsummary>
<type>
<v>Type = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512</v>
<v>Key = iolist() | binary()</v>
<v>Context = binary()</v>
</type>
<desc>
<p>Initializes the context for streaming HMAC operations. <c>Type</c> determines
which hash function to use in the HMAC operation. <c>Key</c> is the authentication
key. The key can be any length.</p>
</desc>
</func>
<func>
<name>hmac_update(Context, Data) -> NewContext</name>
<fsummary></fsummary>
<type>
<v>Context = NewContext = binary()</v>
<v>Data = iolist() | binary()</v>
</type>
<desc>
<p>Updates the HMAC represented by <c>Context</c> using the given <c>Data</c>. <c>Context</c>
must have been generated using an HMAC init function (such as
<seealso marker="#hmac_init/2">hmac_init</seealso>). <c>Data</c> can be any length. <c>NewContext</c>
must be passed into the next call to <c>hmac_update</c>.</p>
</desc>
</func>
<func>
<name>hmac_final(Context) -> Mac</name>
<fsummary></fsummary>
<type>
<v>Context = Mac = binary()</v>
</type>
<desc>
<p>Finalizes the HMAC operation referenced by <c>Context</c>. The size of the resultant MAC is
determined by the type of hash function used to generate it.</p>
</desc>
</func>
<func>
<name>hmac_final_n(Context, HashLen) -> Mac</name>
<fsummary></fsummary>
<type>
<v>Context = Mac = binary()</v>
<v>HashLen = non_neg_integer()</v>
</type>
<desc>
<p>Finalizes the HMAC operation referenced by <c>Context</c>. <c>HashLen</c> must be greater than
zero. <c>Mac</c> will be a binary with at most <c>HashLen</c> bytes. Note that if HashLen is greater than the actual number of bytes returned from the underlying hash, the returned hash will have fewer than <c>HashLen</c> bytes.</p>
</desc>
</func>
<func>
<name>sha_mac(Key, Data) -> Mac</name>
<name>sha_mac(Key, Data, MacLength) -> Mac</name>
<fsummary>Compute an <c>MD5 MAC</c>message authentification code</fsummary>
<type>
<v>Key = Data = iolist() | binary()</v>
<v>Mac = binary()</v>
<v>MacLenength = integer() =< 20 </v>
</type>
<desc>
<p>Computes an <c>SHA MAC</c> message authentification code
from <c>Key</c> and <c>Data</c>, where the default length of the Mac
is 160 bits (20 bytes).</p>
</desc>
</func>
<func>
<name>sha_mac_96(Key, Data) -> Mac</name>
<fsummary>Compute an <c>SHA MAC</c>message authentification code</fsummary>
<type>
<v>Key = Data = iolist() | binary()</v>
<v>Mac = binary()</v>
</type>
<desc>
<p>Computes an <c>SHA MAC</c> message authentification code
from <c>Key</c> and <c>Data</c>, where the length of the Mac
is 96 bits (12 bytes).</p>
</desc>
</func>
<func>
<name>des_cbc_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to DES in CBC mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to DES in CBC
mode. <c>Text</c> must be a multiple of 64 bits (8
bytes). <c>Key</c> is the DES key, and <c>IVec</c> is an
arbitrary initializing vector. The lengths of <c>Key</c> and
<c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des_cbc_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to DES in CBC mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to DES in CBC mode.
<c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary
initializing vector. <c>Key</c> and <c>IVec</c> must have
the same values as those used when encrypting. <c>Cipher</c>
must be a multiple of 64 bits (8 bytes). The lengths of
<c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des_cbc_ivec(Data) -> IVec</name>
<fsummary>Get <c>IVec</c> to be used in next iteration of
<c>des_cbc_[ecrypt|decrypt]</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>IVec = binary()</v>
</type>
<desc>
<p>Returns the <c>IVec</c> to be used in a next iteration of
<c>des_cbc_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted
data from the previous iteration step.</p>
</desc>
</func>
<func>
<name>des_cfb_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to DES in CFB mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to DES in 8-bit CFB
mode. <c>Key</c> is the DES key, and <c>IVec</c> is an
arbitrary initializing vector. The lengths of <c>Key</c> and
<c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des_cfb_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to DES in CFB mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to DES in 8-bit CFB mode.
<c>Key</c> is the DES key, and <c>IVec</c> is an arbitrary
initializing vector. <c>Key</c> and <c>IVec</c> must have
the same values as those used when encrypting. The lengths of
<c>Key</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des_cfb_ivec(IVec, Data) -> NextIVec</name>
<fsummary>Get <c>IVec</c> to be used in next iteration of
<c>des_cfb_[ecrypt|decrypt]</c></fsummary>
<type>
<v>IVec = iolist() | binary()</v>
<v>Data = iolist() | binary()</v>
<v>NextIVec = binary()</v>
</type>
<desc>
<p>Returns the <c>IVec</c> to be used in a next iteration of
<c>des_cfb_[encrypt|decrypt]</c>. <c>IVec</c> is the vector
used in the previous iteration step. <c>Data</c> is the encrypted
data from the previous iteration step.</p>
</desc>
</func>
<func>
<name>des3_cbc_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to DES3 in CBC mode</fsummary>
<type>
<v>Key1 =Key2 = Key3 Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to DES3 in CBC
mode. <c>Text</c> must be a multiple of 64 bits (8
bytes). <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES
keys, and <c>IVec</c> is an arbitrary initializing
vector. The lengths of each of <c>Key1</c>, <c>Key2</c>,
<c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des3_cbc_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to DES3 in CBC mode</fsummary>
<type>
<v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to DES3 in CBC mode.
<c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and
<c>IVec</c> is an arbitrary initializing vector.
<c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must
and <c>IVec</c> must have the same values as those used when
encrypting. <c>Cipher</c> must be a multiple of 64 bits (8
bytes). The lengths of <c>Key1</c>, <c>Key2</c>,
<c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des3_cfb_encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to DES3 in CFB mode</fsummary>
<type>
<v>Key1 =Key2 = Key3 Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to DES3 in 8-bit CFB
mode. <c>Key1</c>, <c>Key2</c>, <c>Key3</c>, are the DES
keys, and <c>IVec</c> is an arbitrary initializing
vector. The lengths of each of <c>Key1</c>, <c>Key2</c>,
<c>Key3</c> and <c>IVec</c> must be 64 bits (8 bytes).</p>
<p>May throw exception <c>notsup</c> for old OpenSSL
versions (0.9.7) that does not support this encryption mode.</p>
</desc>
</func>
<func>
<name>des3_cfb_decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to DES3 in CFB mode</fsummary>
<type>
<v>Key1 = Key2 = Key3 = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to DES3 in 8-bit CFB mode.
<c>Key1</c>, <c>Key2</c>, <c>Key3</c> are the DES key, and
<c>IVec</c> is an arbitrary initializing vector.
<c>Key1</c>, <c>Key2</c>, <c>Key3</c> and <c>IVec</c> must
and <c>IVec</c> must have the same values as those used when
encrypting. The lengths of <c>Key1</c>, <c>Key2</c>,
<c>Key3</c>, and <c>IVec</c> must be 64 bits (8 bytes).</p>
<p>May throw exception <c>notsup</c> for old OpenSSL
versions (0.9.7) that does not support this encryption mode.</p>
</desc>
</func>
<func>
<name>des_ecb_encrypt(Key, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to DES in ECB mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to DES in ECB mode.
<c>Key</c> is the DES key. The lengths of <c>Key</c> and
<c>Text</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>des_ecb_decrypt(Key, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to DES in ECB mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to DES in ECB mode.
<c>Key</c> is the DES key. The lengths of <c>Key</c> and
<c>Cipher</c> must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_ecb_encrypt(Key, Text) -> Cipher</name>
<fsummary>Encrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>Cipher = binary()</v>
</type>
<desc>
<p>Encrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_ecb_decrypt(Key, Text) -> Cipher</name>
<fsummary>Decrypt the first 64 bits of <c>Text</c> using Blowfish in ECB mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>Cipher = binary()</v>
</type>
<desc>
<p>Decrypts the first 64 bits of <c>Text</c> using Blowfish in ECB mode. <c>Key</c> is the Blowfish key. The length of <c>Text</c> must be at least 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_cbc_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c> using Blowfish in CBC mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
arbitrary initializing vector. The length of <c>IVec</c>
must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple of 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_cbc_decrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Decrypt <c>Text</c> using Blowfish in CBC mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Decrypts <c>Text</c> using Blowfish in CBC mode. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
arbitrary initializing vector. The length of <c>IVec</c>
must be 64 bits (8 bytes). The length of <c>Text</c> must be a multiple 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_cfb64_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>using Blowfish in CFB mode with 64
bit feedback</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> using Blowfish in CFB mode with 64 bit
feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
arbitrary initializing vector. The length of <c>IVec</c>
must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_cfb64_decrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Decrypt <c>Text</c>using Blowfish in CFB mode with 64
bit feedback</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Decrypts <c>Text</c> using Blowfish in CFB mode with 64 bit
feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
arbitrary initializing vector. The length of <c>IVec</c>
must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>blowfish_ofb64_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>using Blowfish in OFB mode with 64
bit feedback</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> using Blowfish in OFB mode with 64 bit
feedback. <c>Key</c> is the Blowfish key, and <c>IVec</c> is an
arbitrary initializing vector. The length of <c>IVec</c>
must be 64 bits (8 bytes).</p>
</desc>
</func>
<func>
<name>aes_cfb_128_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to AES in Cipher Feedback mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to AES in Cipher Feedback
mode (CFB). <c>Key</c> is the
AES key, and <c>IVec</c> is an arbitrary initializing vector.
The lengths of <c>Key</c> and <c>IVec</c> must be 128 bits
(16 bytes).</p>
</desc>
</func>
<func>
<name>aes_cfb_128_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to AES in Cipher Feedback mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to AES in Cipher Feedback Mode (CFB).
<c>Key</c> is the AES key, and <c>IVec</c> is an arbitrary
initializing vector. <c>Key</c> and <c>IVec</c> must have
the same values as those used when encrypting. The lengths of
<c>Key</c> and <c>IVec</c> must be 128 bits (16 bytes).</p>
</desc>
</func>
<func>
<name>aes_cbc_128_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to AES in Cipher Block Chaining mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to AES in Cipher Block Chaining
mode (CBC). <c>Text</c>
must be a multiple of 128 bits (16 bytes). <c>Key</c> is the
AES key, and <c>IVec</c> is an arbitrary initializing vector.
The lengths of <c>Key</c> and <c>IVec</c> must be 128 bits
(16 bytes).</p>
</desc>
</func>
<func>
<name>aes_cbc_128_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to AES in Cipher Block Chaining mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to AES in Cipher Block
Chaining mode (CBC).
<c>Key</c> is the AES key, and <c>IVec</c> is an arbitrary
initializing vector. <c>Key</c> and <c>IVec</c> must have
the same values as those used when encrypting. <c>Cipher</c>
must be a multiple of 128 bits (16 bytes). The lengths of
<c>Key</c> and <c>IVec</c> must be 128 bits (16 bytes).</p>
</desc>
</func>
<func>
<name>aes_cbc_ivec(Data) -> IVec</name>
<fsummary>Get <c>IVec</c> to be used in next iteration of
<c>aes_cbc_*_[ecrypt|decrypt]</c></fsummary>
<type>
<v>Data = iolist() | binary()</v>
<v>IVec = binary()</v>
</type>
<desc>
<p>Returns the <c>IVec</c> to be used in a next iteration of
<c>aes_cbc_*_[encrypt|decrypt]</c>. <c>Data</c> is the encrypted
data from the previous iteration step.</p>
</desc>
</func>
<func>
<name>aes_ctr_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to AES in Counter mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>IVec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to AES in Counter mode (CTR). <c>Text</c>
can be any number of bytes. <c>Key</c> is the AES key and must be either
128, 192 or 256 bits long. <c>IVec</c> is an arbitrary initializing vector of 128 bits
(16 bytes).</p>
</desc>
</func>
<func>
<name>aes_ctr_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypt <c>Cipher</c>according to AES in Counter mode</fsummary>
<type>
<v>Key = Cipher = iolist() | binary()</v>
<v>IVec = Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to AES in Counter mode (CTR). <c>Cipher</c>
can be any number of bytes. <c>Key</c> is the AES key and must be either
128, 192 or 256 bits long. <c>IVec</c> is an arbitrary initializing vector of 128 bits
(16 bytes).</p>
</desc>
</func>
<func>
<name>aes_ctr_stream_init(Key, IVec) -> State</name>
<fsummary></fsummary>
<type>
<v>State = { K, I, E, C }</v>
<v>Key = K = iolist()</v>
<v>IVec = I = E = binary()</v>
<v>C = integer()</v>
</type>
<desc>
<p>Initializes the state for use in streaming AES encryption using Counter mode (CTR).
<c>Key</c> is the AES key and must be either 128, 192, or 256 bts long. <c>IVec</c> is
an arbitrary initializing vector of 128 bits (16 bytes). This state is for use with
<seealso marker="#aes_ctr_stream_encrypt/2">aes_ctr_stream_encrypt</seealso> and
<seealso marker="#aes_ctr_stream_decrypt/2">aes_ctr_stream_decrypt</seealso>.</p>
</desc>
</func>
<func>
<name>aes_ctr_stream_encrypt(State, Text) -> { NewState, Cipher}</name>
<fsummary></fsummary>
<type>
<v>Text = iolist() | binary()</v>
<v>Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to AES in Counter mode (CTR). This function can be
used to encrypt a stream of text using a series of calls instead of requiring all
text to be in memory. <c>Text</c> can be any number of bytes. State is initialized using
<seealso marker="#aes_ctr_stream_init/2">aes_ctr_stream_init</seealso>. <c>NewState</c> is the new streaming
encryption state that must be passed to the next call to <c>aes_ctr_stream_encrypt</c>.
<c>Cipher</c> is the encrypted cipher text.</p>
</desc>
</func>
<func>
<name>aes_ctr_stream_decrypt(State, Cipher) -> { NewState, Text }</name>
<fsummary></fsummary>
<type>
<v>Cipher = iolist() | binary()</v>
<v>Text = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to AES in Counter mode (CTR). This function can be
used to decrypt a stream of ciphertext using a series of calls instead of requiring all
ciphertext to be in memory. <c>Cipher</c> can be any number of bytes. State is initialized using
<seealso marker="#aes_ctr_stream_init/2">aes_ctr_stream_init</seealso>. <c>NewState</c> is the new streaming
encryption state that must be passed to the next call to <c>aes_ctr_stream_encrypt</c>.
<c>Text</c> is the decrypted data.</p>
</desc>
</func>
<func>
<name>erlint(Mpint) -> N</name>
<name>mpint(N) -> Mpint</name>
<fsummary>Convert between binary multi-precision integer and erlang big integer</fsummary>
<type>
<v>Mpint = binary()</v>
<v>N = integer()</v>
</type>
<desc>
<p>Convert a binary multi-precision integer <c>Mpint</c> to and from
an erlang big integer. A multi-precision integer is a binary
with the following form:
<c><![CDATA[<<ByteLen:32/integer, Bytes:ByteLen/binary>>]]></c> where both
<c>ByteLen</c> and <c>Bytes</c> are big-endian. Mpints are used in
some of the functions in <c>crypto</c> and are not translated
in the API for performance reasons.</p>
</desc>
</func>
<func>
<name>rand_bytes(N) -> binary()</name>
<fsummary>Generate a binary of random bytes</fsummary>
<type>
<v>N = integer()</v>
</type>
<desc>
<p>Generates N bytes randomly uniform 0..255, and returns the
result in a binary. Uses the <c>crypto</c> library pseudo-random
number generator.</p>
</desc>
</func>
<func>
<name>strong_rand_bytes(N) -> binary()</name>
<fsummary>Generate a binary of random bytes</fsummary>
<type>
<v>N = integer()</v>
</type>
<desc>
<p>Generates N bytes randomly uniform 0..255, and returns the
result in a binary. Uses a cryptographically secure prng seeded and
periodically mixed with operating system provided entropy. By default
this is the <c>RAND_bytes</c> method from OpenSSL.</p>
<p>May throw exception <c>low_entropy</c> in case the random generator
failed due to lack of secure "randomness".</p>
</desc>
</func>
<func>
<name>rand_uniform(Lo, Hi) -> N</name>
<fsummary>Generate a random number</fsummary>
<type>
<v>Lo, Hi, N = Mpint | integer()</v>
<v>Mpint = binary()</v>
</type>
<desc>
<p>Generate a random number <c><![CDATA[N, Lo =< N < Hi.]]></c> Uses the
<c>crypto</c> library pseudo-random number generator. The
arguments (and result) can be either erlang integers or binary
multi-precision integers. <c>Hi</c> must be larger than <c>Lo</c>.</p>
</desc>
</func>
<func>
<name>strong_rand_mpint(N, Top, Bottom) -> Mpint</name>
<fsummary>Generate an N bit random number</fsummary>
<type>
<v>N = non_neg_integer()</v>
<v>Top = -1 | 0 | 1</v>
<v>Bottom = 0 | 1</v>
<v>Mpint = binary()</v>
</type>
<desc>
<p>Generate an N bit random number using OpenSSL's
cryptographically strong pseudo random number generator
<c>BN_rand</c>.</p>
<p>The parameter <c>Top</c> places constraints on the most
significant bits of the generated number. If <c>Top</c> is 1, then the
two most significant bits will be set to 1, if <c>Top</c> is 0, the
most significant bit will be 1, and if <c>Top</c> is -1 then no
constraints are applied and thus the generated number may be less than
N bits long.</p>
<p>If <c>Bottom</c> is 1, then the generated number is
constrained to be odd.</p>
<p>May throw exception <c>low_entropy</c> in case the random generator
failed due to lack of secure "randomness".</p>
</desc>
</func>
<func>
<name>mod_exp(N, P, M) -> Result</name>
<fsummary>Perform N ^ P mod M</fsummary>
<type>
<v>N, P, M, Result = Mpint</v>
<v>Mpint = binary()</v>
</type>
<desc>
<p>This function performs the exponentiation <c>N ^ P mod M</c>,
using the <c>crypto</c> library.</p>
</desc>
</func>
<func>
<name>mod_exp_prime(N, P, M) -> Result</name>
<fsummary>Computes the function: N^P mod M</fsummary>
<type>
<v>N, P, M = binary()</v>
<v>Result = binary() | error</v>
</type>
<desc>
<p>Computes the function <c>N^P mod M</c>.</p>
</desc>
</func>
<func>
<name>rsa_sign(DataOrDigest, Key) -> Signature</name>
<name>rsa_sign(DigestType, DataOrDigest, Key) -> Signature</name>
<fsummary>Sign the data using rsa with the given key.</fsummary>
<type>
<v>DataOrDigest = Data | {digest,Digest}</v>
<v>Data = Mpint</v>
<v>Digest = binary()</v>
<v>Key = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v>
<v>E, N, D = Mpint</v>
<d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and
<c>D</c> is the private exponent.</d>
<v>P1, P2, E1, E2, C = Mpint</v>
<d>The longer key format contains redundant information that will make
the calculation faster. <c>P1,P2</c> are first and second prime factors.
<c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient.
Terminology is taken from RFC 3447.</d>
<v>DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512</v>
<d>The default <c>DigestType</c> is sha.</d>
<v>Mpint = binary()</v>
<v>Signature = binary()</v>
</type>
<desc>
<p>Creates a RSA signature with the private key <c>Key</c>
of a digest. The digest is either calculated as a
<c>DigestType</c> digest of <c>Data</c> or a precalculated
binary <c>Digest</c>.</p>
</desc>
</func>
<func>
<name>rsa_verify(DataOrDigest, Signature, Key) -> Verified</name>
<name>rsa_verify(DigestType, DataOrDigest, Signature, Key) -> Verified </name>
<fsummary>Verify the digest and signature using rsa with given public key.</fsummary>
<type>
<v>Verified = boolean()</v>
<v>DataOrDigest = Data | {digest|Digest}</v>
<v>Data, Signature = Mpint</v>
<v>Digest = binary()</v>
<v>Key = [E, N]</v>
<v>E, N = Mpint</v>
<d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d>
<v>DigestType = md5 | sha | sha224 | sha256 | sha384 | sha512</v>
<d>The default <c>DigestType</c> is sha.</d>
<v>Mpint = binary()</v>
</type>
<desc>
<p>Verifies that a digest matches the RSA signature using the
signer's public key <c>Key</c>.
The digest is either calculated as a <c>DigestType</c>
digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p>
<p>May throw exception <c>notsup</c> in case the chosen <c>DigestType</c>
is not supported by the underlying OpenSSL implementation.</p>
</desc>
</func>
<func>
<name>rsa_public_encrypt(PlainText, PublicKey, Padding) -> ChipherText</name>
<fsummary>Encrypts Msg using the public Key.</fsummary>
<type>
<v>PlainText = binary()</v>
<v>PublicKey = [E, N]</v>
<v>E, N = Mpint</v>
<d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus.</d>
<v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v>
<v>ChipherText = binary()</v>
</type>
<desc>
<p>Encrypts the <c>PlainText</c> (usually a session key) using the <c>PublicKey</c>
and returns the cipher. The <c>Padding</c> decides what padding mode is used,
<c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most
used mode and <c>rsa_pkcs1_oaep_padding</c> is EME-OAEP as
defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding
parameter. This mode is recommended for all new applications.
The size of the <c>Msg</c> must be less
than <c>byte_size(N)-11</c> if
<c>rsa_pkcs1_padding</c> is used, <c>byte_size(N)-41</c> if
<c>rsa_pkcs1_oaep_padding</c> is used and <c>byte_size(N)</c> if <c>rsa_no_padding</c>
is used.
Where byte_size(N) is the size part of an <c>Mpint-1</c>.
</p>
</desc>
</func>
<func>
<name>rsa_private_decrypt(ChipherText, PrivateKey, Padding) -> PlainText</name>
<fsummary>Decrypts ChipherText using the private Key.</fsummary>
<type>
<v>ChipherText = binary()</v>
<v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v>
<v>E, N, D = Mpint</v>
<d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and
<c>D</c> is the private exponent.</d>
<v>P1, P2, E1, E2, C = Mpint</v>
<d>The longer key format contains redundant information that will make
the calculation faster. <c>P1,P2</c> are first and second prime factors.
<c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient.
Terminology is taken from RFC 3447.</d>
<v>Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding</v>
<v>PlainText = binary()</v>
</type>
<desc>
<p>Decrypts the <c>ChipherText</c> (usually a session key encrypted with
<seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>)
using the <c>PrivateKey</c> and returns the
message. The <c>Padding</c> is the padding mode that was
used to encrypt the data,
see <seealso marker="#rsa_public_encrypt/3">rsa_public_encrypt/3</seealso>.
</p>
</desc>
</func>
<func>
<name>rsa_private_encrypt(PlainText, PrivateKey, Padding) -> ChipherText</name>
<fsummary>Encrypts Msg using the private Key.</fsummary>
<type>
<v>PlainText = binary()</v>
<v>PrivateKey = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</v>
<v>E, N, D = Mpint</v>
<d>Where <c>E</c> is the public exponent, <c>N</c> is public modulus and
<c>D</c> is the private exponent.</d>
<v>P1, P2, E1, E2, C = Mpint</v>
<d>The longer key format contains redundant information that will make
the calculation faster. <c>P1,P2</c> are first and second prime factors.
<c>E1,E2</c> are first and second exponents. <c>C</c> is the CRT coefficient.
Terminology is taken from RFC 3447.</d>
<v>Padding = rsa_pkcs1_padding | rsa_no_padding</v>
<v>ChipherText = binary()</v>
</type>
<desc>
<p>Encrypts the <c>PlainText</c> using the <c>PrivateKey</c>
and returns the cipher. The <c>Padding</c> decides what padding mode is used,
<c>rsa_pkcs1_padding</c> is PKCS #1 v1.5 currently the most
used mode.
The size of the <c>Msg</c> must be less than <c>byte_size(N)-11</c> if
<c>rsa_pkcs1_padding</c> is used, and <c>byte_size(N)</c> if <c>rsa_no_padding</c>
is used. Where byte_size(N) is the size part of an <c>Mpint-1</c>.
</p>
</desc>
</func>
<func>
<name>rsa_public_decrypt(ChipherText, PublicKey, Padding) -> PlainText</name>
<fsummary>Decrypts ChipherText using the public Key.</fsummary>
<type>
<v>ChipherText = binary()</v>
<v>PublicKey = [E, N]</v>
<v>E, N = Mpint</v>
<d>Where <c>E</c> is the public exponent and <c>N</c> is public modulus</d>
<v>Padding = rsa_pkcs1_padding | rsa_no_padding</v>
<v>PlainText = binary()</v>
</type>
<desc>
<p>Decrypts the <c>ChipherText</c> (encrypted with
<seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>)
using the <c>PrivateKey</c> and returns the
message. The <c>Padding</c> is the padding mode that was
used to encrypt the data,
see <seealso marker="#rsa_private_encrypt/3">rsa_private_encrypt/3</seealso>.
</p>
</desc>
</func>
<func>
<name>dss_sign(DataOrDigest, Key) -> Signature</name>
<name>dss_sign(DigestType, DataOrDigest, Key) -> Signature</name>
<fsummary>Sign the data using dsa with given private key.</fsummary>
<type>
<v>DigestType = sha</v>
<v>DataOrDigest = Mpint | {digest,Digest}</v>
<v>Key = [P, Q, G, X]</v>
<v>P, Q, G, X = Mpint</v>
<d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss
parameters and <c>X</c> is the private key.</d>
<v>Digest = binary() with length 20 bytes</v>
<v>Signature = binary()</v>
</type>
<desc>
<p>Creates a DSS signature with the private key <c>Key</c> of
a digest. The digest is either calculated as a SHA1
digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p>
<p>A deprecated feature is having <c>DigestType = 'none'</c>
in which case <c>DataOrDigest</c> is a precalculated SHA1
digest.</p>
</desc>
</func>
<func>
<name>dss_verify(DataOrDigest, Signature, Key) -> Verified</name>
<name>dss_verify(DigestType, DataOrDigest, Signature, Key) -> Verified</name>
<fsummary>Verify the data and signature using dsa with given public key.</fsummary>
<type>
<v>Verified = boolean()</v>
<v>DigestType = sha</v>
<v>DataOrDigest = Mpint | {digest,Digest}</v>
<v>Data = Mpint | ShaDigest</v>
<v>Signature = Mpint</v>
<v>Key = [P, Q, G, Y]</v>
<v>P, Q, G, Y = Mpint</v>
<d> Where <c>P</c>, <c>Q</c> and <c>G</c> are the dss
parameters and <c>Y</c> is the public key.</d>
<v>Digest = binary() with length 20 bytes</v>
</type>
<desc>
<p>Verifies that a digest matches the DSS signature using the
public key <c>Key</c>. The digest is either calculated as a SHA1
digest of <c>Data</c> or is a precalculated binary <c>Digest</c>.</p>
<p>A deprecated feature is having <c>DigestType = 'none'</c>
in which case <c>DataOrDigest</c> is a precalculated SHA1
digest binary.</p>
</desc>
</func>
<func>
<name>rc2_cbc_encrypt(Key, IVec, Text) -> Cipher</name>
<fsummary>Encrypt <c>Text</c>according to RC2 in CBC mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>Ivec = Cipher = binary()</v>
</type>
<desc>
<p>Encrypts <c>Text</c> according to RC2 in CBC mode.</p>
</desc>
</func>
<func>
<name>rc2_cbc_decrypt(Key, IVec, Cipher) -> Text</name>
<fsummary>Decrypts <c>Cipher</c>according to RC2 in CBC mode</fsummary>
<type>
<v>Key = Text = iolist() | binary()</v>
<v>Ivec = Cipher = binary()</v>
</type>
<desc>
<p>Decrypts <c>Cipher</c> according to RC2 in CBC mode.</p>
</desc>
</func>
<func>
<name>rc4_encrypt(Key, Data) -> Result</name>
<fsummary>Encrypt data using RC4</fsummary>
<type>
<v>Key, Data = iolist() | binary()</v>
<v>Result = binary()</v>
</type>
<desc>
<p>Encrypts the data with RC4 symmetric stream encryption.
Since it is symmetric, the same function is used for
decryption.</p>
</desc>
</func>
<func>
<name>dh_generate_key(DHParams) -> {PublicKey,PrivateKey} </name>
<name>dh_generate_key(PrivateKey, DHParams) -> {PublicKey,PrivateKey} </name>
<fsummary>Generates a Diffie-Hellman public key</fsummary>
<type>
<v>DHParameters = [P, G]</v>
<v>P, G = Mpint</v>
<d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d>
<v>PublicKey, PrivateKey = Mpint()</v>
</type>
<desc>
<p>Generates a Diffie-Hellman <c>PublicKey</c> and <c>PrivateKey</c> (if not given).
</p>
</desc>
</func>
<func>
<name>dh_compute_key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret</name>
<fsummary>Computes the shared secret</fsummary>
<type>
<v>DHParameters = [P, G]</v>
<v>P, G = Mpint</v>
<d> Where <c>P</c> is the shared prime number and <c>G</c> is the shared generator.</d>
<v>OthersPublicKey, MyPrivateKey = Mpint()</v>
<v>SharedSecret = binary()</v>
</type>
<desc>
<p>Computes the shared secret from the private key and the other party's public key.
</p>
</desc>
</func>
<func>
<name>srp_generate_key(Generator, Prime, Version) -> {PublicKey, PrivateKey} </name>
<name>srp_generate_key(Generator, Prime, Version, Private) -> {PublicKey, PrivateKey} </name>
<name>srp_generate_key(Verifier, Generator, Prime, Version) -> {PublicKey, PrivateKey} </name>
<name>srp_generate_key(Verifier, Generator, Prime, Version, Private) -> {PublicKey, PrivateKey} </name>
<fsummary>Generates SRP public keys</fsummary>
<type>
<v>Verifier = binary()</v>
<d>Parameter v from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Generator = binary() </v>
<d>Parameter g from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Prime = binary() </v>
<d>Parameter N from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Version = '3' | '6' | '6a' </v>
<d>SRP version, TLS SRP cipher suites uses '6a'.</d>
<v>PublicKey = binary()</v>
<d> Parameter A or B from <url href="http://srp.stanford.edu/design.html">SRP design</url></d>
<v>Private = PrivateKey = binary() - generated if not supplied</v>
<d>Parameter a or b from <url href="http://srp.stanford.edu/design.html">SRP design</url></d>
</type>
<desc>
<p>Generates SRP public keys for the client side (first argument is Generator)
or for the server side (first argument is Verifier).</p>
</desc>
</func>
<func>
<name>srp_compute_key(DerivedKey, Prime, Generator,
ClientPublic, ClientPrivate, ServerPublic, Version) -> SessionKey</name>
<name>srp_compute_key(DerivedKey, Prime, Generator,
ClientPublic, ClientPrivate, ServerPublic, Version, Scrambler) -> SessionKey</name>
<name>srp_compute_key(Verifier, Prime,
ClientPublic, ServerPublic, ServerPrivate, Version, Scrambler)-> SessionKey</name>
<name>srp_compute_key(Verifier, Prime,
ClientPublic, ServerPublic, ServerPrivate, Version) -> SessionKey</name>
<fsummary>Computes SRP session key</fsummary>
<type>
<v>DerivedKey = binary()</v>
<d>Parameter x from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Verifier = binary()</v>
<d>Parameter v from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Prime = binary() </v>
<d>Parameter N from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Generator = binary() </v>
<d>Parameter g from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>ClientPublic = binary() </v>
<d>Parameter A from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>ClientPrivate = binary() </v>
<d>Parameter a from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>ServerPublic = binary() </v>
<d>Parameter B from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>ServerPrivate = binary() </v>
<d>Parameter b from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
<v>Version = '3' | '6' | '6a' </v>
<d>SRP version, TLS SRP cipher suites uses '6a'.</d>
<v>SessionKey = binary()</v>
<d>Result K from <url href="http://srp.stanford.edu/design.html">SRP design</url>
</d>
</type>
<desc>
<p>
Computes the SRP session key (shared secret) for the client side (first argument is DerivedKey)
or for the server side (first argument is Verifier). Also used
as premaster secret by TLS-SRP cipher suites.
</p>
</desc>
</func>
<func>
<name>ec_key_new(NamedCurve) -> ECKey</name>
<type>
<v>NamedCurve = atom()</v>
<v>ECKey = EC key resource()</v>
</type>
<desc>
<p>Generate an new EC key from the named curve. The private key
will be initialized with random data.
</p>
</desc>
</func>
<func>
<name>ec_key_generate(ECKey) -> ok | error</name>
<type>
<v>ECKey = EC key resource()</v>
</type>
<desc>
<p>Fills in the public key if only the private key is known or generates
a new private/public key pair if only the curve parameters are known.
</p>
</desc>
</func>
<func>
<name>ec_key_to_term(ECKey) -> ECKeyTerm.</name>
<type>
<v>ECKey = EC key resource()</v>
<v>ECKeyTerm = EC key as Erlang term</v>
</type>
<desc>
<p>Convert a EC key from a NIF resource into an Erlang term.
</p>
</desc>
</func>
<func>
<name>term_to_ec_key(ECKeyTerm) -> ECKey</name>
<type>
<v>ECKeyTerm = EC key as Erlang term</v>
<v>ECKey = EC key resource()</v>
</type>
<desc>
<p>Convert a EC key an Erlang term into a NIF resource.
</p>
</desc>
</func>
<func>
<name>ecdsa_sign(DataOrDigest, ECKey) -> Signature</name>
<name>ecdsa_sign(DigestType, DataOrDigest, ECKey) -> Signature</name>
<fsummary>Sign the data using ecdsa with the given key.</fsummary>
<type>
<v>DataOrDigest = Data | {digest,Digest}</v>
<v>Data = Mpint</v>
<v>Digest = binary()</v>
<v>ECKey = EC key resource()</v>
<v>DigestType = md5 | sha | sha256 | sha384 | sha512</v>
<d>The default <c>DigestType</c> is sha.</d>
<v>Mpint = binary()</v>
<v>Signature = binary()</v>
</type>
<desc>
<p>Creates a ESDSA signature with the private key <c>Key</c>
of a digest. The digest is either calculated as a
<c>DigestType</c> digest of <c>Data</c> or a precalculated
binary <c>Digest</c>.</p>
</desc>
</func>
<func>
<name>ecdsa_verify(DataOrDigest, Signature, ECKey) -> Verified</name>
<name>ecdsa_verify(DigestType, DataOrDigest, Signature, ECKey) -> Verified </name>
<fsummary>Verify the digest and signature using ecdsa with given public key.</fsummary>
<type>
<v>Verified = boolean()</v>
<v>DataOrDigest = Data | {digest|Digest}</v>
<v>Data, Signature = Mpint</v>
<v>Digest = binary()</v>
<v>ECKey = EC key resource()</v>
<v>DigestType = md5 | sha | sha256 | sha384 | sha512</v>
<d>The default <c>DigestType</c> is sha.</d>
<v>Mpint = binary()</v>
</type>
<desc>
<p>Verifies that a digest matches the ECDSA signature using the
signer's public key <c>Key</c>.
The digest is either calculated as a <c>DigestType</c>
digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p>
<p>May throw exception <c>notsup</c> in case the chosen <c>DigestType</c>
is not supported by the underlying OpenSSL implementation.</p>
</desc>
</func>
<func>
<name>ecdh_compute_key(OthersPublicKey, MyPrivateKey) -> SharedSecret</name>
<name>ecdh_compute_key(OthersPublicKey, MyECPoint) -> SharedSecret</name>
<fsummary>Computes the shared secret</fsummary>
<type>
<v>OthersPublicKey, MyPrivateKey = ECKey()</v>
<v>MyPrivatePoint = binary()</v>
<v>SharedSecret = binary()</v>
</type>
<desc>
<p>Computes the shared secret from the private key and the other party's public key.
</p>
</desc>
</func>
<func>
<name>exor(Data1, Data2) -> Result</name>
<fsummary>XOR data</fsummary>
<type>
<v>Data1, Data2 = iolist() | binary()</v>
<v>Result = binary()</v>
</type>
<desc>
<p>Performs bit-wise XOR (exclusive or) on the data supplied.</p>
</desc>
</func>
</funcs>
<section>
<title>Elliptic Curve Key</title>
<p>Elliptic Curve keys consist of the curve paramters and a the
private and public keys (points on the curve). Translating the
raw curve paraters into something usable for the underlying
OpenSSL implementation is a complicated process. The main cryptografic
functions therefore expect a NIF resource as input that contains the
key in an internal format. Two functions <b>ec_key_to_term/1</b>
and <b>term_to_ec_key</b> are provided to convert between Erlang
terms and the resource format</p>
<p><em>Key in term form</em></p>
<pre>
ec_named_curve() = atom()
ec_point() = binary()
ec_basis() = {tpbasis, K :: non_neg_integer()} | {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} | onbasis
ec_field() = {prime_field, Prime :: Mpint()} | {characteristic_two_field, M :: integer(), Basis :: ec_basis()}
ec_prime() = {A :: Mpint(), B :: Mpint(), Seed :: binary()}
ec_curve_spec() = {Field :: ec_field(), Prime :: ec_prime(), Point :: ec_point(), Order :: Mpint(), CoFactor :: none | Mpint()}
ec_curve() = ec_named_curve() | ec_curve_spec()
ec_key() = {Curve :: ec_curve(), PrivKey :: Mpint() | undefined, PubKey :: ec_point() | undefined}
</pre>
</section>
<section>
<title>DES in CBC mode</title>
<p>The Data Encryption Standard (DES) defines an algorithm for
encrypting and decrypting an 8 byte quantity using an 8 byte key
(actually only 56 bits of the key is used).
</p>
<p>When it comes to encrypting and decrypting blocks that are
multiples of 8 bytes various modes are defined (NIST SP
800-38A). One of those modes is the Cipher Block Chaining (CBC)
mode, where the encryption of an 8 byte segment depend not only
of the contents of the segment itself, but also on the result of
encrypting the previous segment: the encryption of the previous
segment becomes the initializing vector of the encryption of the
current segment.
</p>
<p>Thus the encryption of every segment depends on the encryption
key (which is secret) and the encryption of the previous
segment, except the first segment which has to be provided with
an initial initializing vector. That vector could be chosen at
random, or be a counter of some kind. It does not have to be
secret.
</p>
<p>The following example is drawn from the old FIPS 81 standard
(replaced by NIST SP 800-38A), where both the plain text and the
resulting cipher text is settled. The following code fragment
returns `true'.
</p>
<pre><![CDATA[
Key = <<16#01,16#23,16#45,16#67,16#89,16#ab,16#cd,16#ef>>,
IVec = <<16#12,16#34,16#56,16#78,16#90,16#ab,16#cd,16#ef>>,
P = "Now is the time for all ",
C = crypto:des_cbc_encrypt(Key, IVec, P),
% Which is the same as
P1 = "Now is t", P2 = "he time ", P3 = "for all ",
C1 = crypto:des_cbc_encrypt(Key, IVec, P1),
C2 = crypto:des_cbc_encrypt(Key, C1, P2),
C3 = crypto:des_cbc_encrypt(Key, C2, P3),
C = <<C1/binary, C2/binary, C3/binary>>,
C = <<16#e5,16#c7,16#cd,16#de,16#87,16#2b,16#f2,16#7c,
16#43,16#e9,16#34,16#00,16#8c,16#38,16#9c,16#0f,
16#68,16#37,16#88,16#49,16#9a,16#7c,16#05,16#f6>>,
<<"Now is the time for all ">> ==
crypto:des_cbc_decrypt(Key, IVec, C).
]]></pre>
<p>The following is true for the DES CBC mode. For all
decompositions <c>P1 ++ P2 = P</c> of a plain text message
<c>P</c> (where the length of all quantities are multiples of 8
bytes), the encryption <c>C</c> of <c>P</c> is equal to <c>C1 ++
C2</c>, where <c>C1</c> is obtained by encrypting <c>P1</c> with
<c>Key</c> and the initializing vector <c>IVec</c>, and where
<c>C2</c> is obtained by encrypting <c>P2</c> with <c>Key</c>
and the initializing vector <c>last8(C1)</c>,
where <c>last(Binary)</c> denotes the last 8 bytes of the
binary <c>Binary</c>.
</p>
<p>Similarly, for all decompositions <c>C1 ++ C2 = C</c> of a
cipher text message <c>C</c> (where the length of all quantities
are multiples of 8 bytes), the decryption <c>P</c> of <c>C</c>
is equal to <c>P1 ++ P2</c>, where <c>P1</c> is obtained by
decrypting <c>C1</c> with <c>Key</c> and the initializing vector
<c>IVec</c>, and where <c>P2</c> is obtained by decrypting
<c>C2</c> with <c>Key</c> and the initializing vector
<c>last8(C1)</c>, where <c>last8(Binary)</c> is as above.
</p>
<p>For DES3 (which uses three 64 bit keys) the situation is the
same.
</p>
</section>
</erlref>
|