1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% =====================================================================
%% @doc
%% <pre>
%% Module : hipe_ls_regalloc
%% Purpose : Perform a register allocation based on the
%% "linear-scan algorithm".
%% Notes : * This is an implementation of
%% "Linear Scan Register Allocation" by
%% Massimiliano Poletto & Vivek Sarkar described in
%% ACM TOPLAS Vol 21, No 5, September 1999.
%%
%% * This implementation is target-independent and
%% requires a target specific interface module
%% as argument.
%% (Still waiting for a modular module system for Erlang.)
%% </pre>
%% @end
%%
%% History : * 2000-04-07 Erik Johansson ([email protected]): Created.
%% * 2001-07-16 Erik Johansson: Made less sparc-specific.
%% =====================================================================
%% Exported functions (short description):
%% regalloc(CFG,PhysRegs,Entrypoints, Options) ->
%% {Coloring, NumberOfSpills}
%% Takes a CFG and returns a coloring of all used registers.
%% PhysRegs should be a list of available physical registers.
%% Entrypoints should be a list of names of Basic Blocks that have
%% external entry points.
%%
%% The Coloring will be in the form of the "allocation datastructure"
%% described below, that is, a list of tuples on the form
%% {Name, {reg, PhysicalRegister}} or
%% {Name, {spill, SpillIndex}}
%% The NumberOfSpills is either 0 indicating no spill or the
%% SpillIndex of the last spilled register.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-module(hipe_ls_regalloc).
-export([regalloc/8]).
%%-define(DEBUG,1).
-define(HIPE_INSTRUMENT_COMPILER, true).
-include("../main/hipe.hrl").
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% @spec
%% regalloc(CFG, PhysRegs, Entrypoints, SpillIndex, DontSpill, Options,
%% Target) ->
%% {Coloring, NumberOfSpills}
%% CFG = cfg()
%% PhysRegs = [reg()]
%% Entrypoints = [labelname()]
%% DontSpill = reg()
%% Options = proplists:proplist()
%% Target = atom()
%% Coloring = [{temp(), pos()}]
%% NumberOfSpills = integer()
%% reg() = integer()
%% temp() = integer()
%% pos() = {reg, reg()} | {spill, integer()}
%%
%% @doc
%% Calculates an allocation of registers using a linear_scan algorithm.
%% There are three steps in the algorithm:
%% <ol>
%% <li> Calculate live-ranges for all registers.</li>
%% <li> Calculate live-intervals for each register.
%% The live interval consists of a start position and an end
%% position. These are the first definition and last use of the
%% register given as instruction numbers in a breadth-first
%% traversal of the control-flow-graph.</li>
%% <li> Perform a linear scan allocation over the live intervals.</li>
%% </ol>
%% @end
%%- - - - - - - - - - - - - - - - - - - - - - - -
regalloc(CFG, Liveness, PhysRegs, Entrypoints, SpillIndex, DontSpill, Options, Target) ->
?debug_msg("LinearScan: ~w\n", [erlang:statistics(runtime)]),
USIntervals = calculate_intervals(CFG, Liveness,
Entrypoints, Options, Target),
?debug_msg("intervals (done) ~w\n", [erlang:statistics(runtime)]),
Intervals = sort_on_start(USIntervals),
?debug_msg("sort intervals (done) ~w\n", [erlang:statistics(runtime)]),
%% ?debug_msg("Intervals ~w\n", [Intervals]),
?debug_msg("No intervals: ~w\n",[length(Intervals)]),
?debug_msg("count intervals (done) ~w\n", [erlang:statistics(runtime)]),
{Coloring, NewSpillIndex}
= allocate(Intervals, PhysRegs, SpillIndex, DontSpill, Target),
?debug_msg("allocation (done) ~w\n", [erlang:statistics(runtime)]),
{Coloring, NewSpillIndex}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Step 2: Calculate live-intervals for each register. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% calculate_intervals(CFG,Liveness,Entrypoints, Options, Target)
%% CFG: The Control-Flow Graph.
%% Liveness: A map of live-in and live-out sets for each Basic-Block.
%% Entrypoints: A set of BB names that have external entrypoints.
%%
calculate_intervals(CFG,Liveness,_Entrypoints, Options, Target) ->
%% Add start point for the argument registers.
Args = arg_vars(CFG, Target),
Interval =
add_def_point(Args, 0, empty_interval(Target:number_of_temporaries(CFG))),
%% Interval = add_livepoint(Args, 0, empty_interval()),
Worklist =
case proplists:get_value(ls_order, Options) of
reversepostorder ->
Target:reverse_postorder(CFG);
breadth ->
Target:breadthorder(CFG);
postorder ->
Target:postorder(CFG);
inorder ->
Target:inorder(CFG);
reverse_inorder ->
Target:reverse_inorder(CFG);
preorder ->
Target:preorder(CFG);
prediction ->
Target:predictionorder(CFG);
random ->
Target:labels(CFG);
_ ->
Target:reverse_postorder(CFG)
end,
%% ?inc_counter(bbs_counter, length(Worklist)),
%% ?debug_msg("No BBs ~w\n",[length(Worklist)]),
intervals(Worklist, Interval, 1, CFG, Liveness, Target).
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% intervals(WorkList, Intervals, InstructionNr, CFG, Liveness, Target)
%% WorkList: List of BB-names to handle.
%% Intervals: Intervals seen so far (sorted on register names).
%% InstructionNr: The number of examined insturctions.
%% CFG: The Control-Flow Graph.
%% Liveness: A map of live-in and live-out sets for each Basic-Block.
%% Target: The backend for which we generate code.
%%- - - - - - - - - - - - - - - - - - - - - - - -
intervals([L|ToDO], Intervals, InstructionNr, CFG, Liveness, Target) ->
%% Add all variables that are live at the entry of this block
%% to the interval data structure.
LiveIn = livein(Liveness, L, Target),
Intervals2 = add_def_point(LiveIn, InstructionNr, Intervals),
LiveOut = liveout(Liveness, L, Target),
%% Traverse this block instruction by instruction and add all
%% uses and defines to the intervals.
Code = hipe_bb:code(bb(CFG, L, Target)),
{Intervals3, NewINr} =
traverse_block(Code, InstructionNr+1, Intervals2, Target),
%% Add end points for the registers that are in the live-out set.
Intervals4 = add_use_point(LiveOut, NewINr+1, Intervals3),
intervals(ToDO, Intervals4, NewINr+1, CFG, Liveness, Target);
intervals([], Intervals, _, _, _, _) ->
%% Return the calculated intervals
LI = interval_to_list(Intervals),
%% io:format("Intervals:~n~p~n", [LI]),
LI.
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% traverse_block(Code, InstructionNo, Intervals, Unchanged)
%% Examine each instruction in the Code:
%% For each temporary T used or defined by instruction number N:
%% extend the interval of T to include N.
%%- - - - - - - - - - - - - - - - - - - - - - - -
traverse_block([Instruction|Is],InstrNo,Intervals, Target) ->
%% Get defined temps.
DefsSet = defines(Instruction, Target),
Intervals1 = add_def_point(DefsSet, InstrNo, Intervals),
%% Get used temps.
UsesSet = uses(Instruction, Target),
%% Extend the intervals for these temporaries to include InstrNo.
Intervals2 = add_use_point(UsesSet, InstrNo, Intervals1),
%% Handle the next instruction.
traverse_block(Is,InstrNo+1,Intervals2,Target);
traverse_block([], InstrNo, Intervals, _) ->
%% Return the new intervals and the number of the next instruction.
{Intervals,InstrNo}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Step 3. Do a linear scan allocation over the live intervals. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% allocate(Intervals, PhysicalRegisters, DontSpill, Target)
%%
%% This function performs the linear scan algorithm.
%% Intervals contains the start and stop position of each register,
%% sorted on increasing startpositions
%% PhysicalRegisters is a list of available Physical registers to use.
%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
allocate(Intervals, PhysRegs, SpillIndex, DontSpill, Target) ->
ActiveRegisters =[],
AllocatedRegisters = empty_allocation(),
AllFree = create_freeregs(PhysRegs),
allocate(Intervals, AllFree, ActiveRegisters,
AllocatedRegisters, SpillIndex, DontSpill, Target).
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% allocate(Intervals, Free, Active, Allocated, SpillIndex, Target)
%% Iterates of each register interval.
%% Intervals: The list of register intervals.
%% Free: Currently available physical registers.
%% Active: Currently used physical registers (sorted on increasing
%% interval enpoints)
%% Allocated: The mapping of register names to physical registers or
%% to spill positions.
%% SpillIndex: The number of spilled registers.
%%- - - - - - - - - - - - - - - - - - - - - - - -
allocate([RegInt|RIS], Free, Active, Alloc, SpillIndex, DontSpill, Target) ->
%io:format("~nAlloc:~n~p", [Alloc]),
%% Remove from the active list those registers who's intervals
%% ends before the start of the current interval.
{NewActive, NewFree} =
expire_old_intervals(Active, startpoint(RegInt), Free, Target),
?debug_msg("Alloc interval: ~w, Free ~w\n",[RegInt, NewFree]),
%% Get the name of the temp in the current interval.
Temp = reg(RegInt),
case is_precoloured(Temp, Target) of
true ->
%% This is a precoloured register we don't need to find a color
%% Get the physical name of the register.
PhysName = physical_name(Temp, Target),
%% Bind it to the precoloured name.
NewAlloc = alloc(Temp, PhysName, Alloc),
case is_global(Temp, Target) of
true ->
%% this is a global precoloured register
allocate(RIS, NewFree, NewActive,
NewAlloc, SpillIndex, DontSpill, Target);
false ->
case is_free(PhysName, NewFree) of
{true,Rest} ->
allocate(RIS, Rest,
add_active(endpoint(RegInt), startpoint(RegInt),
PhysName, Temp, NewActive),
NewAlloc,
SpillIndex, DontSpill, Target);
false ->
%% Some other temp has taken this precoloured register,
%% throw it out.
{OtherActive, NewActive2} = deactivate(PhysName, NewActive),
OtherTemp = active_name(OtherActive),
OtherEnd = active_endpoint(OtherActive),
OtherStart = active_startpoint(OtherActive),
NewActive3 = add_active(endpoint(RegInt), startpoint(RegInt),
PhysName, Temp, NewActive2),
case exists_free_register(OtherStart, NewFree) of
{true, NewPhys, RestFree} ->
allocate(RIS, RestFree,
add_active(OtherEnd, OtherStart,
NewPhys, OtherTemp, NewActive3),
alloc(OtherTemp,NewPhys,NewAlloc),
SpillIndex, DontSpill, Target);
false ->
NewSpillIndex = Target:new_spill_index(SpillIndex),
{NewAlloc2, NewActive4} =
spill(OtherTemp, OtherEnd, OtherStart, NewActive3,
NewAlloc, SpillIndex, DontSpill, Target),
allocate(RIS,
NewFree,
NewActive4,
NewAlloc2, NewSpillIndex, DontSpill, Target)
end
end
end;
false ->
%% This is not a precoloured register.
case NewFree of
[] ->
%% No physical registers available, we have to spill.
NewSpillIndex = Target:new_spill_index(SpillIndex),
{NewAlloc, NewActive2} =
spill(Temp, endpoint(RegInt), startpoint(RegInt),
Active, Alloc, SpillIndex, DontSpill, Target),
%% io:format("Spilled ~w\n",[NewAlloc]),
allocate(RIS, NewFree, NewActive2, NewAlloc, NewSpillIndex,
DontSpill, Target);
[{FreeReg,_Start} | Regs] ->
%% The register FreeReg is available, let's use it.
%%io:format("Allocating Reg:~p~n",[FreeReg]),
allocate(RIS,Regs,
add_active(endpoint(RegInt), startpoint(RegInt),
FreeReg, Temp, NewActive),
alloc(Temp, FreeReg, Alloc),
SpillIndex, DontSpill, Target)
end
end;
allocate([],_,_,Alloc,SpillIndex, _, _) ->
%% No more register intervals to handle
%% return the result.
%%io:format("~nAlloc:~n~p", [Alloc]),
{Alloc, SpillIndex}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% expire_old_intervals(ActiveRegisters, CurrentPos, FreeRegisters)
%% Remove all registers that have live-ranges that ends before the
%% current position from the active list and put them into the free
%% list instead.
%%
%% ---------------------------------------------------------------------
expire_old_intervals([Act|Acts] = AllActives, CurrentPos, Free, Target) ->
%% Does the live-range of the first active register end before
%% the current position?
%% We expand multimove before regalloc, ignore the next 2 lines.
%% %% We don't free registers that end at the current position,
%% %% since a multimove can decide to do the moves in another order...
case active_endpoint(Act) =< CurrentPos of
true -> %% Yes -> Then we can free that register.
Reg = active_reg(Act),
%% Add the register to the free pool.
NewFree =
case is_arg(Reg, Target) of
true ->
[{Reg, CurrentPos}|Free];
false ->
[{Reg, CurrentPos}|Free]
%% Here we could try appending the
%% register to get a more widespread
%% use of registers.
%% Free ++ [active_reg(Act)]);
%% At the moment this does not seem to
%% improve performance at all,
%% on the other hand, the cost is very low.
end,
expire_old_intervals(Acts, CurrentPos, NewFree, Target);
false ->
%% No -> Then we cannot free any more registers.
%% (Since they are sorted on endpoints...)
{AllActives, Free}
end;
expire_old_intervals([], _, Free, _) ->
{[], Free}.
deactivate(Reg, [Active|Actives]) ->
case Reg =:= active_reg(Active) of
true ->
{Active, Actives};
false ->
{TheActive, NewActives} = deactivate(Reg, Actives),
{TheActive, [Active|NewActives]}
end;
deactivate(_,[]) -> {no,[]}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% spill(CurrentReg, CurrentEndpoint, Active, Alloc, SpillIndex,
%% DontSpill, Target)
%% Find the register with the longest live range and spill it to memory.
%%
%% ---------------------------------------------------------------------
spill(CurrentReg, CurrentEndpoint,CurrentStartpoint,
Active = [_|_],
Alloc, SpillIndex,
DontSpill, Target) ->
?debug_msg("spilling one of ~w\nDOnt spill ~w\n",
[[CurrentReg|Active], DontSpill]),
%% Find a spill candidate (one of the active):
%% The register with the longest live-range.
{NewActive, SpillCandidate} = butlast_last(Active),
SpillStartpoint = active_startpoint(SpillCandidate) ,
SpillEndpoint = active_endpoint(SpillCandidate) ,
SpillName = active_name(SpillCandidate),
SpillPhysName = active_reg(SpillCandidate),
case SpillEndpoint > CurrentEndpoint of
true ->
%% There is an already allocated register that has
%% a longer live-range than the current register.
case can_spill(SpillName, DontSpill, Target) and
(SpillStartpoint =< CurrentStartpoint) of
false ->
{NewAlloc, NewActive2} =
spill(CurrentReg, CurrentEndpoint, CurrentStartpoint,
NewActive, Alloc, SpillIndex, DontSpill, Target),
{NewAlloc,
add_active(SpillEndpoint, SpillStartpoint, SpillPhysName,
SpillName, NewActive2)};
true ->
%% It is not precoloured... or have too short liverange
%% Allocate SpillCandidate to spill-slot SpillIndex
SpillAlloc =
spillalloc(active_name(SpillCandidate), SpillIndex,
Alloc),
%% Allocated the current register to the physical register
%% used by the spill candidate.
NewAlloc = alloc(CurrentReg, SpillPhysName, SpillAlloc),
%% Add the current register to the active registers
NewActive2 =
add_active(CurrentEndpoint, CurrentStartpoint,
SpillPhysName, CurrentReg, NewActive),
{NewAlloc, NewActive2}
end;
false ->
%% The current register has the longest live-range.
case can_spill(CurrentReg, DontSpill, Target) of
false ->
%% Cannot spill a precoloured register
{NewAlloc, NewActive2} =
spill(SpillName, SpillEndpoint, SpillStartpoint,
NewActive, Alloc, SpillIndex, DontSpill, Target),
NewActive3 =
add_active(CurrentEndpoint, CurrentStartpoint,
SpillPhysName, CurrentReg, NewActive2),
{NewAlloc, NewActive3};
true ->
%% It is not precoloured...
%% Allocate the current register to spill-slot SpillIndex
{spillalloc(CurrentReg, SpillIndex, Alloc), Active}
end
end;
spill(CurrentReg, _CurrentEndpoint, _CurrentStartpoint, [],
Alloc, SpillIndex, DontSpill, Target) ->
case can_spill(CurrentReg, DontSpill, Target) of
false -> %% Can't spill current!
?error_msg("Can't allocate registers\n",[]),
?EXIT({cannot_allocate_regs});
true -> %% Can spill current.
%% Allocate the current register to spill-slot SpillIndex
{spillalloc(CurrentReg, SpillIndex, Alloc), []}
end.
can_spill(Name, DontSpill, Target) ->
(Name < DontSpill) and (not is_precoloured(Name, Target)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% D A T A S T R U C T U R E S %%
%% & %%
%% A U X I L I A R Y F U N C T I O N S %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% The "allocation datastructure"
%%
%% This is an order list of register names paired with their allocations.
%% {Name, Allocation}
%% The allocation is either {reg, physical register} or
%% {spill, spill index}
%%
%% ---------------------------------------------------------------------
empty_allocation() -> [].
alloc(Name,Reg,[{Name,_}|A]) ->
[{Name,{reg,Reg}}|A];
alloc(Name,Reg,[{Name2,Binding}|Bindings]) when Name > Name2 ->
[{Name2,Binding}|alloc(Name,Reg,Bindings)];
alloc(Name,Reg,Bindings) ->
[{Name,{reg,Reg}}|Bindings].
spillalloc(Name,N,[{Name,_}|A]) ->
?debug_msg("Spilled ~w\n",[Name]),
[{Name,{spill,N}}|A];
spillalloc(Name,N,[{Name2,Binding}|Bindings]) when Name > Name2 ->
[{Name2,Binding}|spillalloc(Name,N,Bindings)];
spillalloc(Name,N,Bindings) ->
[{Name,{spill,N}}|Bindings].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%
butlast_last([X]) ->
{[],X};
butlast_last([X|Y]) ->
{L,Last} = butlast_last(Y),
{[X|L],Last}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% The active datastructure.
%% Keeps tracks of currently active (allocated) physical registers.
%% It is sorted on end points in the intervals
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
add_active(Endpoint, StartPoint, PhysReg, RegName,
[{P1,R1,O1,S1}|Active]) when P1 < Endpoint ->
[{P1,R1,O1,S1}|add_active(Endpoint, StartPoint, PhysReg, RegName, Active)];
add_active(Endpoint, StartPoint, PhysReg, RegName, Active) ->
[{Endpoint, PhysReg, RegName, StartPoint}|Active].
active_reg({_,PhysReg,_,_}) ->
PhysReg.
active_endpoint({EndPoint,_,_,_}) ->
EndPoint.
active_startpoint({_,_,_,StartPoint}) ->
StartPoint.
active_name({_,_,RegName,_}) ->
RegName.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The Interval data structure.
%%
%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
%% mk_interval(Name, Start, End) ->
%% {Name, Start, End}.
endpoint({_R,_S,Endpoint}) ->
Endpoint.
startpoint({_R,Startpoint,_E}) ->
Startpoint.
reg({RegName,_S,_E}) ->
RegName.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The Intervals data structure.
sort_on_start(I) ->
lists:keysort(2, I).
-ifdef(gb_intervals).
empty_interval(_) ->
gb_trees:empty().
interval_to_list(Intervals) ->
lists:flatten(
lists:map(
fun({T, I}) when list(I) ->
lists:map(
fun ({none, End}) ->
{T,End,End};
({Beg, none}) ->
{T,Beg, Beg}
end,
I);
({T,{B,E}}) -> {T, B, E}
end,
gb_trees:to_list(Intervals))).
add_use_point([Temp|Temps],Pos,Intervals) ->
%% Extend the old interval...
NewInterval =
case gb_trees:lookup(Temp, Intervals) of
%% This temp has an old interval...
{value, Value} ->
%% ... extend it.
extend_interval(Pos, Value);
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos}
end,
%% Add or update the extended interval.
Intervals2 = gb_trees:enter(Temp, NewInterval, Intervals),
%% Add the rest of teh temporaries.
add_use_point(Temps, Pos, Intervals2);
add_use_point([], _, I) ->
%% No more to add return the interval.
I.
add_def_point([Temp|Temps],Pos,Intervals) ->
%% Extend the old interval...
NewInterval =
case gb_trees:lookup(Temp, Intervals) of
%% This temp has an old interval...
{value, Value} ->
%% ... extend it.
extend_interval(Pos, Value);
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos}
end,
%% Add or update the extended interval.
Intervals2 = gb_trees:enter(Temp, NewInterval, Intervals),
%% Add the rest of the temporaries.
add_def_point(Temps, Pos, Intervals2);
add_def_point([], _, I) ->
%% No more to add return the interval.
I.
extend_interval(Pos, {Beginning, End}) ->
%% If this position occures before the beginning
%% of the interval, then extend the beginning to
%% this position.
NewBeginning = erlang:min(Pos, Beginning),
%% If this position occures after the end
%% of the interval, then extend the end to
%% this position.
NewEnd = erlang:max(Pos, End),
{NewBeginning, NewEnd}.
-else. %% isdef gb_intervals
empty_interval(N) ->
hipe_vectors:new(N, none).
interval_to_list(Intervals) ->
add_indices(hipe_vectors:vector_to_list(Intervals),0).
add_indices([{B,E}|Xs],N) ->
[{N,B,E}|add_indices(Xs,N+1)];
add_indices([List|Xs],N) when is_list(List) ->
flatten(List,N,Xs);
add_indices([none|Xs],N) ->
add_indices(Xs,N+1);
add_indices([],_N) -> [].
flatten([{none, End}|Rest], N, More) ->
[{N,End,End} | flatten(Rest, N, More)];
flatten([{Beg, none}|Rest], N ,More) ->
[{N,Beg,Beg} | flatten(Rest, N, More)];
flatten([],N,More) ->
add_indices(More,N+1).
add_use_point([Temp|Temps],Pos,Intervals) ->
%% Extend the old interval...
NewInterval =
case hipe_vectors:get(Intervals, Temp) of
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos};
%% This temp has an old interval...
Value ->
%% ... extend it.
extend_interval(Pos, Value)
end,
%% Add or update the extended interval.
Intervals2 = hipe_vectors:set(Intervals, Temp, NewInterval),
%% Add the rest of the temporaries.
add_use_point(Temps, Pos, Intervals2);
add_use_point([], _, I) ->
%% No more to add return the interval.
I.
add_def_point([Temp|Temps],Pos,Intervals) ->
%% Extend the old interval...
NewInterval =
case hipe_vectors:get(Intervals, Temp) of
%% This is the first time we see this temp...
none ->
%% ... create a new interval
{Pos, Pos};
%% This temp has an old interval...
Value ->
%% ... extend it.
extend_interval(Pos, Value)
end,
%% Add or update the extended interval.
Intervals2 = hipe_vectors:set(Intervals, Temp, NewInterval),
%% Add the rest of teh temporaries.
add_def_point(Temps, Pos, Intervals2);
add_def_point([], _, I) ->
%% No more to add return the interval.
I.
extend_interval(Pos, {Beginning, End}) ->
%% If this position occurs before the beginning of the interval,
%% then extend the beginning to this position.
NewBeginning = erlang:min(Pos, Beginning),
%% If this position occures after the end
%% of the interval, then extend the end to
%% this position.
NewEnd = erlang:max(Pos, End),
{NewBeginning, NewEnd}.
-endif. %% gb_intervals
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The Freel data structure.
%%
%%- - - - - - - - - - - - - - - - - - - - - - - -
is_free(R, Free) ->
is_free(R, Free, []).
is_free(R, [{R,_}|Rest], Acc) ->
{true, lists:reverse(Acc, Rest)};
is_free(R, [X|Rs],Acc) ->
is_free(R, Rs, [X|Acc]);
is_free(_, [], _) ->
false.
exists_free_register(Start, Regs) ->
exists_free_register(Start, Regs, []).
exists_free_register(Start, [{Phys, Start0}|Rest], Acc)
when Start > Start0 ->
{true, Phys, lists:reverse(Acc, Rest)};
exists_free_register(Start, [Free|Rest], Acc) ->
exists_free_register(Start, Rest, [Free|Acc]);
exists_free_register(_, [], _) ->
false.
create_freeregs([Phys|Rest]) ->
[{Phys,-1}|create_freeregs(Rest)];
create_freeregs([]) ->
[].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Interface to external functions.
%% XXX: Make this efficient somehow...
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bb(CFG, L, Target) ->
Target:bb(CFG,L).
livein(Liveness,L, Target) ->
regnames(Target:livein(Liveness,L), Target).
liveout(Liveness,L, Target) ->
regnames(Target:liveout(Liveness,L), Target).
uses(I, Target) ->
regnames(Target:uses(I), Target).
defines(I, Target) ->
regnames(Target:defines(I), Target).
is_precoloured(R, Target) ->
Target:is_precoloured(R).
is_global(R, Target) ->
Target:is_global(R).
physical_name(R, Target) ->
Target:physical_name(R).
regnames(Regs, Target) ->
[Target:reg_nr(X) || X <- Regs].
arg_vars(CFG, Target) ->
Target:args(CFG).
is_arg(Reg, Target) ->
Target:is_arg(Reg).
|