aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hipe/misc/hipe_segment_trees.erl
blob: cbee328125c48ae6e2670769985feb361dd69805 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
%%%
%%% %CopyrightBegin%
%%%
%%% Copyright Ericsson AB 2016. All Rights Reserved.
%%%
%%% Licensed under the Apache License, Version 2.0 (the "License");
%%% you may not use this file except in compliance with the License.
%%% You may obtain a copy of the License at
%%%
%%%     http://www.apache.org/licenses/LICENSE-2.0
%%%
%%% Unless required by applicable law or agreed to in writing, software
%%% distributed under the License is distributed on an "AS IS" BASIS,
%%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%%% See the License for the specific language governing permissions and
%%% limitations under the License.
%%%
%%% %CopyrightEnd%
%%%
%%% Segment trees.
%%%
%%% Keys are the (0-based) indices into the list passed to build/1.
%%%
%%% Range bounds are inclusive.
%%%
%%% TODO: Change the shape of the tree to a perfect binary tree, and pack it as
%%% an implicit data structure into tuples (like a binary heap would be) for
%%% improved efficiency.

-module(hipe_segment_trees).

-export([build/1, intersect/2]).

-record(segment_tree, {
	  lo            :: integer(),
	  hi            :: integer(),
	  root          :: tnode()
	 }).

%% X =< Mid belongs in Left
-define(NODE(Left, Right, Mid, Segments), {Left, Right, Mid, Segments}).

-define(POINT_LEAF(Val), Val).
-define(RANGE_LEAF(Lo, Hi), {Lo, Hi}).

-type segments() :: [non_neg_integer()].
-type leaf()     :: segments().
-type tnode()    :: ?NODE(tnode(), tnode(), integer(), segments()) | leaf().

-opaque tree() :: #segment_tree{} | nil.
-export_type([tree/0]).

%% @doc Builds a segment tree of the given intervals.
-spec build([{integer(), integer()}]) -> tree().
build(ListOfIntervals) ->
    case
	lists:usort(
	  lists:append(
	    [[Lo, Hi] || {Lo, Hi} <- ListOfIntervals, Lo =< Hi]))
    of
	[] -> nil;
	Endpoints ->
	    Tree0 = empty_tree_from_endpoints(Endpoints),
	    [Lo|_] = Endpoints,
	    Hi = lists:last(Endpoints),
	    Tree1 = insert_intervals(0, ListOfIntervals, Lo, Hi, Tree0),
	    Tree = squash_empty_subtrees(Tree1),
	    #segment_tree{lo=Lo, hi=Hi, root=Tree}
    end.

empty_tree_from_endpoints(Endpoints) ->
    Leaves = leaves(Endpoints),
    {T, [], _, _} = balanced_bst(Leaves, length(Leaves)),
    T.

leaves([Endpoint]) -> [?POINT_LEAF(Endpoint)];
leaves([A | [B|_] = Tail]) ->
    %% We could omit the range leaf if it's empty, but we want to pack this data
    %% structure into an array (tuple) eventually, and then we *really* want
    %% every other leaf to be a range
    case A<B-1 of
	true  -> [?POINT_LEAF(A),?RANGE_LEAF(A+1,B-1) | leaves(Tail)];
	false -> [?POINT_LEAF(A) | leaves(Tail)]
    end.

balanced_bst(L, S) when S > 1 ->
    Sm = S, %% - 1
    S2 = Sm div 2,
    S1 = Sm - S2,
    {Left, L1, LeftLo, LeftHi} = balanced_bst(L, S1),
    {Right, L2, _, RightHi} = balanced_bst(L1, S2),
    T = ?NODE(Left, Right, LeftHi, []),
    {T, L2, LeftLo, RightHi};
balanced_bst([?RANGE_LEAF(Lo, Hi) | L], 1) ->
    {[], L, Lo, Hi};
balanced_bst([?POINT_LEAF(Val) | L], 1) ->
    {[], L, Val, Val}.

insert_intervals(_Ix, [], _Lo, _Hi, Tree) -> Tree;
insert_intervals(Ix, [Int|Ints], Lo, Hi, Tree) ->
    insert_intervals(Ix + 1, Ints, Lo, Hi,
		     insert_interval(Ix, Int, Lo, Hi, Tree)).

insert_interval(_, {Lo, Hi}, _, _, Node) when Lo > Hi -> Node;
insert_interval(I, Int={Lo,Hi}, NLo, NHi,
		?NODE(Left0, Right0, Mid, Segments)) ->
    if Lo =< NLo, NHi =< Hi ->
	    ?NODE(Left0, Right0, Mid, [I|Segments]);
       true ->
	    Left = case intervals_intersect(Lo, Hi,    NLo, Mid) of
		       true -> insert_interval(I, Int, NLo, Mid, Left0);
		       false -> Left0
		   end,
	    Right = case intervals_intersect(Lo, Hi,    Mid+1, NHi) of
			true -> insert_interval(I, Int, Mid+1, NHi, Right0);
			false -> Right0
		   end,
	    ?NODE(Left, Right, Mid, Segments)
    end;
insert_interval(I, {_Lo,_Hi}, _NLo, _NHi, Leaf) -> [I|Leaf].

intervals_intersect(ALo, AHi, BLo, BHi) ->
    (ALo =< AHi) andalso (BLo =< BHi) %% both nonempty
	andalso (BLo =< AHi) andalso (ALo =< BHi).

%% Purely optional optimisation
squash_empty_subtrees(?NODE(Left0, Right0, Mid, Segs)) ->
    build_squash_node(squash_empty_subtrees(Left0),
		      squash_empty_subtrees(Right0),
		      Mid, Segs);
squash_empty_subtrees(Leaf) -> Leaf.

build_squash_node([], [], _, Segs) -> Segs;
build_squash_node(Left, Right, Mid, Segs) ->
    ?NODE(Left, Right, Mid, Segs).

%% @doc Returns the indices of the intervals in the tree that contains Point.
-spec intersect(integer(), tree()) -> [non_neg_integer()].
intersect(Point, nil) when is_integer(Point) -> [];
intersect(Point, #segment_tree{lo=Lo, hi=Hi, root=Root})
  when is_integer(Point) ->
    case Lo =< Point andalso Point =< Hi of
	false -> [];
	true -> intersect_1(Point, Root, [])
    end.

intersect_1(Point, ?NODE(Left, Right, Mid, Segs), Acc0) ->
    Child = if Point =< Mid -> Left; true -> Right end,
    intersect_1(Point, Child, Segs ++ Acc0);
intersect_1(_, LeafSegs, Acc) -> LeafSegs ++ Acc.