1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
%%% -*- erlang-indent-level: 2 -*-
%%%======================================================================
%%%
%%% %CopyrightBegin%
%%%
%%% Copyright Ericsson AB 2004-2016. All Rights Reserved.
%%%
%%% Licensed under the Apache License, Version 2.0 (the "License");
%%% you may not use this file except in compliance with the License.
%%% You may obtain a copy of the License at
%%%
%%% http://www.apache.org/licenses/LICENSE-2.0
%%%
%%% Unless required by applicable law or agreed to in writing, software
%%% distributed under the License is distributed on an "AS IS" BASIS,
%%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%%% See the License for the specific language governing permissions and
%%% limitations under the License.
%%%
%%% %CopyrightEnd%
%%%
%%% An implementation of the algorithm described in:
%%% "Assembling Code for Machines with Span-Dependent Instructions",
%%% Thomas G. Szymanski, CACM 21(4), April 1978, pp. 300--308.
%%%
%%% Copyright (C) 2000, 2004, 2007 Mikael Pettersson
-module(hipe_sdi).
-export([pass1_init/0,
pass1_add_label/3,
pass1_add_sdi/4,
pass2/1]).
-include("hipe_sdi.hrl").
%%------------------------------------------------------------------------
-type hipe_array() :: integer(). % declare this in hipe.hrl or builtin?
-type hipe_vector(E) :: {} | {E} | {E, E} | {E, E, E} | tuple().
-type label() :: non_neg_integer().
-type address() :: non_neg_integer().
-type parents() :: {hipe_vector(_ :: integer()), hipe_segment_trees:tree()}.
%%------------------------------------------------------------------------
-record(label_data, {address :: address(),
prevSdi :: integer()}).
-record(pre_sdi_data, {address :: address(),
label :: label(),
si :: #sdi_info{}}).
-record(pass1, {prevSdi :: integer(),
preS = [] :: [#pre_sdi_data{}],
labelMap = gb_trees:empty() :: gb_trees:tree()}).
-record(sdi_data, {address :: address(),
label_address :: address(),
prevSdi :: integer(), %% -1 is the first previous
si :: #sdi_info{}}).
%%------------------------------------------------------------------------
%%% "During the first pass we assign addresses to instructions
%%% and build a symbol table of labels and their addresses
%%% according to the minimum address assignment. We do this by
%%% treating each sdi as having its shorter length. We also
%%% number the sdi's [sic] from 1 to n in order of occurrence
%%% and record in the symbol table entry for each label the
%%% number of sdi's [sic] preceding it in the program.
%%% Simultaneously with pass 1 we build a set
%%% S = {(i,a,l,c) | 1 <= i <= n, a is the minimum address of
%%% the ith sdi, l and c, are the label and constant
%%% components of the operand of the ith sdi respectively}."
%%%
%%% Implementation notes:
%%% - We number the SDIs from 0 to n-1, not from 1 to n.
%%% - SDIs target only labels, so the constant offsets are omitted.
%%% - The set S is represented by a vector S[0..n-1] such that if
%%% (i,a,l) is in the set, then S[i] = (a,l).
%%% - The symbol table maps a label to its minimum address and the
%%% number of the last SDI preceding it (-1 if none).
%%% - To allow this module to make architecture-specific decisions
%%% without using callbacks or making it architecture-specific,
%%% the elements in the set S include a fourth component, SdiInfo,
%%% supplied by the caller of this module.
%%% - At the end of the first pass we finalise the preliminary SDIs
%%% by replacing their symbolic target labels with the corresponding
%%% data from the symbol table. This avoids repeated O(logn) time
%%% lookup costs for the labels.
-spec pass1_init() -> #pass1{}.
pass1_init() ->
#pass1{prevSdi = -1}.
-spec pass1_add_label(#pass1{}, non_neg_integer(), label()) -> #pass1{}.
pass1_add_label(Pass1, Address, Label) ->
#pass1{prevSdi=PrevSdi, labelMap=LabelMap} = Pass1,
LabelData = #label_data{address=Address, prevSdi=PrevSdi},
LabelMap2 = gb_trees:insert(Label, LabelData, LabelMap),
Pass1#pass1{labelMap=LabelMap2}.
-spec pass1_add_sdi(#pass1{}, non_neg_integer(), label(), #sdi_info{}) ->
#pass1{}.
pass1_add_sdi(Pass1, Address, Label, SdiInfo) ->
#pass1{prevSdi=PrevSdi, preS=PreS} = Pass1,
PreSdiData = #pre_sdi_data{address=Address, label=Label, si=SdiInfo},
Pass1#pass1{prevSdi=PrevSdi+1, preS=[PreSdiData|PreS]}.
-spec pass1_finalise(#pass1{}) -> {non_neg_integer(),tuple(),gb_trees:tree()}.
pass1_finalise(#pass1{prevSdi=PrevSdi, preS=PreS, labelMap=LabelMap}) ->
{PrevSdi+1, pass1_finalise_preS(PreS, LabelMap, []), LabelMap}.
-spec pass1_finalise_preS([#pre_sdi_data{}], gb_trees:tree(), [#sdi_data{}]) ->
tuple().
pass1_finalise_preS([], _LabelMap, S) -> vector_from_list(S);
pass1_finalise_preS([PreSdiData|PreS], LabelMap, S) ->
#pre_sdi_data{address=Address, label=Label, si=SdiInfo} = PreSdiData,
LabelData = gb_trees:get(Label, LabelMap),
#label_data{address=LabelAddress, prevSdi=PrevSdi} = LabelData,
SdiData = #sdi_data{address=Address, label_address=LabelAddress,
prevSdi=PrevSdi, si=SdiInfo},
pass1_finalise_preS(PreS, LabelMap, [SdiData|S]).
%%% Pass2.
-spec pass2(#pass1{}) -> {gb_trees:tree(), non_neg_integer()}.
pass2(Pass1) ->
{N,SDIS,LabelMap} = pass1_finalise(Pass1),
LONG = mk_long(N),
SPAN = mk_span(N, SDIS),
PARENTS = mk_parents(N, SDIS),
update_long(N, SDIS, SPAN, PARENTS, LONG),
{INCREMENT,CodeSizeIncr} = mk_increment(N, LONG),
{adjust_label_map(LabelMap, INCREMENT), CodeSizeIncr}.
%%% "Between passes 1 and 2 we will construct an integer table
%%% LONG[1:n] such that LONG[i] is nonzero if and only if the
%%% ith sdi must be given a long form translation. Initially
%%% LONG[i] is zero for all i."
%%%
%%% Implementation notes:
%%% - LONG is an integer array indexed from 0 to N-1.
-spec mk_long(non_neg_integer()) -> hipe_array().
mk_long(N) ->
mk_array_of_zeros(N).
%%% "At the heart of our algorithm is a graphical representation
%%% of the interdependencies of the sdi's [sic] of the program.
%%% For each sdi we construct a node containing the empty span
%%% of that instruction. Nodes of this graph will be referred to
%%% by the number of the sdi to which they correspond. Directed
%%% arcs are now added to the graph so that i->j is an arc if
%%% and only if the span of the ith sdi depends on the size of
%%% the jth sdi, that is, the jth sdi lies between the ith sdi
%%% and the label occurring in its operand. It is easy to see
%%% that the graph we have just described can be constructed from
%%% the information present in the set S and the symbol table.
%%%
%%% The significance if this graph is that sizes can be assigned
%%% to the sdi's [sic] of the program so that the span of the ith
%%% sdi is equal to the number appearing in node i if and only if
%%% all the children of i can be given short translations."
%%%
%%% Implementation notes:
%%% - The nodes are represented by an integer array SPAN[0..n-1]
%%% such that SPAN[i] contains the current span of sdi i.
%%% - Since the graph is traversed from child to parent nodes in
%%% Step 3, the edges are represented by a vector PARENTS[0..n-1]
%%% such that PARENTS[j] = { i | i is a parent of j }.
%%% - An explicit PARENTS graph would have size O(n^2). Instead, we
%%% observe that (i is a parent of j) iff (j \in range(i)), where
%%% range(i) is a constant function. We can thus precompute all the
%%% ranges i and insert them into a data structure built for such
%%% queries. In this case, we use a segment tree.
-spec mk_span(non_neg_integer(), tuple()) -> hipe_array().
mk_span(N, SDIS) ->
initSPAN(0, N, SDIS, mk_array_of_zeros(N)).
-spec initSPAN(non_neg_integer(), non_neg_integer(),
tuple(), hipe_array()) -> hipe_array().
initSPAN(SdiNr, N, SDIS, SPAN) ->
if SdiNr >= N -> SPAN;
true ->
SdiData = vector_sub(SDIS, SdiNr),
#sdi_data{address=SdiAddress, label_address=LabelAddress} = SdiData,
SdiSpan = LabelAddress - SdiAddress,
array_update(SPAN, SdiNr, SdiSpan),
initSPAN(SdiNr+1, N, SDIS, SPAN)
end.
-spec mk_parents(non_neg_integer(), tuple()) -> parents().
mk_parents(N, SDIS) ->
Ranges = parents_generate_ranges(N-1, SDIS, []),
hipe_segment_trees:build(Ranges).
parents_generate_ranges(-1, _SDIS, Acc) -> Acc;
parents_generate_ranges(SdiNr, SDIS, Acc) ->
#sdi_data{prevSdi=PrevSdi} = vector_sub(SDIS, SdiNr),
{LO,HI} = % inclusive
if SdiNr =< PrevSdi -> {SdiNr+1, PrevSdi}; % forwards
true -> {PrevSdi+1, SdiNr-1} % backwards
end,
parents_generate_ranges(SdiNr-1, SDIS, [{LO,HI}|Acc]).
%%% "After the structure is built we process it as follows.
%%% For any node i whose listed span exceeds the architectural
%%% limit for a short form instruction, the LONG[i] equal to
%%% the difference between the long and short forms of the ith
%%% sdi. Increment the span of each parent of i by LONG[i] if
%%% the parent precedes the child in the program. Otherwise,
%%% decrement the span of the parent by LONG[i]. Finally, remove
%%% node i from the graph. Clearly this process must terminate.
%%% Any nodes left in the final graph correspond to sdi's [sic]
%%% which can be translated in the short form."
%%%
%%% Implementation notes:
%%% - We use a simple worklist algorithm, operating on a set
%%% of SDIs known to require long form.
%%% - A node is removed from the graph by setting its span to zero.
%%% - The result is the updated LONG array. Afterwards, S, SPAN,
%%% and PARENTS are no longer useful.
-spec update_long(non_neg_integer(), tuple(), hipe_array(),
parents(),hipe_array()) -> 'ok'.
update_long(N, SDIS, SPAN, PARENTS, LONG) ->
WKL = initWKL(N-1, SDIS, SPAN, []),
processWKL(WKL, SDIS, SPAN, PARENTS, LONG).
-spec initWKL(integer(), tuple(),
hipe_array(), [non_neg_integer()]) -> [non_neg_integer()].
initWKL(SdiNr, SDIS, SPAN, WKL) ->
if SdiNr < 0 -> WKL;
true ->
SdiSpan = array_sub(SPAN, SdiNr),
WKL2 = updateWKL(SdiNr, SDIS, SdiSpan, WKL),
initWKL(SdiNr-1, SDIS, SPAN, WKL2)
end.
-spec processWKL([non_neg_integer()], tuple(), hipe_array(),
parents(), hipe_array()) -> 'ok'.
processWKL([], _SDIS, _SPAN, _PARENTS, _LONG) -> ok;
processWKL([Child|WKL], SDIS, SPAN, PARENTS, LONG) ->
WKL2 = updateChild(Child, WKL, SDIS, SPAN, PARENTS, LONG),
processWKL(WKL2, SDIS, SPAN, PARENTS, LONG).
-spec updateChild(non_neg_integer(), [non_neg_integer()], tuple(), hipe_array(),
parents(), hipe_array()) -> [non_neg_integer()].
updateChild(Child, WKL, SDIS, SPAN, PARENTS, LONG) ->
case array_sub(SPAN, Child) of
0 -> WKL; % removed
_ ->
SdiData = vector_sub(SDIS, Child),
Incr = sdiLongIncr(SdiData),
array_update(LONG, Child, Incr),
array_update(SPAN, Child, 0), % remove child
PS = parentsOfChild(PARENTS, Child),
updateParents(PS, Child, Incr, SDIS, SPAN, WKL)
end.
-spec parentsOfChild(parents(), non_neg_integer()) -> [non_neg_integer()].
parentsOfChild(IntervalTree, Child) ->
hipe_segment_trees:intersect(Child, IntervalTree).
-spec updateParents([non_neg_integer()], non_neg_integer(),
byte(), tuple(), hipe_array(),
[non_neg_integer()]) -> [non_neg_integer()].
updateParents([], _Child, _Incr, _SDIS, _SPAN, WKL) -> WKL;
updateParents([P|PS], Child, Incr, SDIS, SPAN, WKL) ->
WKL2 = updateParent(P, Child, Incr, SDIS, SPAN, WKL),
updateParents(PS, Child, Incr, SDIS, SPAN, WKL2).
-spec updateParent(non_neg_integer(), non_neg_integer(),
byte(), tuple(), hipe_array(),
[non_neg_integer()]) -> [non_neg_integer()].
updateParent(Parent, Child, Incr, SDIS, SPAN, WKL) ->
case array_sub(SPAN, Parent) of
0 -> WKL; % removed
OldSpan ->
NewSpan =
if Parent < Child -> OldSpan + Incr;
true -> OldSpan - Incr
end,
array_update(SPAN, Parent, NewSpan),
updateWKL(Parent, SDIS, NewSpan, WKL)
end.
-spec updateWKL(non_neg_integer(), tuple(),
integer(), [non_neg_integer()]) -> [non_neg_integer()].
updateWKL(SdiNr, SDIS, SdiSpan, WKL) ->
case sdiSpanIsShort(vector_sub(SDIS, SdiNr), SdiSpan) of
true -> WKL;
false -> [SdiNr|WKL]
end.
-spec sdiSpanIsShort(#sdi_data{}, integer()) -> boolean().
sdiSpanIsShort(#sdi_data{si = #sdi_info{lb = LB, ub = UB}}, SdiSpan) ->
SdiSpan >= LB andalso SdiSpan =< UB.
-spec sdiLongIncr(#sdi_data{}) -> byte().
sdiLongIncr(#sdi_data{si = #sdi_info{incr = Incr}}) -> Incr.
%%% "Now construct a table INCREMENT[0:n] by defining
%%% INCREMENT[0] = 0 and INCREMENT[i] = INCREMENT[i-1]+LONG[i]
%%% for 1 <= i <= n. INCREMENT[i] represents the total increase
%%% in size of the first i sdi's [sic] in the program."
%%%
%%% Implementation notes:
%%% - INCREMENT is an integer vector indexed from 0 to n-1.
%%% INCREMENT[i] = SUM(0 <= j <= i)(LONG[j]), for 0 <= i < n.
%%% - Due to the lack of an SML-like Array.extract operation,
%%% INCREMENT is an array, not an immutable vector.
-spec mk_increment(non_neg_integer(), hipe_array()) ->
{hipe_array(), non_neg_integer()}.
mk_increment(N, LONG) ->
initINCR(0, 0, N, LONG, mk_array_of_zeros(N)).
-spec initINCR(non_neg_integer(), non_neg_integer(), non_neg_integer(),
hipe_array(), hipe_array()) -> {hipe_array(), non_neg_integer()}.
initINCR(SdiNr, PrevIncr, N, LONG, INCREMENT) ->
if SdiNr >= N -> {INCREMENT, PrevIncr};
true ->
SdiIncr = PrevIncr + array_sub(LONG, SdiNr),
array_update(INCREMENT, SdiNr, SdiIncr),
initINCR(SdiNr+1, SdiIncr, N, LONG, INCREMENT)
end.
%%% "At this point we can adjust the addresses of each label L
%%% in the symbol table. If L is preceded by i sdi's [sic] in
%%% the program, then add INCREMENT[i] to the value of L in the
%%% symbol table."
%%%
%%% Implementation notes:
%%% - Due to the 0..n-1 SDI numbering, a label L with address
%%% a and previous sdi i is remapped to a+incr(i), where
%%% incr(i) = if i < 0 then 0 else INCREMENT[i].
-spec adjust_label_map(gb_trees:tree(), hipe_array()) -> gb_trees:tree().
adjust_label_map(LabelMap, INCREMENT) ->
applyIncr(gb_trees:to_list(LabelMap), INCREMENT, gb_trees:empty()).
-type label_pair() :: {label(), #label_data{}}.
-spec applyIncr([label_pair()], hipe_array(), gb_trees:tree()) ->
gb_trees:tree().
applyIncr([], _INCREMENT, LabelMap) -> LabelMap;
applyIncr([{Label,LabelData}|List], INCREMENT, LabelMap) ->
#label_data{address=Address, prevSdi=PrevSdi} = LabelData,
Incr =
if PrevSdi < 0 -> 0;
true -> array_sub(INCREMENT, PrevSdi)
end,
applyIncr(List, INCREMENT, gb_trees:insert(Label, Address+Incr, LabelMap)).
%%% ADT for immutable vectors, indexed from 0 to N-1.
%%% Currently implemented as tuples.
%%% Used for the 'SDIS' and 'PARENTS' vectors.
-spec vector_from_list([E]) -> hipe_vector(E).
vector_from_list(Values) -> list_to_tuple(Values).
-compile({inline, vector_sub/2}).
-spec vector_sub(hipe_vector(E), non_neg_integer()) -> V when V :: E.
vector_sub(Vec, I) -> element(I+1, Vec).
%%% ADT for mutable integer arrays, indexed from 0 to N-1.
%%% Currently implemented as HiPE arrays.
%%% Used for the 'LONG', 'SPAN', and 'INCREMENT' arrays.
-spec mk_array_of_zeros(non_neg_integer()) -> hipe_array().
mk_array_of_zeros(N) -> hipe_bifs:array(N, 0).
-compile({inline, array_update/3}).
-spec array_update(hipe_array(), non_neg_integer(), integer()) -> hipe_array().
array_update(A, I, V) -> hipe_bifs:array_update(A, I, V).
-compile({inline, array_sub/2}).
-spec array_sub(hipe_array(), non_neg_integer()) -> integer().
array_sub(A, I) -> hipe_bifs:array_sub(A, I).
|