1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
|
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% @author Richard Carlsson <[email protected]>
%% @copyright 2000-2004 Richard Carlsson
%% @doc HiPE-ification of Core Erlang code. Prepares Core Erlang code
%% for translation to ICode.
%% @see cerl_to_icode
-module(cerl_hipeify).
-define(NO_UNUSED, true).
-export([transform/2]).
-ifndef(NO_UNUSED).
-export([core_transform/2]).
-endif.
-include("cerl_hipe_primops.hrl").
-record(ctxt, {class = expr}).
%% @spec core_transform(Module::cerl_records(), Options::[term()]) ->
%% cerl_records()
%%
%% @doc Transforms a module represented by records. See
%% <code>transform/2</code> for details.
%%
%% <p>Use the compiler option <code>{core_transform,
%% cerl_hipeify}</code> to insert this function as a compilation
%% pass.</p>
%%
%% @see transform/2
-ifndef(NO_UNUSED).
core_transform(M, Opts) ->
cerl:to_records(transform(cerl:from_records(M), Opts)).
-endif. % NO_UNUSED
%% @clear
%% @spec transform(Module::cerl(), Options::[term()]) -> cerl()
%%
%% cerl() = cerl:cerl()
%%
%% @doc Rewrites a Core Erlang module to a form suitable for further
%% translation to HiPE Icode. See module <code>cerl_to_icode</code> for
%% details.
%%
%% @see cerl_to_icode
%% @see cerl_cconv
-spec transform(cerl:c_module(), [term()]) -> cerl:c_module().
transform(E, Opts) ->
%% Start by closure converting the code
module(cerl_cconv:transform(E, Opts), Opts).
module(E, Opts) ->
{Ds, Env, Ren} = add_defs(cerl:module_defs(E), env__new(),
ren__new()),
M = cerl:module_name(E),
S0 = s__new(cerl:atom_val(M)),
S = s__set_pmatch(proplists:get_value(pmatch, Opts, true), S0),
{Ds1, _} = defs(Ds, true, Env, Ren, S),
cerl:update_c_module(E, M, cerl:module_exports(E),
cerl:module_attrs(E), Ds1).
%% Note that the environment is defined on the renamed variables.
expr(E0, Env, Ren, Ctxt, S0) ->
%% Do peephole optimizations as we traverse the code.
E = cerl_lib:reduce_expr(E0),
case cerl:type(E) of
literal ->
{E, S0};
var ->
variable(E, Env, Ren, Ctxt, S0);
values ->
{Es, S1} = expr_list(cerl:values_es(E), Env, Ren, Ctxt, S0),
{cerl:update_c_values(E, Es), S1};
cons ->
{E1, S1} = expr(cerl:cons_hd(E), Env, Ren, Ctxt, S0),
{E2, S2} = expr(cerl:cons_tl(E), Env, Ren, Ctxt, S1),
{cerl:update_c_cons(E, E1, E2), S2};
tuple ->
{Es, S1} = expr_list(cerl:tuple_es(E), Env, Ren, Ctxt, S0),
{cerl:update_c_tuple(E, Es), S1};
'let' ->
let_expr(E, Env, Ren, Ctxt, S0);
seq ->
{A, S1} = expr(cerl:seq_arg(E), Env, Ren, Ctxt, S0),
{B, S2} = expr(cerl:seq_body(E), Env, Ren, Ctxt, S1),
{cerl:update_c_seq(E, A, B), S2};
apply ->
{Op, S1} = expr(cerl:apply_op(E), Env, Ren, Ctxt, S0),
{As, S2} = expr_list(cerl:apply_args(E), Env, Ren, Ctxt, S1),
{cerl:update_c_apply(E, Op, As), S2};
call ->
{M, S1} = expr(cerl:call_module(E), Env, Ren, Ctxt, S0),
{N, S2} = expr(cerl:call_name(E), Env, Ren, Ctxt, S1),
{As, S3} = expr_list(cerl:call_args(E), Env, Ren, Ctxt, S2),
{rewrite_call(E, M, N, As, S3), S3};
primop ->
{As, S1} = expr_list(cerl:primop_args(E), Env, Ren, Ctxt, S0),
N = cerl:primop_name(E),
{rewrite_primop(E, N, As, S1), S1};
'case' ->
case_expr(E, Env, Ren, Ctxt, S0);
'fun' ->
Vs = cerl:fun_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S1} = expr(cerl:fun_body(E), Env1, Ren1, Ctxt, S0),
{cerl:update_c_fun(E, Vs1, B), S1};
'receive' ->
receive_expr(E, Env, Ren, Ctxt, S0);
'try' ->
{A, S1} = expr(cerl:try_arg(E), Env, Ren, Ctxt, S0),
Vs = cerl:try_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:try_body(E), Env1, Ren1, Ctxt, S1),
Evs = cerl:try_evars(E),
{Evs1, Env2, Ren2} = add_vars(Evs, Env, Ren),
{H, S3} = expr(cerl:try_handler(E), Env2, Ren2, Ctxt, S2),
{cerl:update_c_try(E, A, Vs1, B, Evs1, H), S3};
'catch' ->
catch_expr(E, Env, Ren, Ctxt, S0);
letrec ->
{Ds, Env1, Ren1} = add_defs(cerl:letrec_defs(E), Env, Ren),
{Ds1, S1} = defs(Ds, false, Env1, Ren1, S0),
{B, S2} = expr(cerl:letrec_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_letrec(E, Ds1, B), S2};
binary ->
{Segs, S1} = expr_list(cerl:binary_segments(E), Env, Ren,
Ctxt, S0),
{cerl:update_c_binary(E, Segs), S1};
bitstr ->
{E1,S1} = expr(cerl:bitstr_val(E), Env, Ren, Ctxt, S0),
{E2,S2} = expr(cerl:bitstr_size(E), Env, Ren, Ctxt, S1),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
{cerl:update_c_bitstr(E, E1, E2, E3, E4, E5), S2}
end.
guard_expr(E, Env, Ren, Ctxt, S) ->
expr(E, Env, Ren, Ctxt#ctxt{class = guard}, S).
expr_list(Es, Env, Ren, Ctxt, S0) ->
list(Es, Env, Ren, Ctxt, S0, fun expr/5).
list([E | Es], Env, Ren, Ctxt, S0, F) ->
{E1, S1} = F(E, Env, Ren, Ctxt, S0),
{Es1, S2} = list(Es, Env, Ren, Ctxt, S1, F),
{[E1 | Es1], S2};
list([], _, _, _, S, _) ->
{[], S}.
pattern(E, Env, Ren) ->
case cerl:type(E) of
literal ->
E;
var ->
cerl:update_c_var(E, ren__map(cerl:var_name(E), Ren));
values ->
Es = pattern_list(cerl:values_es(E), Env, Ren),
cerl:update_c_values(E, Es);
cons ->
E1 = pattern(cerl:cons_hd(E), Env, Ren),
E2 = pattern(cerl:cons_tl(E), Env, Ren),
cerl:update_c_cons(E, E1, E2);
tuple ->
Es = pattern_list(cerl:tuple_es(E), Env, Ren),
cerl:update_c_tuple(E, Es);
alias ->
V = pattern(cerl:alias_var(E), Env, Ren),
P = pattern(cerl:alias_pat(E), Env, Ren),
cerl:update_c_alias(E, V, P);
binary ->
Segs = pattern_list(cerl:binary_segments(E), Env, Ren),
cerl:update_c_binary(E, Segs);
bitstr ->
E1 = pattern(cerl:bitstr_val(E), Env, Ren),
E2 = pattern(cerl:bitstr_size(E), Env, Ren),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
cerl:update_c_bitstr(E, E1, E2, E3, E4, E5)
end.
pattern_list(ExprList, Env, Ren) ->
[pattern(E, Env, Ren) || E <- ExprList].
%% Visit the function body of each definition. We insert an explicit
%% reduction test at the start of each function.
defs(Ds, Top, Env, Ren, S) ->
defs(Ds, [], Top, Env, Ren, S).
defs([{V, F} | Ds], Ds1, Top, Env, Ren, S0) ->
S1 = case Top of
true -> s__enter_function(cerl:var_name(V), S0);
false -> S0
end,
{B, S2} = expr(cerl:fun_body(F), Env, Ren, #ctxt{}, S1),
B1 = cerl:c_seq(cerl:c_primop(cerl:c_atom(?PRIMOP_REDUCTION_TEST), []),
B),
F1 = cerl:update_c_fun(F, cerl:fun_vars(F), B1),
defs(Ds, [{V, F1} | Ds1], Top, Env, Ren, S2);
defs([], Ds, _Top, _Env, _Ren, S) ->
{lists:reverse(Ds), S}.
case_expr(E, Env, Ren, Ctxt, S0) ->
{A, S1} = expr(cerl:case_arg(E), Env, Ren, Ctxt, S0),
{Cs, S2} = clause_list(cerl:case_clauses(E), Env, Ren, Ctxt, S1),
case s__get_revisit(S2) of
false ->
{E1, Vs, S3} = pmatch(Cs, Env, Ren, Ctxt, S2),
{cerl:c_let(Vs, A, E1), S3};
true ->
{cerl:c_case(A, Cs), S2}
end.
%% Note: There is an ordering problem with switch-clauses and pattern
%% matching compilation. We must process any receive-clauses first,
%% making the message queue operations explicit, before we can do
%% pattern matching compilation. However, the latter can introduce new
%% expressions - in particular new guards - which also need processing.
%% Hence, we must process the clauses, then do pattern matching
%% compilation, and then re-visit the resulting expression with pattern
%% matching compilation disabled.
pmatch(Cs, Env, _Ren, Ctxt, S0) ->
{E, Vs} = case s__get_pmatch(S0) of
true ->
cerl_pmatch:clauses(Cs, Env);
no_duplicates ->
put('cerl_pmatch_duplicate_code', never),
cerl_pmatch:clauses(Cs, Env);
duplicate_all ->
put('cerl_pmatch_duplicate_code', always),
cerl_pmatch:clauses(Cs, Env);
false ->
Vs0 = new_vars(cerl:clause_arity(hd(Cs)), Env),
{cerl:c_case(cerl:c_values(Vs0), Cs), Vs0}
end,
%% Revisit the resulting expression. Pass an empty renaming, since
%% all variables in E have already been properly renamed and must
%% not be renamed again by accident.
{E1, S1} = expr(E, Env, ren__new(), Ctxt, s__set_revisit(true, S0)),
{E1, Vs, s__set_revisit(false, S1)}.
clause_list(Cs, Env, Ren, Ctxt, S) ->
list(Cs, Env, Ren, Ctxt, S, fun clause/5).
clause(E, Env, Ren, Ctxt, S0) ->
Vs = cerl:clause_vars(E),
{_, Env1, Ren1} = add_vars(Vs, Env, Ren),
%% Visit patterns to rename variables.
Ps = pattern_list(cerl:clause_pats(E), Env1, Ren1),
{G, S1} = guard_expr(cerl:clause_guard(E), Env1, Ren1, Ctxt, S0),
{B, S2} = expr(cerl:clause_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_clause(E, Ps, G, B), S2}.
%% We use the no-shadowing strategy, renaming variables on the fly and
%% only when necessary to uphold the invariant.
add_vars(Vs, Env, Ren) ->
add_vars(Vs, [], Env, Ren).
add_vars([V | Vs], Vs1, Env, Ren) ->
Name = cerl:var_name(V),
{Name1, Ren1} = rename(Name, Env, Ren),
add_vars(Vs, [cerl:update_c_var(V, Name1) | Vs1],
env__bind(Name1, variable, Env), Ren1);
add_vars([], Vs, Env, Ren) ->
{lists:reverse(Vs), Env, Ren}.
rename(Name, Env, Ren) ->
case env__is_defined(Name, Env) of
false ->
{Name, Ren};
true ->
New = env__new_name(Env),
{New, ren__add(Name, New, Ren)}
end.
%% Setting up the environment for a list of letrec-bound definitions.
add_defs(Ds, Env, Ren) ->
add_defs(Ds, [], Env, Ren).
add_defs([{V, F} | Ds], Ds1, Env, Ren) ->
Name = cerl:var_name(V),
{Name1, Ren1} =
case env__is_defined(Name, Env) of
false ->
{Name, Ren};
true ->
{N, A} = Name,
S = atom_to_list(N) ++ "_",
F1 = fun (Num) ->
{list_to_atom(S ++ integer_to_list(Num)), A}
end,
New = env__new_function_name(F1, Env),
{New, ren__add(Name, New, Ren)}
end,
add_defs(Ds, [{cerl:update_c_var(V, Name1), F} | Ds1],
env__bind(Name1, function, Env), Ren1);
add_defs([], Ds, Env, Ren) ->
{lists:reverse(Ds), Env, Ren}.
%% We change remote calls to important built-in functions into primop
%% calls. In some cases (e.g., for the boolean operators), this is
%% mainly to allow the cerl_to_icode module to handle them more
%% straightforwardly. In most cases however, it is simply because they
%% are supposed to be represented as primop calls on the Icode level.
rewrite_call(E, M, F, As, S) ->
case cerl:is_c_atom(M) andalso cerl:is_c_atom(F) of
true ->
case call_to_primop(cerl:atom_val(M),
cerl:atom_val(F),
length(As))
of
{yes, ?PRIMOP_IS_RECORD} ->
%% Needs additional testing
[_, Tag, Arity] = As,
case (cerl:is_c_atom(Tag) andalso
cerl:is_c_int(Arity)) of
true ->
%% The primop might need further handling
N1 = cerl:c_atom(?PRIMOP_IS_RECORD),
E1 = cerl:update_c_primop(E, N1, As),
rewrite_primop(E1, N1, As, S);
false ->
cerl:update_c_call(E, M, F, As)
end;
{yes, N} ->
%% The primop might need further handling
N1 = cerl:c_atom(N),
E1 = cerl:update_c_primop(E, N1, As),
rewrite_primop(E1, N1, As, S);
no ->
cerl:update_c_call(E, M, F, As)
end;
false ->
cerl:update_c_call(E, M, F, As)
end.
call_to_primop(erlang, 'not', 1) -> {yes, ?PRIMOP_NOT};
call_to_primop(erlang, 'and', 2) -> {yes, ?PRIMOP_AND};
call_to_primop(erlang, 'or', 2) -> {yes, ?PRIMOP_OR};
call_to_primop(erlang, 'xor', 2) -> {yes, ?PRIMOP_XOR};
call_to_primop(erlang, '+', 2) -> {yes, ?PRIMOP_ADD};
%%call_to_primop(erlang, '+', 1) -> {yes, ?PRIMOP_IDENTITY};
call_to_primop(erlang, '-', 2) -> {yes, ?PRIMOP_SUB};
call_to_primop(erlang, '-', 1) -> {yes, ?PRIMOP_NEG};
call_to_primop(erlang, '*', 2) -> {yes, ?PRIMOP_MUL};
call_to_primop(erlang, '/', 2) -> {yes, ?PRIMOP_DIV};
call_to_primop(erlang, 'div', 2) -> {yes, ?PRIMOP_INTDIV};
call_to_primop(erlang, 'rem', 2) -> {yes, ?PRIMOP_REM};
call_to_primop(erlang, 'band', 2) -> {yes, ?PRIMOP_BAND};
call_to_primop(erlang, 'bor', 2) -> {yes, ?PRIMOP_BOR};
call_to_primop(erlang, 'bxor', 2) -> {yes, ?PRIMOP_BXOR};
call_to_primop(erlang, 'bnot', 1) -> {yes, ?PRIMOP_BNOT};
call_to_primop(erlang, 'bsl', 2) -> {yes, ?PRIMOP_BSL};
call_to_primop(erlang, 'bsr', 2) -> {yes, ?PRIMOP_BSR};
call_to_primop(erlang, '==', 2) -> {yes, ?PRIMOP_EQ};
call_to_primop(erlang, '/=', 2) -> {yes, ?PRIMOP_NE};
call_to_primop(erlang, '=:=', 2) -> {yes, ?PRIMOP_EXACT_EQ};
call_to_primop(erlang, '=/=', 2) -> {yes, ?PRIMOP_EXACT_NE};
call_to_primop(erlang, '<', 2) -> {yes, ?PRIMOP_LT};
call_to_primop(erlang, '>', 2) -> {yes, ?PRIMOP_GT};
call_to_primop(erlang, '=<', 2) -> {yes, ?PRIMOP_LE};
call_to_primop(erlang, '>=', 2) -> {yes, ?PRIMOP_GE};
call_to_primop(erlang, is_atom, 1) -> {yes, ?PRIMOP_IS_ATOM};
call_to_primop(erlang, is_binary, 1) -> {yes, ?PRIMOP_IS_BINARY};
call_to_primop(erlang, is_float, 1) -> {yes, ?PRIMOP_IS_FLOAT};
call_to_primop(erlang, is_function, 1) -> {yes, ?PRIMOP_IS_FUNCTION};
call_to_primop(erlang, is_integer, 1) -> {yes, ?PRIMOP_IS_INTEGER};
call_to_primop(erlang, is_list, 1) -> {yes, ?PRIMOP_IS_LIST};
call_to_primop(erlang, is_number, 1) -> {yes, ?PRIMOP_IS_NUMBER};
call_to_primop(erlang, is_pid, 1) -> {yes, ?PRIMOP_IS_PID};
call_to_primop(erlang, is_port, 1) -> {yes, ?PRIMOP_IS_PORT};
call_to_primop(erlang, is_reference, 1) -> {yes, ?PRIMOP_IS_REFERENCE};
call_to_primop(erlang, is_tuple, 1) -> {yes, ?PRIMOP_IS_TUPLE};
call_to_primop(erlang, internal_is_record, 3) -> {yes, ?PRIMOP_IS_RECORD};
call_to_primop(erlang, is_record, 3) -> {yes, ?PRIMOP_IS_RECORD};
call_to_primop(erlang, element, 2) -> {yes, ?PRIMOP_ELEMENT};
call_to_primop(erlang, exit, 1) -> {yes, ?PRIMOP_EXIT};
call_to_primop(erlang, throw, 1) -> {yes, ?PRIMOP_THROW};
call_to_primop(erlang, error, 1) -> {yes, ?PRIMOP_ERROR};
call_to_primop(erlang, error, 2) -> {yes, ?PRIMOP_ERROR};
call_to_primop(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> no.
%% Also, some primops (introduced by Erlang to Core Erlang translation
%% and possibly other stages) must be recognized and rewritten.
rewrite_primop(E, N, As, S) ->
case {cerl:atom_val(N), As} of
{match_fail, [R]} ->
M = s__get_module_name(S),
{F, A} = s__get_function_name(S),
Stack = cerl:abstract([{M, F, A}]),
case cerl:type(R) of
tuple ->
%% Function clause failures have a special encoding
%% as '{function_clause, Arg1, ..., ArgN}'.
case cerl:tuple_es(R) of
[X | Xs] ->
case cerl:is_c_atom(X) of
true ->
case cerl:atom_val(X) of
function_clause ->
FStack = cerl:make_list(
[cerl:c_tuple(
[cerl:c_atom(M),
cerl:c_atom(F),
cerl:make_list(Xs)])]),
match_fail(E, X, FStack);
_ ->
match_fail(E, R, Stack)
end;
false ->
match_fail(E, R, Stack)
end;
_ ->
match_fail(E, R, Stack)
end;
_ ->
match_fail(E, R, Stack)
end;
_ ->
cerl:update_c_primop(E, N, As)
end.
match_fail(E, R, Stack) ->
cerl:update_c_primop(E, cerl:c_atom(?PRIMOP_ERROR), [R, Stack]).
%% Simple let-definitions (of degree 1) in guard context are always
%% inline expanded. This is allowable, since they cannot have side
%% effects, and it makes it easy to generate good code for boolean
%% expressions. It could cause repeated evaluations, but typically,
%% local definitions within guards are used exactly once.
let_expr(E, Env, Ren, Ctxt, S) ->
if Ctxt#ctxt.class =:= guard ->
case cerl:let_vars(E) of
[V] ->
{Name, Ren1} = rename(cerl:var_name(V), Env, Ren),
Env1 = env__bind(Name, {expr, cerl:let_arg(E)}, Env),
expr(cerl:let_body(E), Env1, Ren1, Ctxt, S);
_ ->
let_expr_1(E, Env, Ren, Ctxt, S)
end;
true ->
let_expr_1(E, Env, Ren, Ctxt, S)
end.
let_expr_1(E, Env, Ren, Ctxt, S0) ->
{A, S1} = expr(cerl:let_arg(E), Env, Ren, Ctxt, S0),
Vs = cerl:let_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:let_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_let(E, Vs1, A, B), S2}.
variable(E, Env, Ren, Ctxt, S) ->
V = ren__map(cerl:var_name(E), Ren),
if Ctxt#ctxt.class =:= guard ->
case env__lookup(V, Env) of
{ok, {expr, E1}} ->
expr(E1, Env, Ren, Ctxt, S); % inline
_ ->
%% Since we don't track all bindings when we revisit
%% guards, some names will not be in the environment.
variable_1(E, V, S)
end;
true ->
variable_1(E, V, S)
end.
variable_1(E, V, S) ->
{cerl:update_c_var(E, V), S}.
%% A catch-expression 'catch Expr' is rewritten as:
%%
%% try Expr
%% of (V) -> V
%% catch (T, V, E) ->
%% letrec 'wrap'/1 = fun (V) -> {'EXIT', V}
%% in case T of
%% 'throw' when 'true' -> V
%% 'exit' when 'true' -> 'wrap'/1(V)
%% V when 'true' ->
%% 'wrap'/1({V, erlang:get_stacktrace()})
%% end
catch_expr(E, Env, Ren, Ctxt, S) ->
T = cerl:c_var('T'),
V = cerl:c_var('V'),
X = cerl:c_var('X'),
W = cerl:c_var({wrap,1}),
G = cerl:c_call(cerl:c_atom('erlang'),cerl:c_atom('get_stacktrace'),[]),
Cs = [cerl:c_clause([cerl:c_atom('throw')], V),
cerl:c_clause([cerl:c_atom('exit')], cerl:c_apply(W, [V])),
cerl:c_clause([T], cerl:c_apply(W, [cerl:c_tuple([V,G])]))
],
C = cerl:c_case(T, Cs),
F = cerl:c_fun([V], cerl:c_tuple([cerl:c_atom('EXIT'), V])),
H = cerl:c_letrec([{W,F}], C),
As = cerl:get_ann(E),
{B, S1} = expr(cerl:catch_body(E),Env, Ren, Ctxt, S),
{cerl:ann_c_try(As, B, [V], V, [T,V,X], H), S1}.
%% Receive-expressions are rewritten as follows:
%%
%% receive
%% P1 when G1 -> B1
%% ...
%% Pn when Gn -> Bn
%% after T -> A end
%% becomes:
%% receive
%% M when 'true' ->
%% case M of
%% P1 when G1 -> do primop RECEIVE_SELECT B1
%% ...
%% Pn when Gn -> do primop RECEIVE_SELECT Bn
%% Pn+1 when 'true' -> primop RECEIVE_NEXT()
%% end
%% after T -> A end
receive_expr(E, Env, Ren, Ctxt, S0) ->
case s__get_revisit(S0) of
false ->
Cs = receive_clauses(cerl:receive_clauses(E)),
{Cs1, S1} = clause_list(Cs, Env, Ren, Ctxt, S0),
{B, Vs, S2} = pmatch(Cs1, Env, Ren, Ctxt, S1),
{T, S3} = expr(cerl:receive_timeout(E), Env, Ren, Ctxt, S2),
{A, S4} = expr(cerl:receive_action(E), Env, Ren, Ctxt, S3),
{cerl:update_c_receive(E, [cerl:c_clause(Vs, B)], T, A), S4};
true ->
%% we should never enter a receive-expression twice
{E, S0}
end.
receive_clauses([C | Cs]) ->
Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_SELECT), []),
B = cerl:c_seq(Call, cerl:clause_body(C)),
C1 = cerl:update_c_clause(C, cerl:clause_pats(C),
cerl:clause_guard(C), B),
[C1 | receive_clauses(Cs)];
receive_clauses([]) ->
Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_NEXT), []),
V = cerl:c_var('X'), % any name is ok
[cerl:c_clause([V], Call)].
new_vars(N, Env) ->
[cerl:c_var(V) || V <- env__new_names(N, Env)].
%% ---------------------------------------------------------------------
%% Environment
env__new() ->
rec_env:empty().
env__bind(Key, Value, Env) ->
rec_env:bind(Key, Value, Env).
%% env__get(Key, Env) ->
%% rec_env:get(Key, Env).
env__lookup(Key, Env) ->
rec_env:lookup(Key, Env).
env__is_defined(Key, Env) ->
rec_env:is_defined(Key, Env).
env__new_name(Env) ->
rec_env:new_key(Env).
env__new_names(N, Env) ->
rec_env:new_keys(N, Env).
env__new_function_name(F, Env) ->
rec_env:new_key(F, Env).
%% ---------------------------------------------------------------------
%% Renaming
ren__new() ->
dict:new().
ren__add(Key, Value, Ren) ->
dict:store(Key, Value, Ren).
ren__map(Key, Ren) ->
case dict:find(Key, Ren) of
{ok, Value} ->
Value;
error ->
Key
end.
%% ---------------------------------------------------------------------
%% State
-type pmatch() :: 'true' | 'false' | 'no_duplicates' | 'duplicate_all'.
-record(state, {module :: module(),
function :: {atom(), arity()} | 'undefined',
pmatch = true :: pmatch(),
revisit = false :: boolean()}).
s__new(Module) ->
#state{module = Module}.
s__get_module_name(S) ->
S#state.module.
s__enter_function(F, S) ->
S#state{function = F}.
s__get_function_name(S) ->
S#state.function.
s__set_pmatch(V, S) ->
S#state{pmatch = V}.
s__get_pmatch(S) ->
S#state.pmatch.
s__set_revisit(V, S) ->
S#state{revisit = V}.
s__get_revisit(S) ->
S#state.revisit.
|