1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE cref SYSTEM "cref.dtd">
<cref>
<header>
<copyright>
<year>2001</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>ei</title>
<prepared>Jakob Cederlund</prepared>
<responsible>Kent Boortz</responsible>
<docno>1</docno>
<approved>Kenneth Lundin</approved>
<checked></checked>
<date>2000-11-27</date>
<rev>PA1</rev>
<file>ei.xml</file>
</header>
<lib>ei</lib>
<libsummary>Routines for handling the Erlang binary term format.</libsummary>
<description>
<p>The library <c>ei</c> contains macros and functions to encode
and decode the Erlang binary term format.</p>
<p><c>ei</c> allows you to convert atoms, lists, numbers, and
binaries to and from the binary format. This is useful when
writing port programs and drivers. <c>ei</c> uses a given
buffer, no dynamic memory (except
<c>ei_decode_fun()</c>) and is often quite fast.</p>
<p><c>ei</c> also handles C-nodes, C-programs that talks Erlang
distribution with Erlang nodes (or other C-nodes) using the
Erlang distribution format. The difference between <c>ei</c>
and <c>erl_interface</c> is that <c>ei</c> uses
the binary format directly when sending and receiving terms. It is also
thread safe, and using threads, one process can handle multiple
C-nodes. The <c>erl_interface</c> library is built on top of
<c>ei</c>, but of legacy reasons, it does not allow for
multiple C-nodes. In general, <c>ei</c> is the preferred way
of doing C-nodes.</p>
<p>The decode and encode functions use a buffer and an index into the
buffer, which points at the point where to encode and
decode. The index is updated to point right after the term
encoded/decoded. No checking is done whether the term fits in
the buffer or not. If encoding goes outside the buffer, the
program can crash.</p>
<p>All functions take two parameters:</p>
<list type="bulleted">
<item><p><c>buf</c> is a pointer to
the buffer where the binary data is or will be.</p>
</item>
<item><p><c>index</c> is a pointer to an index into the
buffer. This parameter is incremented with the size of the term
decoded/encoded.</p>
</item>
</list>
<p>The data is thus at <c>buf[*index]</c> when an
<c>ei</c> function is called.</p>
<p>All encode functions assume that the <c>buf</c> and
<c>index</c> parameters point to a buffer large enough for
the data. To get the size of an encoded term, without encoding it,
pass <c>NULL</c> instead of a buffer pointer. Parameter
<c>index</c> is incremented, but nothing will be encoded. This
is the way in <c>ei</c> to "preflight" term encoding.</p>
<p>There are also encode functions that use a dynamic buffer. It
is often more convenient to use these to encode data. All encode
functions comes in two versions; those starting with
<c>ei_x</c> use a dynamic buffer.</p>
<p>All functions return <c>0</c> if successful, otherwise
<c>-1</c> (for example, if a term is not of the expected
type, or the data to decode is an invalid Erlang term).</p>
<p>Some of the decode functions need a pre-allocated buffer. This
buffer must be allocated large enough, and for non-compound types
the <c>ei_get_type()</c>
function returns the size required (notice that for strings an
extra byte is needed for the <c>NULL</c>-terminator).</p>
</description>
<section>
<title>Data Types</title>
<taglist>
<tag><marker id="erlang_char_encoding"/>erlang_char_encoding</tag>
<item>
<code type="none">
typedef enum {
ERLANG_ASCII = 1,
ERLANG_LATIN1 = 2,
ERLANG_UTF8 = 4
} erlang_char_encoding;</code>
<p>The character encodings used for atoms. <c>ERLANG_ASCII</c>
represents 7-bit ASCII. Latin-1 and UTF-8 are different extensions
of 7-bit ASCII. All 7-bit ASCII characters are valid Latin-1 and
UTF-8 characters. ASCII and Latin-1 both represent each character
by one byte. An UTF-8 character can consist of 1-4 bytes.
Notice that these constants are bit-flags and can be combined with
bitwise OR.</p>
</item>
</taglist>
</section>
<funcs>
<func>
<name><ret>int</ret><nametext>ei_decode_atom(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode an atom.</fsummary>
<desc>
<p>Decodes an atom from the binary format. The <c>NULL</c>-terminated
name of the atom is placed at <c>p</c>. At most
<c>MAXATOMLEN</c> bytes can be placed in the buffer.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_atom_as(const char *buf, int *index, char *p, int plen, erlang_char_encoding want, erlang_char_encoding* was, erlang_char_encoding* result)</nametext></name>
<fsummary>Decode an atom.</fsummary>
<desc>
<p>Decodes an atom from the binary format. The <c>NULL</c>-terminated
name of the atom is placed in buffer at <c>p</c> of length <c>plen</c>
bytes.</p>
<p>The wanted string encoding is specified by
<seealso marker="#erlang_char_encoding"><c>want</c></seealso>.
The original encoding used in the binary format (Latin-1 or UTF-8) can
be obtained from <c>*was</c>. The encoding of the resulting string
(7-bit ASCII, Latin-1, or UTF-8) can be obtained from <c>*result</c>.
Both <c>was</c> and <c>result</c> can be <c>NULL</c>. <c>*result</c>
can differ from <c>want</c> if <c>want</c> is a bitwise OR'd
combination like <c>ERLANG_LATIN1|ERLANG_UTF8</c> or if
<c>*result</c> turns out to be pure 7-bit ASCII
(compatible with both Latin-1 and UTF-8).</p>
<p>This function fails if the atom is too long for the buffer
or if it cannot be represented with encoding <c>want</c>.</p>
<p>This function was introduced in Erlang/OTP R16 as part of a first
step to support UTF-8 atoms.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_bignum(const char *buf, int *index, mpz_t obj)</nametext></name>
<fsummary>Decode a GMP arbitrary precision integer.</fsummary>
<desc>
<p>Decodes an integer in the binary format to a GMP
<c>mpz_t</c> integer. To use this function, the <c>ei</c>
library must be configured and compiled to use the GMP library.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_binary(const char *buf, int *index, void *p, long *len)</nametext></name>
<fsummary>Decode a binary.</fsummary>
<desc>
<p>Decodes a binary from the binary format. Parameter
<c>len</c> is set to the actual size of the
binary. Notice that <c>ei_decode_binary()</c> assumes that
there is enough room for the binary. The size required can be
fetched by <c>ei_get_type()</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_boolean(const char *buf, int *index, int *p)</nametext></name>
<fsummary>Decode a boolean.</fsummary>
<desc>
<p>Decodes a boolean value from the binary format.
A boolean is actually an atom, <c>true</c> decodes 1
and <c>false</c> decodes 0.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_char(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode an 8-bit integer between 0-255.</fsummary>
<desc>
<p>Decodes a char (8-bit) integer between 0-255 from the binary format.
For historical reasons the returned integer is of
type <c>char</c>. Your C code is to consider the
returned value to be of type <c>unsigned char</c> even if
the C compilers and system can define <c>char</c> to be
signed.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_double(const char *buf, int *index, double *p)</nametext></name>
<fsummary>Decode a double.</fsummary>
<desc>
<p>Decodes a double-precision (64-bit) floating
point number from the binary format.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_ei_term(const char* buf, int* index, ei_term* term)</nametext></name>
<fsummary>Decode a term, without previous knowledge of type.</fsummary>
<desc>
<p>Decodes any term, or at least tries to. If the term
pointed at by <c>*index</c> in <c>buf</c> fits
in the <c>term</c> union, it is decoded, and the
appropriate field in <c>term->value</c> is set, and
<c>*index</c> is incremented by the term size.</p>
<p>The function returns <c>1</c> on successful decoding, <c>-1</c> on
error, and <c>0</c> if the term seems alright, but does not fit in the
<c>term</c> structure. If <c>1</c> is returned, the
<c>index</c> is incremented, and <c>term</c>
contains the decoded term.</p>
<p>The <c>term</c> structure contains the arity for a tuple
or list, size for a binary, string, or atom. It contains
a term if it is any of the following: integer, float, atom,
pid, port, or ref.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_fun(const char *buf, int *index, erlang_fun *p)</nametext></name>
<name><ret>void</ret><nametext>free_fun(erlang_fun* f)</nametext></name>
<fsummary>Decode a fun.</fsummary>
<desc>
<p>Decodes a fun from the binary format. Parameter
<c>p</c> is to be <c>NULL</c> or point to an
<c>erlang_fun</c> structure. This is the only decode
function that allocates memory. When the <c>erlang_fun</c>
is no longer needed, it is to be freed with
<c>free_fun</c>. (This has to do with the arbitrary size
of the environment for a fun.)</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_list_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a list.</fsummary>
<desc>
<p>Decodes a list header from the binary
format. The number of elements is returned in
<c>arity</c>. The <c>arity+1</c> elements
follow (the last one is the tail of the list, normally an empty list).
If <c>arity</c> is <c>0</c>, it is an empty
list.</p>
<p>Notice that lists are encoded as strings if they consist
entirely of integers in the range 0..255. This function do
not decode such strings, use <c>ei_decode_string()</c>
instead.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_long(const char *buf, int *index, long *p)</nametext></name>
<fsummary>Decode integer.</fsummary>
<desc>
<p>Decodes a long integer from the binary format.
If the code is 64 bits, the function <c>ei_decode_long()</c> is
the same as <c>ei_decode_longlong()</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_longlong(const char *buf, int *index, long long *p)</nametext></name>
<fsummary>Decode integer.</fsummary>
<desc>
<p>Decodes a GCC <c>long long</c> or Visual C++
<c>__int64</c>
(64-bit) integer from the binary format. This
function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_map_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a map.</fsummary>
<desc>
<p>Decodes a map header from the binary
format. The number of key-value pairs is returned in
<c>*arity</c>. Keys and values follow in this order:
<c>K1, V1, K2, V2, ..., Kn, Vn</c>. This makes a total of
<c>arity*2</c> terms. If <c>arity</c> is zero, it is an empty map.
A correctly encoded map does not have duplicate keys.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_pid(const char *buf, int *index, erlang_pid *p)</nametext></name>
<fsummary>Decode a <c>pid</c>.</fsummary>
<desc>
<p>Decodes a process identifier (pid) from the binary format.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_port(const char *buf, int *index, erlang_port *p)</nametext></name>
<fsummary>Decode a port.</fsummary>
<desc>
<p>Decodes a port identifier from the binary format.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_ref(const char *buf, int *index, erlang_ref *p)</nametext></name>
<fsummary>Decode a reference.</fsummary>
<desc>
<p>Decodes a reference from the binary format.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_string(const char *buf, int *index, char *p)</nametext></name>
<fsummary>Decode a string.</fsummary>
<desc>
<p>Decodes a string from the binary format. A
string in Erlang is a list of integers between 0 and
255. Notice that as the string is just a list, sometimes
lists are encoded as strings by <c>term_to_binary/1</c>,
even if it was not intended.</p>
<p>The string is copied to <c>p</c>, and enough space must
be allocated. The returned string is <c>NULL</c>-terminated, so you
must add an extra byte to the memory requirement.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_term(const char *buf, int *index, void *t)</nametext></name>
<fsummary>Decode a <c>ETERM</c>.</fsummary>
<desc>
<p>Decodes a term from the binary format. The term
is return in <c>t</c> as a <c>ETERM*</c>, so
<c>t</c> is actually an <c>ETERM**</c> (see
<seealso marker="erl_eterm"><c>erl_eterm</c></seealso>).
The term is later to be deallocated.</p>
<p>Notice that this function is located in the <c>Erl_Interface</c>
library.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_trace(const char *buf, int *index, erlang_trace *p)</nametext></name>
<fsummary>Decode a trace token.</fsummary>
<desc>
<p>Decodes an Erlang trace token from the binary format.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_tuple_header(const char *buf, int *index, int *arity)</nametext></name>
<fsummary>Decode a tuple.</fsummary>
<desc>
<p>Decodes a tuple header, the number of elements
is returned in <c>arity</c>. The tuple elements follow
in order in the buffer.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_ulong(const char *buf, int *index, unsigned long *p)</nametext></name>
<fsummary>Decode unsigned integer.</fsummary>
<desc>
<p>Decodes an unsigned long integer from the binary format.
If the code is 64 bits, the function <c>ei_decode_ulong()</c> is
the same as <c>ei_decode_ulonglong()</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)</nametext></name>
<fsummary>Decode unsigned integer.</fsummary>
<desc>
<p>Decodes a GCC <c>unsigned long long</c> or Visual C++
<c>unsigned __int64</c> (64-bit) integer from the binary
format. This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_decode_version(const char *buf, int *index, int *version)</nametext></name>
<fsummary>Decode an empty list (<c>nil</c>).</fsummary>
<desc>
<p>Decodes the version magic number for the
Erlang binary term format. It must be the first token in a
binary term.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_atom(char *buf, int *index, const char *p)</nametext></name>
<name><ret>int</ret><nametext>ei_encode_atom_len(char *buf, int *index, const char *p, int len)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_atom(ei_x_buff* x, const char *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)</nametext></name>
<fsummary>Encode an atom.</fsummary>
<desc>
<p>Encodes an atom in the binary format. Parameter <c>p</c>
is the name of the atom in Latin-1 encoding. Only up to
<c>MAXATOMLEN-1</c> bytes
are encoded. The name is to be <c>NULL</c>-terminated, except for
the <c>ei_x_encode_atom_len()</c> function.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_atom_as(char *buf, int *index, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name><ret>int</ret><nametext>ei_encode_atom_len_as(char *buf, int *index, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_atom_as(ei_x_buff* x, const char *p, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_atom_len_as(ei_x_buff* x, const char *p, int len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)</nametext></name>
<fsummary>Encode an atom.</fsummary>
<desc>
<p>Encodes an atom in the binary format. Parameter <c>p</c> is the name of the atom with
character encoding
<seealso marker="#erlang_char_encoding"><c>from_enc</c></seealso>
(ASCII, Latin-1, or UTF-8). The name must either be <c>NULL</c>-terminated or
a function variant with a <c>len</c> parameter must be used.</p>
<p>The encoding fails if <c>p</c> is not a valid string in encoding
<c>from_enc</c>.</p>
<p>Argument <c>to_enc</c> is ignored. As from Erlang/OTP 20 the encoding is always
done in UTF-8 which is readable by nodes as old as Erlang/OTP R16.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_bignum(char *buf, int *index, mpz_t obj)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)</nametext></name>
<fsummary>Encode an arbitrary precision integer.</fsummary>
<desc>
<p>Encodes a GMP <c>mpz_t</c> integer to binary format.
To use this function, the <c>ei</c> library must be configured and
compiled to use the GMP library.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_binary(char *buf, int *index, const void *p, long len)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_binary(ei_x_buff* x, const void *p, long len)</nametext></name>
<fsummary>Encode a binary.</fsummary>
<desc>
<p>Encodes a binary in the binary format. The data is at
<c>p</c>, of <c>len</c> bytes length.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_boolean(char *buf, int *index, int p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_boolean(ei_x_buff* x, int p)</nametext></name>
<fsummary>Encode a boolean.</fsummary>
<desc>
<p>Encodes a boolean value as the atom <c>true</c> if
<c>p</c> is not zero, or <c>false</c> if <c>p</c> is
zero.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_char(char *buf, int *index, char p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_char(ei_x_buff* x, char p)</nametext></name>
<fsummary>Encode an 8-bit integer between 0-255.</fsummary>
<desc>
<p>Encodes a char (8-bit) as an integer between 0-255 in the binary
format. For historical reasons the integer argument is of
type <c>char</c>. Your C code is to consider the specified
argument to be of type <c>unsigned char</c> even if
the C compilers and system may define <c>char</c> to be
signed.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_double(char *buf, int *index, double p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_double(ei_x_buff* x, double p)</nametext></name>
<fsummary>Encode a double float.</fsummary>
<desc>
<p>Encodes a double-precision (64-bit) floating point number in
the binary format.</p>
<p>Returns <c>-1</c> if the floating point
number is not finite.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_empty_list(char* buf, int* index)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_empty_list(ei_x_buff* x)</nametext></name>
<fsummary>Encode an empty list (<c>nil</c>).</fsummary>
<desc>
<p>Encodes an empty list. It is often used at the tail of a list.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_fun(char *buf, int *index, const erlang_fun *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)</nametext></name>
<fsummary>Encode a fun.</fsummary>
<desc>
<p>Encodes a fun in the binary format. Parameter <c>p</c>
points to an <c>erlang_fun</c> structure. The
<c>erlang_fun</c> is not freed automatically, the
<c>free_fun</c> is to be called if the fun is not needed
after encoding.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_list_header(char *buf, int *index, int arity)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_list_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a list.</fsummary>
<desc>
<p>Encodes a list header, with a specified
arity. The next <c>arity+1</c> terms are the elements
(actually its <c>arity</c> cons cells) and the tail of the
list. Lists and tuples are encoded recursively, so that a
list can contain another list or tuple.</p>
<p>For example, to encode the list
<c>[c, d, [e | f]]</c>:</p>
<pre>
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);</pre>
<note>
<p>It may seem that there is no way to create a list without
knowing the number of elements in advance. But indeed
there is a way. Notice that the list <c>[a, b, c]</c>
can be written as <c>[a | [b | [c]]]</c>.
Using this, a list can be written as conses.</p>
</note>
<p>To encode a list, without knowing the arity in advance:</p>
<pre>
while (something()) {
ei_x_encode_list_header(&x, 1);
ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);</pre>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_long(char *buf, int *index, long p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_long(ei_x_buff* x, long p)</nametext></name>
<fsummary>Encode integer.</fsummary>
<desc>
<p>Encodes a long integer in the binary format.
If the code is 64 bits, the function <c>ei_encode_long()</c> is
the same as <c>ei_encode_longlong()</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_longlong(char *buf, int *index, long long p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_longlong(ei_x_buff* x, long long p)</nametext></name>
<fsummary>Encode integer.</fsummary>
<desc>
<p>Encodes a GCC <c>long long</c> or Visual C++
<c>__int64</c> (64-bit) integer in the binary format.
This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_map_header(char *buf, int *index, int arity)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_map_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a map.</fsummary>
<desc>
<p>Encodes a map header, with a specified arity. The next
<c>arity*2</c> terms encoded will be the keys and values of the map
encoded in the following order: <c>K1, V1, K2, V2, ..., Kn, Vn</c>.
</p>
<p>For example, to encode the map <c>#{a => "Apple", b =>
"Banana"}</c>:</p>
<pre>
ei_x_encode_map_header(&x, 2);
ei_x_encode_atom(&x, "a");
ei_x_encode_string(&x, "Apple");
ei_x_encode_atom(&x, "b");
ei_x_encode_string(&x, "Banana");</pre>
<p>A correctly encoded map cannot have duplicate keys.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_pid(char *buf, int *index, const erlang_pid *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)</nametext></name>
<fsummary>Encode a pid.</fsummary>
<desc>
<p>Encodes an Erlang process identifier (pid) in the binary
format. Parameter <c>p</c> points to an
<c>erlang_pid</c> structure (which should have been
obtained earlier with <c>ei_decode_pid()</c>).</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_port(char *buf, int *index, const erlang_port *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_port(ei_x_buff* x, const erlang_port *p)</nametext></name>
<fsummary>Encode a port.</fsummary>
<desc>
<p>Encodes an Erlang port in the binary format. Parameter
<c>p</c> points to a <c>erlang_port</c>
structure (which should have been obtained earlier with
<c>ei_decode_port()</c>).</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_ref(char *buf, int *index, const erlang_ref *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)</nametext></name>
<fsummary>Encode a ref.</fsummary>
<desc>
<p>Encodes an Erlang reference in the binary format. Parameter
<c>p</c> points to a <c>erlang_ref</c>
structure (which should have been obtained earlier with
<c>ei_decode_ref()</c>).</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_string(char *buf, int *index, const char *p)</nametext></name>
<name><ret>int</ret><nametext>ei_encode_string_len(char *buf, int *index, const char *p, int len)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_string(ei_x_buff* x, const char *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)</nametext></name>
<fsummary>Encode a string.</fsummary>
<desc>
<p>Encodes a string in the binary format. (A string in Erlang
is a list, but is encoded as a character array in the binary
format.) The string is to be <c>NULL</c>-terminated, except for
the <c>ei_x_encode_string_len()</c> function.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_term(char *buf, int *index, void *t)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_term(ei_x_buff* x, void *t)</nametext></name>
<fsummary>Encode an <c>erl_interface</c> term.</fsummary>
<desc>
<p>Encodes an <c>ETERM</c>, as obtained from
<c>erl_interface</c>. Parameter <c>t</c> is
actually an <c>ETERM</c> pointer. This function
does not free the <c>ETERM</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_trace(char *buf, int *index, const erlang_trace *p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)</nametext></name>
<fsummary>Encode a trace token.</fsummary>
<desc>
<p>Encodes an Erlang trace token in the binary format.
Parameter <c>p</c> points to a
<c>erlang_trace</c> structure (which should have been
obtained earlier with <c>ei_decode_trace()</c>).</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_tuple_header(char *buf, int *index, int arity)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_tuple_header(ei_x_buff* x, int arity)</nametext></name>
<fsummary>Encode a tuple.</fsummary>
<desc>
<p>Encodes a tuple header, with a specified
arity. The next <c>arity</c> terms encoded will be the
elements of the tuple. Tuples and lists are encoded
recursively, so that a tuple can contain another tuple or list.</p>
<p>For example, to encode the tuple <c>{a, {b, {}}}</c>:</p>
<pre>
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);</pre>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_ulong(char *buf, int *index, unsigned long p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_ulong(ei_x_buff* x, unsigned long p)</nametext></name>
<fsummary>Encode unsigned integer.</fsummary>
<desc>
<p>Encodes an unsigned long integer in the binary format.
If the code is 64 bits, the function <c>ei_encode_ulong()</c> is
the same as <c>ei_encode_ulonglong()</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_ulonglong(char *buf, int *index, unsigned long long p)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)</nametext></name>
<fsummary>Encode unsigned integer.</fsummary>
<desc>
<p>Encodes a GCC <c>unsigned long long</c> or Visual C++
<c>unsigned __int64</c> (64-bit) integer in the binary
format. This function is missing in the VxWorks port.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_encode_version(char *buf, int *index)</nametext></name>
<name><ret>int</ret><nametext>ei_x_encode_version(ei_x_buff* x)</nametext></name>
<fsummary>Encode version.</fsummary>
<desc>
<p>Encodes a version magic number for the binary format. Must
be the first token in a binary term.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_get_type(const char *buf, const int *index, int *type, int *size)</nametext></name>
<fsummary>Fetch the type and size of an encoded term.</fsummary>
<desc>
<p>Returns the type in <c>type</c> and size in
<c>size</c> of the encoded term. For strings and atoms,
size is the number of characters <em>not</em> including the
terminating <c>NULL</c>. For binaries, <c>size</c> is the number of
bytes. For lists and tuples, <c>size</c> is the arity of
the object. For other types, <c>size</c> is 0. In all
cases, <c>index</c> is left unchanged.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_init(void)</nametext></name>
<fsummary>Initialize the ei library.</fsummary>
<desc>
<p>Initialize the <c>ei</c> library. This function should be called once
(and only once) before calling any other functionality in the <c>ei</c>
library. However, note the exception below.</p>
<p>If the <c>ei</c> library is used together with the <c>erl_interface</c>
library, this function should <em>not</em> be called directly. It will be
called by the <c>erl_init()</c> function which should be used to initialize
the combination of the two libraries instead.</p>
<p>On success zero is returned. On failure a posix error code is returned.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_print_term(FILE* fp, const char* buf, int* index)</nametext></name>
<name><ret>int</ret><nametext>ei_s_print_term(char** s, const char* buf, int* index)</nametext></name>
<fsummary>Print a term in clear text.</fsummary>
<desc>
<p>Prints a term, in clear text, to the file
specified by <c>fp</c>, or the buffer pointed to by
<c>s</c>. It
tries to resemble the term printing in the Erlang shell.</p>
<p>In <c>ei_s_print_term()</c>, parameter
<c>s</c> is to
point to a dynamically (malloc) allocated string of
<c>BUFSIZ</c> bytes or a <c>NULL</c> pointer. The string
can be reallocated (and <c>*s</c> can be updated) by this
function if the result is more than <c>BUFSIZ</c>
characters. The string returned is <c>NULL</c>-terminated.</p>
<p>The return value is the number of characters written to the file
or string, or <c>-1</c> if <c>buf[index]</c> does not
contain a valid term.
Unfortunately, I/O errors on <c>fp</c> is not checked.</p>
<p>Argument <c>index</c> is updated, that is, this function
can be viewed as a decode function that decodes a term into a
human-readable format.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>ei_set_compat_rel(release_number)</nametext></name>
<fsummary>Set the ei library in compatibility mode.</fsummary>
<type>
<v>unsigned release_number;</v>
</type>
<desc>
<marker id="ei_set_compat_rel"></marker>
<p>By default, the <c>ei</c> library is only guaranteed
to be compatible with other Erlang/OTP components from the same
release as the <c>ei</c> library itself. For example,
<c>ei</c> from
Erlang/OTP R10 is not compatible with an Erlang emulator
from Erlang/OTP R9 by default.</p>
<p>A call to <c>ei_set_compat_rel(release_number)</c> sets
the <c>ei</c> library in compatibility mode of release
<c>release_number</c>. Valid range of
<c>release_number</c>
is <c>[7, current release]</c>. This makes it possible to
communicate with Erlang/OTP components from earlier releases.</p>
<note>
<p>If this function is called, it can only be called once
and must be called before any other functions in the
<c>ei</c> library are called.</p>
</note>
<warning>
<p>You can run into trouble if this feature is used
carelessly. Always ensure that all communicating
components are either from the same Erlang/OTP release, or
from release X and release Y where all components
from release Y are in compatibility mode of release X.</p>
</warning>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_skip_term(const char* buf, int* index)</nametext></name>
<fsummary>Skip a term.</fsummary>
<desc>
<p>Skips a term in the specified buffer;
recursively skips elements of lists and tuples, so that a
full term is skipped. This is a way to get the size of an
Erlang term.</p>
<p><c>buf</c> is the buffer.</p>
<p><c>index</c> is updated to point right after the term
in the buffer.</p>
<note>
<p>This can be useful when you want to hold arbitrary
terms: skip them and copy the binary term data to some
buffer.</p>
</note>
<p>Returns <c>0</c> on success, otherwise
<c>-1</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_x_append(ei_x_buff* x, const ei_x_buff* x2)</nametext></name>
<name><ret>int</ret><nametext>ei_x_append_buf(ei_x_buff* x, const char* buf, int len)</nametext></name>
<fsummary>Append a buffer at the end.</fsummary>
<desc>
<p>Appends data at the end of buffer <c>x</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_x_format(ei_x_buff* x, const char* fmt, ...)</nametext></name>
<name><ret>int</ret><nametext>ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )</nametext></name>
<fsummary>Format a term from a format string and parameters.</fsummary>
<desc>
<p>Formats a term, given as a string, to a buffer.
Works like a sprintf for Erlang terms.
<c>fmt</c> contains a format string, with arguments like
<c>~d</c>, to insert terms from variables. The following
formats are supported (with the C types given):</p>
<pre>
~a An atom, char*
~c A character, char
~s A string, char*
~i An integer, int
~l A long integer, long int
~u A unsigned long integer, unsigned long int
~f A float, float
~d A double float, double float
~p An Erlang pid, erlang_pid*</pre>
<p>For example, to encode a tuple with some stuff:</p>
<pre>
ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}</pre>
<p><c>ei_x_format_wo_ver()</c> formats into a buffer,
without the initial version byte.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_x_free(ei_x_buff* x)</nametext></name>
<fsummary>Free a buffer.</fsummary>
<desc>
<p>Frees an <c>ei_x_buff</c> buffer.
The memory used by the buffer is returned to the OS.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>ei_x_new(ei_x_buff* x)</nametext></name>
<name><ret>int</ret><nametext>ei_x_new_with_version(ei_x_buff* x)</nametext></name>
<fsummary>Allocate a new buffer.</fsummary>
<desc>
<p>Allocates a new <c>ei_x_buff</c> buffer. The
fields of the structure pointed to by parameter <c>x</c>
is filled in, and a default buffer is allocated.
<c>ei_x_new_with_version()</c> also puts an initial
version byte, which is used in the binary format (so that
<c>ei_x_encode_version()</c> will not be needed.)</p>
</desc>
</func>
</funcs>
<section>
<title>Debug Information</title>
<p>Some tips on what to check when the emulator does not seem to
receive the terms that you send:</p>
<list type="bulleted">
<item>Be careful with the version header, use
<c>ei_x_new_with_version()</c> when appropriate.</item>
<item>Turn on distribution tracing on the Erlang node.</item>
<item>Check the result codes from <c>ei_decode_-calls</c>.</item>
</list>
</section>
<section>
<title>See Also</title>
<p><seealso marker="erl_eterm"><c>erl_eterm</c></seealso></p>
</section>
</cref>
|