aboutsummaryrefslogtreecommitdiffstats
path: root/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/beam_flatten.erl
blob: a9958f87cd9078597c7fc5a76ae83f4a0bcfaab9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
%% ``The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% The Initial Developer of the Original Code is Ericsson Utvecklings AB.
%% Portions created by Ericsson are Copyright 1999, Ericsson Utvecklings
%% AB. All Rights Reserved.''
%% 
%%     $Id: beam_flatten.erl,v 1.1 2008/12/17 09:53:41 mikpe Exp $
%%
%% Purpose : Converts intermediate assembly code to final format.

-module(beam_flatten).

-export([module/2]).
-import(lists, [reverse/1,reverse/2,map/2]).

module({Mod,Exp,Attr,Fs,Lc}, _Opt) ->
    {ok,{Mod,Exp,Attr,map(fun function/1, Fs),Lc}}.

function({function,Name,Arity,CLabel,Is0}) ->
    Is1 = block(Is0),
    Is = opt(Is1),
    {function,Name,Arity,CLabel,Is}.

block(Is) ->
    block(Is, []).

block([{block,Is0}|Is1], Acc) -> block(Is1, norm_block(Is0, Acc));
block([I|Is], Acc) -> block(Is, [I|Acc]);
block([], Acc) -> reverse(Acc).

norm_block([{allocate,R,Alloc}|Is], Acc0) ->
    case insert_alloc_in_bs_init(Acc0, Alloc) of
	not_possible ->
	    norm_block(Is, reverse(norm_allocate(Alloc, R), Acc0));
	Acc ->
	    norm_block(Is, Acc)
    end;
norm_block([I|Is], Acc) -> norm_block(Is, [norm(I)|Acc]);
norm_block([], Acc) -> Acc.
    
norm({set,[D],As,{bif,N}})        -> {bif,N,nofail,As,D};
norm({set,[D],As,{bif,N,F}})      -> {bif,N,F,As,D};
norm({set,[D],[S],move})          -> {move,S,D};
norm({set,[D],[S],fmove})         -> {fmove,S,D};
norm({set,[D],[S],fconv})         -> {fconv,S,D};
norm({set,[D],[S1,S2],put_list})  -> {put_list,S1,S2,D};
norm({set,[D],[],{put_tuple,A}})  -> {put_tuple,A,D};
norm({set,[],[S],put})            -> {put,S};
norm({set,[D],[],{put_string,L,S}})       -> {put_string,L,S,D};
norm({set,[D],[S],{get_tuple_element,I}}) -> {get_tuple_element,S,I,D};
norm({set,[],[S,D],{set_tuple_element,I}}) -> {set_tuple_element,S,D,I};
norm({set,[D1,D2],[S],get_list})          -> {get_list,S,D1,D2};
norm({set,[],[],remove_message})   -> remove_message;
norm({set,[],[],fclearerror}) -> fclearerror;
norm({set,[],[],fcheckerror}) -> {fcheckerror,{f,0}};
norm({'%',_}=Comment)   -> Comment;
norm({'%live',R})                  -> {'%live',R}.

norm_allocate({_Zero,nostack,Nh,[]}, Regs) ->
    [{test_heap,Nh,Regs}];
norm_allocate({_Zero,nostack,Nh,Nf,[]}, Regs) ->
    [{test_heap,alloc_list(Nh, Nf),Regs}];
norm_allocate({zero,0,Nh,[]}, Regs) ->
    norm_allocate({nozero,0,Nh,[]}, Regs);
norm_allocate({zero,0,Nh,Nf,[]}, Regs) ->
    norm_allocate({nozero,0,Nh,Nf,[]}, Regs);
norm_allocate({zero,Ns,0,[]}, Regs) ->
    [{allocate_zero,Ns,Regs}];
norm_allocate({zero,Ns,Nh,[]}, Regs) ->
    [{allocate_heap_zero,Ns,Nh,Regs}];
norm_allocate({nozero,Ns,0,Inits}, Regs) ->
    [{allocate,Ns,Regs}|Inits];
norm_allocate({nozero,Ns,Nh,Inits}, Regs) ->
    [{allocate_heap,Ns,Nh,Regs}|Inits];
norm_allocate({nozero,Ns,Nh,Floats,Inits}, Regs) ->
    [{allocate_heap,Ns,alloc_list(Nh, Floats),Regs}|Inits];
norm_allocate({zero,Ns,Nh,Floats,Inits}, Regs) ->
    [{allocate_heap_zero,Ns,alloc_list(Nh, Floats),Regs}|Inits].

insert_alloc_in_bs_init([I|_]=Is, Alloc) ->
    case is_bs_put(I) of
	false ->
	    not_possible;
	true ->
	    insert_alloc_1(Is, Alloc, [])
    end.

insert_alloc_1([{bs_init2,Fail,Bs,Ws,Regs,F,Dst}|Is], {_,nostack,Nh,Nf,[]}, Acc) ->
    Al = alloc_list(Ws+Nh, Nf),
    I = {bs_init2,Fail,Bs,Al,Regs,F,Dst},
    reverse(Acc, [I|Is]);
insert_alloc_1([I|Is], Alloc, Acc) ->
    insert_alloc_1(Is, Alloc, [I|Acc]).

is_bs_put({bs_put_integer,_,_,_,_,_}) -> true;
is_bs_put({bs_put_float,_,_,_,_,_}) -> true;
is_bs_put({bs_put_binary,_,_,_,_,_}) -> true;
is_bs_put({bs_put_string,_,_}) -> true;
is_bs_put(_) -> false.

alloc_list(Words, Floats) ->
    {alloc,[{words,Words},{floats,Floats}]}.


%% opt(Is0) -> Is
%%  Simple peep-hole optimization to move a {move,Any,{x,0}} past
%%  any kill up to the next call instruction.

opt(Is) ->
    opt_1(Is, []).

opt_1([{move,_,{x,0}}=I|Is0], Acc0) ->
    case move_past_kill(Is0, I, Acc0) of
	impossible -> opt_1(Is0, [I|Acc0]);
	{Is,Acc} -> opt_1(Is, Acc)
    end;
opt_1([I|Is], Acc) ->
    opt_1(Is, [I|Acc]);
opt_1([], Acc) -> reverse(Acc).

move_past_kill([{'%live',_}|Is], Move, Acc) ->
    move_past_kill(Is, Move, Acc);
move_past_kill([{kill,Src}|_], {move,Src,_}, _) ->
    impossible;
move_past_kill([{kill,_}=I|Is], Move, Acc) ->
    move_past_kill(Is, Move, [I|Acc]);
move_past_kill(Is, Move, Acc) ->
    {Is,[Move|Acc]}.