1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2005-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% ===========================================================================
%% Copyright (c) 2002 by Niklas Andersson, Andreas Lundin, and Erik Johansson.
%% ===========================================================================
%% Module : hipe_spillmin_scan
%% Purpose : Optimizes the number of stack slots used by using a
%% "linear-scan algorithm" to allocate stack slots.
%% Notes : * This is a simplified implementation of
%% "Linear Scan Register Allocation" by
%% Massimiliano Poletto & Vivek Sarkar described in
%% ACM TOPLAS Vol 21, No 5, September 1999.
%%
%% * This implementation is target-independent and
%% requires a target specific interface module
%% as argument.
%%
%% * Based on the hipe_ls_regalloc module by Erik Johansson
%%
%% History : * 2002-04-01, NA & AL: Created
%% * 2002-10-08, Happi: Cleanup and speedup
%% ============================================================================
%% Exported functions (short description):
%% stackalloc(CFG, StackSlots, SpillIndex, Options, Target, TempMap) ->
%% {Coloring, NumberOfSpills}
%% Takes a CFG and the TempMap from register allocation and returns
%% a coloring of stack slots.
%% StackSlots should be a list of used stack slots, usually empty at
%% first call to function.
%% SpillIndex is the the first position we will spill to, usually 0.
%% TempMap is the TempMap from the register allocation
%%
%% The Coloring will be in the form of the "allocation datastructure"
%% described below, that is, a list of tuples on the form
%% {Name, {spill, SpillIndex}}
%% The NumberOfSpills is either 0 indicating no spill or the
%% SpillIndex of the last spilled register.
%%
%% mapmerge
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-module(hipe_spillmin_scan).
-export([stackalloc/7]).
%%-define(DEBUG, 1).
-define(HIPE_INSTRUMENT_COMPILER, true).
%%----------------------------------------------------------------------------
-include("../main/hipe.hrl").
-include("../flow/cfg.hrl").
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% stackalloc(CFG, StackSlots, SpillIndex, Options, Target, TempMap)
%% Calculates an allocation of stack slots using a linear_scan algorithm.
%% There are three steps in the algorithm:
%% 1. Calculate live-ranges for all spilled temporaries.
%% 2. Calculate live-intervals for each temporary.
%% The live interval consists of a start position and a end position
%% these are the first definition and last use of the temporary
%% given as instruction numbers in a breadth-first traversal of the
%% control-flow-graph.
%% 3. Do a linear scan allocation over the live intervals.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-spec stackalloc(#cfg{}, _, [_], non_neg_integer(),
comp_options(), module(), hipe_temp_map()) ->
{hipe_spill_map(), non_neg_integer()}.
stackalloc(CFG, Liveness, StackSlots, SpillIndex, Options, Target, TempMap) ->
?debug_msg("LinearScan: ~w\n", [erlang:statistics(runtime)]),
USIntervals = calculate_intervals(CFG, Liveness, Options,
Target, TempMap),
%% ?debug_msg("intervals (done) ~w\n", [erlang:statistics(runtime)]),
Intervals = sort_on_start(USIntervals),
?debug_msg("sort intervals (done) ~w\n", [erlang:statistics(runtime)]),
?debug_msg("Intervals ~w\n", [Intervals]),
?debug_msg("No intervals: ~w\n", [length(Intervals)]),
?debug_msg("count intervals (done) ~w\n", [erlang:statistics(runtime)]),
Allocation = allocate(Intervals, StackSlots, SpillIndex, Target),
?debug_msg("allocation (done) ~w\n", [erlang:statistics(runtime)]),
Allocation.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Step 2: Calculate live-intervals for each temporary. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% calculate_intervals(CFG, Liveness, Options, Target, TempMap)
%% CFG: The Control-Flow Graph.
%% Liveness: A map of live-in and live-out sets for each Basic-Block.
%% TempMap: The TempMap from the register allocation
%%
%% This function will only consider the intervals of the temporaries
%% that have been spilled during register allocation, and will ignore
%% all other.
%%- - - - - - - - - - - - - - - - - - - - - - - -
calculate_intervals(CFG, Liveness, _Options, Target, TempMap) ->
Interval = empty_interval(Target:number_of_temporaries(CFG)),
Worklist = Target:reverse_postorder(CFG),
intervals(Worklist, Interval, 1, CFG, Liveness, Target, TempMap).
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% intervals(WorkList, Intervals, InstructionNr,
%% CFG, Liveness, Target, TempMap)
%% WorkList: List of BB-names to handle.
%% Intervals: Intervals seen so far (sorted on register names).
%% InstructionNr: The number of examined instructions.
%% CFG: The Control-Flow Graph.
%% Liveness: A map of live-in and live-out sets for each Basic-Block.
%% Target: The backend for which we generate native code.
%% TempMap: The TempMap from the register allocation
%%
%% This function will only consider the intervals of the temporaries
%% that have been spilled during register allocation, and will ignore
%% all other.
%%- - - - - - - - - - - - - - - - - - - - - - - -
intervals([L|ToDO], Intervals, InstructionNr, CFG, Liveness, Target,
TempMap) ->
?debug_msg("Block ~w\n", [L]),
%% Add all variables that are live at the entry of this block
%% to the interval data structure.
%% Only consider spilled temporaries in LiveIn
LiveIn = [X || X <- livein(Liveness, L, Target),
hipe_temp_map:is_spilled(X, TempMap)],
Intervals2 = add_def_point(LiveIn, InstructionNr, Intervals),
%% Only consider spilled temporaries in LiveOut
LiveOut = [X2 || X2 <- liveout(Liveness, L, Target),
hipe_temp_map:is_spilled(X2, TempMap)],
?debug_msg("In ~w -> Out ~w\n", [LiveIn, LiveOut]),
%% Traverse this block instruction by instruction and add all
%% uses and defines to the intervals.
Code = hipe_bb:code(bb(CFG, L, Target)),
{Intervals3, NewINr} = traverse_block(Code, InstructionNr+1,
Intervals2, Target, TempMap),
%% Add end points for the temporaries that are in the live-out set.
Intervals4 = add_use_point(LiveOut, NewINr+1, Intervals3),
intervals(ToDO, Intervals4, NewINr+1, CFG, Liveness, Target, TempMap);
intervals([], Intervals, _, _, _, _, _) ->
%% Return the calculated intervals
interval_to_list(Intervals).
%% Intervals.
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% traverse_block(Code, InstructionNo, Intervals, Unchanged)
%% Examine each instruction in the Code:
%% For each temporary T used or defined by instruction number N:
%% extend the interval of T to include N.
%% TempMap: The TempMap from the register allocation
%%
%% This function will only consider the the instruction that have temporaries
%% that have been spilled during register allocation, and will ignore
%% all other.
%%- - - - - - - - - - - - - - - - - - - - - - - -
traverse_block([Instruction|Is], InstrNo, Intervals, Target, TempMap) ->
%% Get used temps.
%% Only consider spilled temporaries in the Use set.
UsesSet = [X || X <- uses(Instruction, Target),
hipe_temp_map:is_spilled(X, TempMap)],
%% Get defined temps.
%% Only consider spilled temporaries in the Def set.
DefsSet = [X2 || X2 <- defines(Instruction, Target),
hipe_temp_map:is_spilled(X2, TempMap)],
%% Only consider those temps that starts or ends their lifetime
%% within the basic block (that is remove all Unchanged temps).
Intervals1 = add_def_point( DefsSet, InstrNo, Intervals),
%% Extend the intervals for these temporaries to include InstrNo.
Intervals2 = add_use_point(UsesSet, InstrNo, Intervals1),
%% Handle the next instruction.
traverse_block(Is, InstrNo+1, Intervals2, Target, TempMap);
traverse_block([], InstrNo, Intervals, _, _) ->
%% Return the new intervals and the number of the next instruction.
{Intervals,InstrNo}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Step 3. Do a linear scan allocation over the live intervals. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% allocate(Intervals, PhysicalRegisters, Target)
%%
%% This function performs the linear scan algorithm.
%% Intervals contains the start and stop position of each spilled temporary,
%% sorted on increasing startpositions
%% StackSlots is a list of available Stack slots to use. If they run out a
%% new stack slot is allocated from an (in theory) infinite domain.
%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
allocate(Intervals, StackSlots, SpillIndex, Target) ->
AllocatedSlots = empty_allocation(),
allocate(Intervals, StackSlots, [], AllocatedSlots, SpillIndex, Target).
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% allocate(Intervals, Free, Active, Allocated, SpillIndex, Target)
%% Iterates on each temporary interval.
%% Intervals: The list of temporary intervals.
%% Free: Currently available stack slots.
%% Active: Currently used stack slots (sorted on increasing
%% interval enpoints)
%% Allocated: The mapping of register names to spill positions.
%% SpillIndex: The number of spilled registers.
%%- - - - - - - - - - - - - - - - - - - - - - - -
allocate([TempInt|TIS], Free, Active, Alloc, SpillIndex, Target) ->
%% Remove from the active list those temporaries whose interval
%% ends before the start of the current interval.
{NewActive, NewFree} =
expire_old_intervals(Active, startpoint(TempInt), Free, Target),
%% Get the name of the temp in the current interval.
Temp = reg(TempInt),
case NewFree of
[] ->
%% There are no free spill slots, so we allocate a new one
NewSpillIndex = SpillIndex+1,
NewAlloc = spillalloc(Temp, SpillIndex, Alloc),
NewActive2 = add_active(endpoint(TempInt), SpillIndex, NewActive),
allocate(TIS, NewFree, NewActive2, NewAlloc, NewSpillIndex, Target);
[FreeSpillslot | Spillslots] ->
%% The spill slot FreeSpillSlot is available, let's use it.
allocate(TIS, Spillslots,
add_active(endpoint(TempInt), FreeSpillslot, NewActive),
spillalloc(Temp, FreeSpillslot, Alloc),
SpillIndex, Target)
end;
allocate([], _, _, Alloc, SpillIndex, _) ->
%% No more register intervals to handle;
%% return the result sorted on regnames.
{lists:sort(Alloc), SpillIndex}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% expire_old_intervals(ActiveTemps, CurrentPos, FreeRegisters)
%% Remove all temporaries that have live-ranges that ends before the
%% current position from the active list and put them into the free
%% list instead.
%%
%% ---------------------------------------------------------------------
expire_old_intervals([Act|Acts] = AllActives, CurrentPos, Free, Target) ->
%% Does the live-range of the first active register end before
%% the current position?
%% We expand multimove before regalloc, ignore the next 2 lines.
%% %% We don't free registers that end at the current position,
%% %% since a multimove can decide to do the moves in another order...
case active_endpoint(Act) =< CurrentPos of
true -> %% Yes -> Then we can free that register.
Spillslot = active_spillslot(Act),
%% Add the spillslot to the free pool.
NewFree = [Spillslot|Free],
%% Here we could try appending the register to get a more
%% widespread use of registers.
%% Free ++ [active_spillslot(Act)]);
expire_old_intervals(Acts, CurrentPos, NewFree, Target);
false ->
%% No -> Then we cannot free any more temporaries.
%% (Since they are sorted on endpoints...)
{AllActives, Free}
end;
expire_old_intervals([], _, Free, _) ->
{[], Free}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% D A T A S T R U C T U R E S %%
%% & %%
%% A U X I L I A R Y F U N C T I O N S %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% The "allocation datastructure"
%%
%% This is an order list of register names paired with their allocations.
%% {Name, Allocation}
%% Since we are only dealing with spills, the allocation will look like:
%% {spill, SpillIndex}
%%
%% ---------------------------------------------------------------------
empty_allocation() -> [].
spillalloc(Name, N, Allocation) -> [{Name,{spill,N}}|Allocation].
%% spillalloc(Name,N,[{Name,_}|A]) ->
%% ?debug_msg("Spilled ~w\n",[Name]),
%% [{Name,{spill,N}}|A];
%% spillalloc(Name,N,[{Name2,Binding}|Bindings]) when Name > Name2 ->
%% [{Name2,Binding}|spillalloc(Name,N,Bindings)];
%% spillalloc(Name,N,Bindings) ->
%% [{Name,{spill,N}}|Bindings].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% The active datastructure.
%% Keeps tracks of currently active (allocated) spill slots.
%% It is sorted on end points in the intervals
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
add_active(Endpoint, SpillSlot, [A1={P1,_}|Active]) when P1 < Endpoint ->
[A1|add_active(Endpoint, SpillSlot, Active)];
add_active(Endpoint, SpillSlot, Active) ->
[{Endpoint, SpillSlot}|Active].
active_spillslot({_,SpillSlot}) ->
SpillSlot.
active_endpoint({EndPoint,_}) ->
EndPoint.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The Interval data structure.
%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% mk_interval(Name, Start, End) ->
%% {Name, Start, End}.
endpoint({_R,_S,Endpoint}) ->
Endpoint.
startpoint({_R,Startpoint,_E}) ->
Startpoint.
reg({RegName,_S,_E}) ->
RegName.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The Intervals data structure.
sort_on_start(I) ->
lists:keysort(2, I).
-ifdef(gb_intervals).
empty_interval(_) ->
gb_trees:empty().
interval_to_list(Intervals) ->
lists:flatten(
lists:map(
fun({T, I}) when is_list(I) ->
lists:map(
fun ({none, End}) ->
{T,End,End};
({Beg, none}) ->
{T,Beg, Beg}
end,
I);
({T,{B,E}}) -> {T, B, E}
end,
gb_trees:to_list(Intervals))).
add_use_point([Temp|Temps], Pos, Intervals) ->
%% Extend the old interval...
NewInterval =
case gb_trees:lookup(Temp, Intervals) of
%% This temp has an old interval...
{value, Value} ->
%% ... extend it.
extend_interval(Pos, Value);
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos}
end,
%% Add or update the extended interval.
Intervals2 = gb_trees:enter(Temp, NewInterval, Intervals),
%% Add the rest of the temporaries.
add_use_point(Temps, Pos, Intervals2);
add_use_point([], _, I) ->
%% No more to add return the interval.
I.
add_def_point([Temp|Temps], Pos, Intervals) ->
%% Extend the old interval...
NewInterval =
case gb_trees:lookup(Temp, Intervals) of
%% This temp has an old interval...
{value, Value} ->
%% ... extend it.
extend_interval(Pos, Value);
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos}
end,
%% Add or update the extended interval.
Intervals2 = gb_trees:enter(Temp, NewInterval, Intervals),
%% Add the rest of the temporaries.
add_def_point(Temps, Pos, Intervals2);
add_def_point([], _, I) ->
%% No more to add return the interval.
I.
extend_interval(Pos, {Beginning, End}) ->
%% If this position occurs before the beginning of the interval,
%% then extend the beginning to this position.
NewBeginning = erlang:min(Pos, Beginning),
%% If this position occurs after the end of the interval, then
%% extend the end to this position.
NewEnd = erlang:max(Pos, End),
{NewBeginning, NewEnd}.
extend_def_interval(Pos, {Beginning, End}) ->
%% If this position occurs before the beginning of the interval,
%% then extend the beginning to this position.
NewBeginning = erlang:min(Pos, Beginning),
%% If this position occurs after the end of the interval, then
%% extend the end to this position.
NewEnd = erlang:max(Pos, End),
{NewBeginning, NewEnd};
extend_def_interval(Pos, [{Beginning, none}|More]) ->
[{Pos,none}, {Beginning, none}|More];
extend_def_interval(Pos, Intervals) ->
{Pos, Pos}.
-else. %% ifdef gb_intervals
empty_interval(N) ->
hipe_vectors:new(N, none).
interval_to_list(Intervals) ->
add_indices(hipe_vectors:vector_to_list(Intervals), 0).
add_indices([{B, E}|Xs], N) ->
[{N, B, E}|add_indices(Xs, N+1)];
add_indices([List|Xs], N) when is_list(List) ->
flatten(List, N, Xs);
add_indices([none|Xs], N) ->
add_indices(Xs, N+1);
add_indices([], _N) -> [].
flatten([{none, End}|Rest], N, More) ->
[{N,End,End} | flatten(Rest, N, More)];
flatten([{Beg, none}|Rest], N ,More) ->
[{N,Beg,Beg} | flatten(Rest, N, More)];
flatten([], N, More) ->
add_indices(More, N+1).
add_use_point([Temp|Temps], Pos, Intervals) ->
%% Extend the old interval...
NewInterval =
case hipe_vectors:get(Intervals, Temp) of
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos};
%% This temp has an old interval...
Value ->
%% ... extend it.
extend_interval(Pos, Value)
end,
%% Add or update the extended interval.
Intervals2 = hipe_vectors:set(Intervals, Temp, NewInterval),
%% Add the rest of the temporaries.
add_use_point(Temps, Pos, Intervals2);
add_use_point([], _, I) ->
%% No more to add return the interval.
I.
add_def_point([Temp|Temps], Pos, Intervals) ->
%% Extend the old interval...
NewInterval =
case hipe_vectors:get(Intervals, Temp) of
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos};
%% This temp has an old interval...
Value ->
%% ... extend it.
extend_interval(Pos, Value)
end,
%% Add or update the extended interval.
Intervals2 = hipe_vectors:set(Intervals, Temp, NewInterval),
%% Add the rest of the temporaries.
add_def_point(Temps, Pos, Intervals2);
add_def_point([], _, I) ->
%% No more to add return the interval.
I.
extend_interval(Pos, {Beginning, End})
when is_integer(Beginning), is_integer(End) ->
%% If this position occurs before the beginning of the interval,
%% then extend the beginning to this position.
NewBeginning = erlang:min(Pos, Beginning),
%% If this position occurs after the end of the interval, then
%% extend the end to this position.
NewEnd = erlang:max(Pos, End),
{NewBeginning, NewEnd}.
-endif. %% gb_intervals
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Interface to external functions.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bb(CFG, L, Target) ->
Target:bb(CFG, L).
livein(Liveness, L, Target) ->
regnames(Target:livein(Liveness, L), Target).
liveout(Liveness, L, Target) ->
regnames(Target:liveout(Liveness, L), Target).
uses(I, Target) ->
regnames(Target:uses(I), Target).
defines(I, Target) ->
regnames(Target:defines(I), Target).
regnames(Regs, Target) ->
[Target:reg_nr(X) || X <- Regs].
|