1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
%%% Licensed under the Apache License, Version 2.0 (the "License");
%%% you may not use this file except in compliance with the License.
%%% You may obtain a copy of the License at
%%%
%%% http://www.apache.org/licenses/LICENSE-2.0
%%%
%%% Unless required by applicable law or agreed to in writing, software
%%% distributed under the License is distributed on an "AS IS" BASIS,
%%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%%% See the License for the specific language governing permissions and
%%% limitations under the License.
%%%
%%% Segment trees, with a delete operation.
%%%
%%% Keys are the (0-based) indices into the list passed to build/1.
%%%
%%% Range bounds are inclusive.
%%%
-module(hipe_segment_trees).
-export([build/1, intersect/2, delete/4]).
-record(segment_tree, {
lo :: integer(),
hi :: integer(),
root :: tnode()
}).
%% X =< Mid belongs in Left
-define(NODE(Left, Right, Mid, Segments), {Left, Right, Mid, Segments}).
-define(POINT_LEAF(Val), Val).
-define(RANGE_LEAF(Lo, Hi), {Lo, Hi}).
-type segments() :: [non_neg_integer()].
-type leaf() :: segments().
-type tnode() :: ?NODE(tnode(), tnode(), integer(), segments()) | leaf().
-opaque tree() :: #segment_tree{} | nil.
-export_type([tree/0]).
%% @doc Builds a segment tree of the given intervals.
-spec build([{integer(), integer()}]) -> tree().
build(ListOfIntervals) ->
case
lists:usort(
lists:append(
[[Lo, Hi] || {Lo, Hi} <- ListOfIntervals, Lo =< Hi]))
of
[] -> nil;
Endpoints ->
Tree0 = empty_tree_from_endpoints(Endpoints),
[Lo|_] = Endpoints,
Hi = lists:last(Endpoints),
Tree1 = insert_intervals(0, ListOfIntervals, Lo, Hi, Tree0),
Tree = squash_empty_subtrees(Tree1),
#segment_tree{lo=Lo, hi=Hi, root=Tree}
end.
empty_tree_from_endpoints(Endpoints) ->
Leaves = leaves(Endpoints),
{T, [], _, _} = balanced_bst(Leaves, length(Leaves)),
T.
leaves([Endpoint]) -> [?POINT_LEAF(Endpoint)];
leaves([A | [B|_] = Tail]) ->
%% We omit the range leaf if it's empty
case A<B-1 of
true -> [?POINT_LEAF(A),?RANGE_LEAF(A+1,B-1) | leaves(Tail)];
false -> [?POINT_LEAF(A) | leaves(Tail)]
end.
balanced_bst(L, S) when S > 1 ->
Sm = S, %% - 1
S2 = Sm div 2,
S1 = Sm - S2,
{Left, L1, LeftLo, LeftHi} = balanced_bst(L, S1),
{Right, L2, _, RightHi} = balanced_bst(L1, S2),
T = ?NODE(Left, Right, LeftHi, []),
{T, L2, LeftLo, RightHi};
balanced_bst([?RANGE_LEAF(Lo, Hi) | L], 1) ->
{[], L, Lo, Hi};
balanced_bst([?POINT_LEAF(Val) | L], 1) ->
{[], L, Val, Val}.
insert_intervals(_Ix, [], _Lo, _Hi, Tree) -> Tree;
insert_intervals(Ix, [Int|Ints], Lo, Hi, Tree) ->
insert_intervals(Ix + 1, Ints, Lo, Hi,
insert_interval(Ix, Int, Lo, Hi, Tree)).
insert_interval(_, {Lo, Hi}, _, _, Node) when Lo > Hi -> Node;
insert_interval(I, Int={Lo,Hi}, NLo, NHi,
?NODE(Left0, Right0, Mid, Segments)) ->
if Lo =< NLo, NHi =< Hi ->
?NODE(Left0, Right0, Mid, [I|Segments]);
true ->
Left = case intervals_intersect(Lo, Hi, NLo, Mid) of
true -> insert_interval(I, Int, NLo, Mid, Left0);
false -> Left0
end,
Right = case intervals_intersect(Lo, Hi, Mid+1, NHi) of
true -> insert_interval(I, Int, Mid+1, NHi, Right0);
false -> Right0
end,
?NODE(Left, Right, Mid, Segments)
end;
insert_interval(I, {_Lo,_Hi}, _NLo, _NHi, Leaf) -> [I|Leaf].
intervals_intersect(ALo, AHi, BLo, BHi) ->
(ALo =< AHi) andalso (BLo =< BHi) %% both nonempty
andalso nonempty_intervals_intersect(ALo, AHi, BLo, BHi).
%% Purely optional optimisation
squash_empty_subtrees(?NODE(Left0, Right0, Mid, Segs)) ->
build_squash_node(squash_empty_subtrees(Left0),
squash_empty_subtrees(Right0),
Mid, Segs);
squash_empty_subtrees(Leaf) -> Leaf.
build_squash_node([], [], _, Segs) -> Segs;
build_squash_node(Left, Right, Mid, Segs) ->
?NODE(Left, Right, Mid, Segs).
%% @doc Returns the indices of the intervals in the tree that contains Point.
-spec intersect(integer(), tree()) -> [non_neg_integer()].
intersect(Point, nil) when is_integer(Point) -> [];
intersect(Point, #segment_tree{lo=Lo, hi=Hi, root=Root})
when is_integer(Point) ->
case Lo =< Point andalso Point =< Hi of
false -> [];
true -> intersect_1(Point, Root, [])
end.
intersect_1(Point, ?NODE(Left, Right, Mid, Segs), Acc0) ->
Child = if Point =< Mid -> Left; true -> Right end,
intersect_1(Point, Child, Segs ++ Acc0);
intersect_1(_, LeafSegs, Acc) -> LeafSegs ++ Acc.
%% @doc Deletes the interval {Lo, Hi}, which had index Index in the list passed
%% to build/1.
-spec delete(non_neg_integer(), integer(), integer(), tree()) -> tree().
delete(_, _, _, nil) -> nil;
delete(_, Lo, Hi, Tree) when Lo > Hi -> Tree;
delete(_, Lo, Hi, Tree = #segment_tree{lo=TLo, hi=THi})
when Hi < TLo; Lo > THi -> Tree;
delete(Index, Lo, Hi, Tree = #segment_tree{lo=TLo, hi=THi, root=Root0})
when is_integer(Lo), is_integer(Hi) ->
Root = delete_1(Index, Lo, Hi, TLo, THi, Root0),
Tree#segment_tree{root=Root}.
delete_1(I, Lo, Hi, NLo, NHi, ?NODE(Left0, Right0, Mid, Segments)) ->
if Lo =< NLo, NHi =< Hi ->
?NODE(Left0, Right0, Mid, delete_2(Segments, I));
true ->
Left = case nonempty_intervals_intersect(Lo, Hi, NLo, Mid) of
true -> delete_1(I, Lo, Hi, NLo, Mid, Left0);
false -> Left0
end,
Right = case nonempty_intervals_intersect(Lo, Hi, Mid+1, NHi) of
true -> delete_1(I, Lo, Hi, Mid+1, NHi, Right0);
false -> Right0
end,
%% We could do build_squash_node here, is it worth it?
?NODE(Left, Right, Mid, Segments)
end;
delete_1(I, _Lo, _Hi, _NLo, _NHi, Leaf) -> delete_2(Leaf, I).
delete_2([I|Segs], I) -> Segs;
delete_2([S|Segs], I) -> [S|delete_2(Segs,I)].
-compile({inline,nonempty_intervals_intersect/4}).
nonempty_intervals_intersect(ALo, AHi, BLo, BHi) ->
(BLo =< AHi) andalso (ALo =< BHi).
|