1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2014</year><year>2019</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>New and Old API</title>
<prepared>Hans Nilsson</prepared>
<docno></docno>
<date>2019-08-22</date>
<rev>A</rev>
<file>new_api.xml</file>
</header>
<p>
This chapter describes the new api to encryption and decryption.
</p>
<section>
<title>Background</title>
<p>The CRYPTO app has evolved during its lifetime. Since also the OpenSSL cryptolib has changed the
API several times, there are parts of the CRYPTO app that uses a very old one internally and
other parts that uses the latest one. The internal definitions of e.g cipher names was a bit hard
to maintain.
</p>
<p>It turned out that using the old api in the new way (more about that later), and still keep it
backwards compatible, was not possible. Specially as more precision in the error messages was wanted
it could not be combined with the old standard.
</p>
<p>Therefore the old api (see next section) is kept for now but internally implemented with new primitives.
</p>
</section>
<section>
<title>The old API</title>
<p>The old functions - not recommended for new programs - are:</p>
<list>
<item><seealso marker="crypto#block_encrypt-3">block_encrypt/3</seealso></item>
<item><seealso marker="crypto#block_encrypt-4">block_encrypt/4</seealso></item>
<item><seealso marker="crypto#block_decrypt-3">block_decrypt/3</seealso></item>
<item><seealso marker="crypto#block_decrypt-4">block_decrypt/4</seealso></item>
<item><seealso marker="crypto#stream_init-2">stream_init/2</seealso></item>
<item><seealso marker="crypto#stream_init-2">stream_init/3</seealso></item>
<item><seealso marker="crypto#stream_encrypt-2">stream_encrypt/2</seealso></item>
<item><seealso marker="crypto#stream_decrypt-2">stream_decrypt/2</seealso></item>
</list>
<p>They are not deprecated for now, but may be in a future.
</p>
</section>
<section>
<title>The new API</title>
<p>The new functions for encrypting or decrypting one single binary are:
</p>
<list>
<item><seealso marker="crypto#crypto_one_time/4">crypto_one_time/4</seealso></item>
<item><seealso marker="crypto#crypto_one_time/5">crypto_one_time/5</seealso></item>
<item><seealso marker="crypto#crypto_one_time_aead/6">crypto_one_time_aead/6</seealso></item>
<item><seealso marker="crypto#crypto_one_time_aead/7">crypto_one_time_aead/7</seealso></item>
</list>
<p>In those functions the internal crypto state is first created and initialized
with the cipher type, the key and possibly other data. Then the data is encrypted or decrypted,
the crypto state is de-allocated and the result of the crypto operation is returned.
</p>
<p>The <c>crypto_one_time_aead</c> functions are for the ciphers of mode <c>ccm</c> or
<c>gcm</c>, and for the cipher <c>chacha20-poly1305</c>.
</p>
<p>For repeated encryption or decryption of a text divided in parts, where the internal
crypto state is initialized once, and then many binaries are encrypted or decrypted with
the same state, the functions are:
</p>
<list>
<item><seealso marker="crypto#crypto_init/4">crypto_init/4</seealso></item>
<item><seealso marker="crypto#crypto_init/3">crypto_init/3</seealso></item>
<item><seealso marker="crypto#crypto_update/2">crypto_update/2</seealso></item>
</list>
<p>The <c>crypto_init</c> initialies an internal cipher state, and one or more calls of
<c>crypto_update</c> does the acual encryption or decryption. Note that AEAD ciphers
can't be handled this way due to their nature.
</p>
<p>Finally, for repeated encryption or decryption of a text divided in parts where the
same cipher and same key is used, but a new initialization vector (nounce) should be applied
for each part, the functions are:
</p>
<list>
<item><seealso marker="crypto#crypto_dyn_iv_init/3">crypto_dyn_iv_init/3</seealso></item>
<item><seealso marker="crypto#crypto_dyn_iv_update/3">crypto_dyn_iv_update/3</seealso></item>
</list>
<p>An example of where those functions are needed, is when handling the TLS protocol.</p>
<section>
<title>Examples of crypto_init/4 and crypto_update/2</title>
<p>Encrypting two blocks:</p>
<code type="erl">
1> crypto:start().
ok
2> Key = <<1:128>>.
2> IV = <<0:128>>.
2> StateEnc = crypto:crypto_init(aes_128_ctr, Key, IV, true). % encrypt -> true
#Ref<0.3768901617.1128660993.124047>
3> crypto:crypto_update(StateEnc, <<"First bytes">>).
<<67,44,216,166,25,130,203,5,66,6,162>>
4> crypto:crypto_update(StateEnc, <<"Second bytes">>).
<<16,79,94,115,234,197,94,253,16,144,151,41>>
5>
5> StateDec = crypto:crypto_init(aes_128_ctr, Key, IV, false). % decrypt -> false
#Ref<0.3768901617.1128660994.124255>
6> crypto:crypto_update(StateDec, <<67,44,216,166,25,130,203>>).
<<"First b">>
7> crypto:crypto_update(StateDec, <<5,66,6,162,16,79,94,115,234,197,
94,253,16,144,151>>).
<<"ytesSecond byte">>
8> crypto:crypto_update(StateDec, <<41>>).
<<"s">>
9>
</code>
<p>Note that the internal data that the <c>StateEnc</c> and <c>StateDec</c> references are
destructivly updated by the calls to <seealso marker="crypto#crypto_update/2">crypto_update/2</seealso>.
This is to gain time in the calls of the nifs interfacing the cryptolib. In a loop where the
state is saved in the loop's state, it also saves one update of the loop state per crypto operation.
</p>
<p>For example, a simple server receiving text parts to encrypt and send the result back to the
one who sent them (the <c>Requester</c>):
</p>
<code type="erl">
encode(Crypto, Key, IV) ->
crypto_loop(crypto:crypto_init(Crypto, Key, IV, true)).
crypto_loop(State) ->
receive
{Text, Requester} ->
Requester ! crypto:crypto_update(State, Text),
loop(State)
end.
</code>
</section>
<section>
<title>Example of crypto_one_time/5</title>
<p>The same example as in the
<seealso marker="#examples-of-crypto_init-4-and-crypto_update-2">previous section</seealso>,
but now with one call to <c>crypto_one_time/5</c>:
</p>
<code>
2> Key = <<1:128>>.
2> IV = <<0:128>>.
2> Txt = [<<"First bytes">>,<<"Second bytes">>],
2> crypto:crypto_one_time(aes_128_ctr, Key, IV, Txt, true).
<<67,44,216,166,25,130,203,5,66,6,162,16,79,94,115,234,
197,94,253,16,144,151,41>>
3>
</code>
<p>The <c>[<<"First bytes">>,<<"Second bytes">>]</c> could of course have been one
single binary: <c><<"First bytesSecond bytes">></c>.
</p>
</section>
</section>
<section>
<title>Retired cipher names</title>
<p>This table lists the retired cipher names in the first column and suggests names to replace them with
in the second column.
</p>
<p>The new names follows the OpenSSL libcrypto names. The format is ALGORITM_KEYSIZE_MODE.
</p>
<p>Examples of algorithms are aes, chacha20 and des. The keysize is the number of bits
and examples of the mode are cbc, ctr and gcm. The mode may be followed by a number depending
on the mode. An example is the ccm mode which has a variant called ccm8 where the so called tag
has a length of eight bits.
</p>
<p>The old names had by time lost any common naming which the new names now introduces. The new names include
the key length which improves the error checking in the lower levels of the crypto application.
</p>
<table>
<row><cell><strong>Instead of:</strong></cell> <cell><strong>Use:</strong> </cell></row>
<row><cell><c>aes_cbc128</c> </cell> <cell> <c>aes_128_cbc</c> </cell></row>
<row><cell><c>aes_cbc256</c> </cell> <cell> <c>aes_256_cbc</c> </cell></row>
<row><cell><c>aes_cbc</c> </cell> <cell> <c>aes_128_cbc, aes_192_cbc, aes_256_cbc</c></cell></row>
<row><cell><c>aes_ccm</c> </cell> <cell> <c>aes_128_ccm, aes_192_ccm, aes_256_ccm</c></cell></row>
<row><cell><c>aes_cfb128</c> </cell> <cell> <c>aes_128_cfb128, aes_192_cfb128, aes_256_cfb128</c></cell></row>
<row><cell><c>aes_cfb8</c> </cell> <cell> <c>aes_128_cfb8, aes_192_cfb8, aes_256_cfb8</c></cell></row>
<row><cell><c>aes_ctr</c> </cell> <cell> <c>aes_128_ctr, aes_192_ctr, aes_256_ctr</c></cell></row>
<row><cell><c>aes_gcm</c> </cell> <cell> <c>aes_128_gcm, aes_192_gcm, aes_256_gcm</c></cell></row>
<row><cell><c>des3_cbc</c> </cell> <cell> <c>des_ede3_cbc</c></cell></row>
<row><cell><c>des3_cbf</c> </cell> <cell> <c>des_ede3_cfb</c></cell></row>
<row><cell><c>des3_cfb</c> </cell> <cell> <c>des_ede3_cfb</c></cell></row>
<row><cell><c>des_ede3</c> </cell> <cell> <c>des_ede3_cbc</c></cell></row>
<row><cell><c>des_ede3_cbf</c> </cell> <cell> <c>des_ede3_cfb</c></cell></row>
<tcaption></tcaption>
</table>
</section>
</chapter>
|