1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
|
%% -*- erlang-indent-level: 2 -*-
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%@doc
%% TEMPORARY LIVE RANGE SPLITTING PASS
%%
%% Live range splitting is useful to allow a register allocator to allocate a
%% temporary to register for a part of its lifetime, even if it cannot be for
%% the entirety. This improves register allocation quality, at the cost of
%% making the allocation problem more time and memory intensive to solve.
%%
%% Optimal allocation can be achieved if all temporaries are split at every
%% program point (between all instructions), but this makes register allocation
%% infeasably slow in practice. Instead, this module uses heuristics to choose
%% which temporaries should have their live ranges split, and at which points.
%%
%% The range splitter only considers temps which are live during a call
%% instruction, since they're known to be spilled. The control-flow graph is
%% partitioned at call instructions and splitting decisions are made separately
%% for each partition. The register copy of a temp (if any) gets a separate name
%% in each partition.
%%
%% There are three different ways the range splitter may choose to split a
%% temporary in a program partition:
%%
%% * Mode1: Spill the temp before calls, and restore it after them
%% * Mode2: Spill the temp after definitions, restore it after calls
%% * Mode3: Spill the temp after definitions, restore it before uses
%%
%% To pick which of these should be used for each temp×partiton pair, the range
%% splitter uses a cost function. The cost is simply the sum of the cost of all
%% expected stack accesses, and the cost for an individual stack access is based
%% on the probability weight of the basic block that it resides in. This biases
%% the range splitter so that it attempts moving stack accesses from a functions
%% hot path to the cold path.
%%
%% The heuristic has a couple of tuning knobs, adjusting its preference for
%% different spilling modes, aggressiveness, and how much influence the basic
%% block probability weights have.
%%
%% Edge case not handled: Call instructions directly defining a pseudo. In that
%% case, if that pseudo has been selected for mode2 spills, no spill is inserted
%% after the call.
-module(hipe_range_split).
-export([split/5]).
-compile(inline).
%% -define(DO_ASSERT, 1).
%% -define(DEBUG, 1).
-include("../main/hipe.hrl").
%% Heuristic tuning constants
-define(DEFAULT_MIN_GAIN, 1.1). % option: range_split_min_gain
-define(DEFAULT_MODE1_FUDGE, 1.1). % option: range_split_mode1_fudge
-define(DEFAULT_WEIGHT_POWER, 2). % option: range_split_weight_power
-define(WEIGHT_CONST_FUN(Power), math:log(Power)/math:log(100)).
-define(WEIGHT_FUN(Wt, Const), math:pow(Wt, Const)).
-define(HEUR_MAX_TEMPS, 20000).
-type target_cfg() :: any().
-type target_instr() :: any().
-type target_temp() :: any().
-type liveness() :: any().
-type target_module() :: module().
-type target_context() :: any().
-type target() :: {target_module(), target_context()}.
-type liveset() :: ordsets:ordset(temp()).
-type temp() :: non_neg_integer().
-type label() :: non_neg_integer().
-spec split(target_cfg(), liveness(), target_module(), target_context(),
comp_options())
-> target_cfg().
split(TCFG0, Liveness, TargetMod, TargetContext, Options) ->
Target = {TargetMod, TargetContext},
NoTemps = number_of_temporaries(TCFG0, Target),
if NoTemps > ?HEUR_MAX_TEMPS ->
?debug_msg("~w: Too many temps (~w), falling back on restore_reuse.~n",
[?MODULE, NoTemps]),
hipe_restore_reuse:split(TCFG0, Liveness, TargetMod, TargetContext);
true ->
Wts = compute_weights(TCFG0, TargetMod, TargetContext, Options),
{CFG0, Temps} = convert(TCFG0, Target),
Avail = avail_analyse(TCFG0, Liveness, Target),
Defs = def_analyse(CFG0, TCFG0),
RDefs = rdef_analyse(CFG0),
PLive = plive_analyse(CFG0),
{CFG, DUCounts, Costs, DSets0} =
scan(CFG0, Liveness, PLive, Wts, Defs, RDefs, Avail, Target),
{DSets, _} = hipe_dsets:to_map(DSets0),
Renames = decide(DUCounts, Costs, Target, Options),
rewrite(CFG, TCFG0, Target, Liveness, PLive, Defs, Avail, DSets, Renames,
Temps)
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Internal program representation
%%
%% Second pass: Convert cfg to internal representation
-record(cfg, {
rpo_labels :: [label()],
bbs :: #{label() => bb()}
}).
-type cfg() :: #cfg{}.
cfg_bb(L, #cfg{bbs=BBS}) -> maps:get(L, BBS).
cfg_postorder(#cfg{rpo_labels=RPO}) -> lists:reverse(RPO).
-record(bb, {
code :: [code_elem()],
%% If the last instruction of code defines all allocatable registers
has_call :: boolean(),
succ :: [label()]
}).
-type bb() :: #bb{}.
-type code_elem() :: instr() | mode2_spills() | mode3_restores().
bb_code(#bb{code=Code}) -> Code.
bb_has_call(#bb{has_call=HasCall}) -> HasCall.
bb_succ(#bb{succ=Succ}) -> Succ.
bb_butlast(#bb{code=Code}) ->
bb_butlast_1(Code).
bb_butlast_1([_Last]) -> [];
bb_butlast_1([I|Is]) -> [I|bb_butlast_1(Is)].
bb_last(#bb{code=Code}) -> lists:last(Code).
-record(instr, {
i :: target_instr(),
def :: ordsets:ordset(temp()),
use :: ordsets:ordset(temp())
}).
-type instr() :: #instr{}.
-record(mode2_spills, {
temps :: ordsets:ordset(temp())
}).
-type mode2_spills() :: #mode2_spills{}.
-record(mode3_restores, {
temps :: ordsets:ordset(temp())
}).
-type mode3_restores() :: #mode3_restores{}.
-spec convert(target_cfg(), target()) -> {cfg(), temps()}.
convert(CFG, Target) ->
RPO = reverse_postorder(CFG, Target),
{BBsList, Temps} = convert_bbs(RPO, CFG, Target, #{}, []),
{#cfg{rpo_labels = RPO,
bbs = maps:from_list(BBsList)},
Temps}.
convert_bbs([], _CFG, _Target, Temps, Acc) -> {Acc, Temps};
convert_bbs([L|Ls], CFG, Target, Temps0, Acc) ->
Succs = hipe_gen_cfg:succ(CFG, L),
TBB = bb(CFG, L, Target),
TCode = hipe_bb:code(TBB),
{Code, Last, Temps} = convert_code(TCode, Target, Temps0, []),
HasCall = defines_all_alloc(Last#instr.i, Target),
BB = #bb{code = Code,
has_call = HasCall,
succ = Succs},
convert_bbs(Ls, CFG, Target, Temps, [{L,BB}|Acc]).
convert_code([], _Target, Temps, [Last|_]=Acc) ->
{lists:reverse(Acc), Last, Temps};
convert_code([TI|TIs], Target, Temps0, Acc) ->
{TDef, TUse} = def_use(TI, Target),
I = #instr{i = TI,
def = ordsets:from_list(reg_names(TDef, Target)),
use = ordsets:from_list(reg_names(TUse, Target))},
Temps = add_temps(TUse, Target, add_temps(TDef, Target, Temps0)),
convert_code(TIs, Target, Temps, [I|Acc]).
-type temps() :: #{temp() => target_temp()}.
add_temps([], _Target, Temps) -> Temps;
add_temps([T|Ts], Target, Temps) ->
add_temps(Ts, Target, Temps#{reg_nr(T, Target) => T}).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Fourth pass: P({DEF}) lattice fwd dataflow (for eliding stores at SPILL
%% splits)
-type defsi() :: #{label() => defseti() | {call, defseti(), defseti()}}.
-type defs() :: #{label() => defsetf()}.
-spec def_analyse(cfg(), target_cfg()) -> defs().
def_analyse(CFG = #cfg{rpo_labels = RPO}, TCFG) ->
Defs0 = def_init(CFG),
def_dataf(RPO, TCFG, Defs0).
-spec def_init(cfg()) -> defsi().
def_init(#cfg{bbs = BBs}) ->
maps:from_list(
[begin
{L, case HasCall of
false -> def_init_scan(bb_code(BB), defseti_new());
true ->
{call, def_init_scan(bb_butlast(BB), defseti_new()),
defseti_from_ordset((bb_last(BB))#instr.def)}
end}
end || {L, BB = #bb{has_call=HasCall}} <- maps:to_list(BBs)]).
def_init_scan([], Defset) -> Defset;
def_init_scan([#instr{def=Def}|Is], Defset0) ->
Defset = defseti_add_ordset(Def, Defset0),
def_init_scan(Is, Defset).
-spec def_dataf([label()], target_cfg(), defsi()) -> defs().
def_dataf(Labels, TCFG, Defs0) ->
case def_dataf_once(Labels, TCFG, Defs0, 0) of
{Defs, 0} ->
def_finalise(Defs);
{Defs, _Changed} ->
def_dataf(Labels, TCFG, Defs)
end.
-spec def_finalise(defsi()) -> defs().
def_finalise(Defs) ->
maps:from_list([{K, defseti_finalise(BL)}
|| {K, {call, BL, _}} <- maps:to_list(Defs)]).
-spec def_dataf_once([label()], target_cfg(), defsi(), non_neg_integer())
-> {defsi(), non_neg_integer()}.
def_dataf_once([], _TCFG, Defs, Changed) -> {Defs, Changed};
def_dataf_once([L|Ls], TCFG, Defs0, Changed0) ->
AddPreds =
fun(Defset1) ->
lists:foldl(fun(P, Defset2) ->
defseti_union(defout(P, Defs0), Defset2)
end, Defset1, hipe_gen_cfg:pred(TCFG, L))
end,
Defset =
case Defset0 = maps:get(L, Defs0) of
{call, Butlast, Defout} -> {call, AddPreds(Butlast), Defout};
_ -> AddPreds(Defset0)
end,
Changed = case Defset =:= Defset0 of
true -> Changed0;
false -> Changed0+1
end,
def_dataf_once(Ls, TCFG, Defs0#{L := Defset}, Changed).
-spec defout(label(), defsi()) -> defseti().
defout(L, Defs) ->
case maps:get(L, Defs) of
{call, _DefButLast, Defout} -> Defout;
Defout -> Defout
end.
-spec defbutlast(label(), defs()) -> defsetf().
defbutlast(L, Defs) -> maps:get(L, Defs).
-spec defseti_new() -> defseti().
-spec defseti_union(defseti(), defseti()) -> defseti().
-spec defseti_add_ordset(ordset:ordset(temp()), defseti()) -> defseti().
-spec defseti_from_ordset(ordset:ordset(temp())) -> defseti().
-spec defseti_finalise(defseti()) -> defsetf().
-spec defsetf_member(temp(), defsetf()) -> boolean().
-spec defsetf_intersect_ordset(ordsets:ordset(temp()), defsetf())
-> ordsets:ordset(temp()).
-type defseti() :: bitord().
defseti_new() -> bitord_new().
defseti_union(A, B) -> bitord_union(A, B).
defseti_add_ordset(OS, D) -> defseti_union(defseti_from_ordset(OS), D).
defseti_from_ordset(OS) -> bitord_from_ordset(OS).
defseti_finalise(D) -> bitarr_from_bitord(D).
-type defsetf() :: bitarr().
defsetf_member(E, D) -> bitarr_get(E, D).
defsetf_intersect_ordset([], _D) -> [];
defsetf_intersect_ordset([E|Es], D) ->
case bitarr_get(E, D) of
true -> [E|defsetf_intersect_ordset(Es,D)];
false -> defsetf_intersect_ordset(Es,D)
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Fifth pass: P({DEF}) lattice reverse dataflow (for eliding stores at defines
%% in mode2)
-type rdefsi() :: #{label() =>
{call, rdefseti(), [label()]}
| {nocall, rdefseti(), rdefseti(), [label()]}}.
-type rdefs() :: #{label() => {final, rdefsetf(), [label()]}}.
-spec rdef_analyse(cfg()) -> rdefs().
rdef_analyse(CFG = #cfg{rpo_labels=RPO}) ->
Defs0 = rdef_init(CFG),
PO = rdef_postorder(RPO, CFG, []),
rdef_dataf(PO, Defs0).
%% Filter out 'call' labels, since they don't change
-spec rdef_postorder([label()], cfg(), [label()]) -> [label()].
rdef_postorder([], _CFG, Acc) -> Acc;
rdef_postorder([L|Ls], CFG, Acc) ->
case bb_has_call(cfg_bb(L, CFG)) of
true -> rdef_postorder(Ls, CFG, Acc);
false -> rdef_postorder(Ls, CFG, [L|Acc])
end.
-spec rdef_init(cfg()) -> rdefsi().
rdef_init(#cfg{bbs = BBs}) ->
maps:from_list(
[{L, case HasCall of
true ->
Defin = rdef_init_scan(bb_butlast(BB), rdefseti_empty()),
{call, Defin, Succs};
false ->
Gen = rdef_init_scan(bb_code(BB), rdefseti_empty()),
{nocall, Gen, rdefseti_top(), Succs}
end}
|| {L, BB = #bb{has_call=HasCall, succ=Succs}} <- maps:to_list(BBs)]).
-spec rdef_init_scan([instr()], rdefseti()) -> rdefseti().
rdef_init_scan([], Defset) -> Defset;
rdef_init_scan([#instr{def=Def}|Is], Defset0) ->
Defset = rdefseti_add_ordset(Def, Defset0),
rdef_init_scan(Is, Defset).
-spec rdef_dataf([label()], rdefsi()) -> rdefs().
rdef_dataf(Labels, Defs0) ->
case rdef_dataf_once(Labels, Defs0, 0) of
{Defs, 0} ->
rdef_finalise(Defs);
{Defs, _Changed} ->
rdef_dataf(Labels, Defs)
end.
-spec rdef_finalise(rdefsi()) -> rdefs().
rdef_finalise(Defs) ->
maps:map(fun(L, V) ->
Succs = rsuccs_val(V),
Defout0 = rdefout_intersect(L, Defs, rdefseti_top()),
{final, rdefset_finalise(Defout0), Succs}
end, Defs).
-spec rdef_dataf_once([label()], rdefsi(), non_neg_integer())
-> {rdefsi(), non_neg_integer()}.
rdef_dataf_once([], Defs, Changed) -> {Defs, Changed};
rdef_dataf_once([L|Ls], Defs0, Changed0) ->
#{L := {nocall, Gen, Defin0, Succs}} = Defs0,
Defin = rdefseti_union(Gen, rdefout_intersect(L, Defs0, Defin0)),
Defset = {nocall, Gen, Defin, Succs},
Changed = case Defin =:= Defin0 of
true -> Changed0;
false -> Changed0+1
end,
rdef_dataf_once(Ls, Defs0#{L := Defset}, Changed).
-spec rdefin(label(), rdefsi()) -> rdefseti().
rdefin(L, Defs) -> rdefin_val(maps:get(L, Defs)).
rdefin_val({nocall, _Gen, Defin, _Succs}) -> Defin;
rdefin_val({call, Defin, _Succs}) -> Defin.
-spec rsuccs(label(), rdefsi()) -> [label()].
rsuccs(L, Defs) -> rsuccs_val(maps:get(L, Defs)).
rsuccs_val({nocall, _Gen, _Defin, Succs}) -> Succs;
rsuccs_val({call, _Defin, Succs}) -> Succs.
-spec rdefout(label(), rdefs()) -> rdefsetf().
rdefout(L, Defs) ->
#{L := {final, Defout, _Succs}} = Defs,
Defout.
-spec rdefout_intersect(label(), rdefsi(), rdefseti()) -> rdefseti().
rdefout_intersect(L, Defs, Init) ->
lists:foldl(fun(S, Acc) ->
rdefseti_intersect(rdefin(S, Defs), Acc)
end, Init, rsuccs(L, Defs)).
-type rdefseti() :: bitord() | top.
rdefseti_top() -> top.
rdefseti_empty() -> bitord_new().
-spec rdefseti_from_ordset(ordsets:ordset(temp())) -> rdefseti().
rdefseti_from_ordset(OS) -> bitord_from_ordset(OS).
-spec rdefseti_add_ordset(ordsets:ordset(temp()), rdefseti()) -> rdefseti().
rdefseti_add_ordset(_, top) -> top; % Should never happen in rdef_dataf
rdefseti_add_ordset(OS, D) -> rdefseti_union(rdefseti_from_ordset(OS), D).
-spec rdefseti_union(rdefseti(), rdefseti()) -> rdefseti().
rdefseti_union(top, _) -> top;
rdefseti_union(_, top) -> top;
rdefseti_union(A, B) -> bitord_union(A, B).
-spec rdefseti_intersect(rdefseti(), rdefseti()) -> rdefseti().
rdefseti_intersect(top, D) -> D;
rdefseti_intersect(D, top) -> D;
rdefseti_intersect(A, B) -> bitord_intersect(A, B).
-type rdefsetf() :: {arr, bitarr()} | top.
-spec rdefset_finalise(rdefseti()) -> rdefsetf().
rdefset_finalise(top) -> top;
rdefset_finalise(Ord) -> {arr, bitarr_from_bitord(Ord)}.
%% rdefsetf_top() -> top.
rdefsetf_empty() -> {arr, bitarr_new()}.
-spec rdefsetf_add_ordset(ordset:ordset(temp()), rdefsetf()) -> rdefsetf().
rdefsetf_add_ordset(_, top) -> top;
rdefsetf_add_ordset(OS, {arr, Arr}) ->
{arr, lists:foldl(fun bitarr_set/2, Arr, OS)}.
-spec rdef_step(instr(), rdefsetf()) -> rdefsetf().
rdef_step(#instr{def=Def}, Defset) ->
%% ?ASSERT(not defines_all_alloc(I, Target)),
rdefsetf_add_ordset(Def, Defset).
-spec ordset_subtract_rdefsetf(ordsets:ordset(temp()), rdefsetf())
-> ordsets:ordset(temp()).
ordset_subtract_rdefsetf(_, top) -> [];
ordset_subtract_rdefsetf(OS, {arr, Arr}) ->
%% Lazy implementation; could do better if OS can grow
lists:filter(fun(E) -> not bitarr_get(E, Arr) end, OS).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Integer sets represented as bit sets
%%
%% Two representations; bitord() and bitarr()
-define(LIMB_IX_BITS, 11).
-define(LIMB_BITS, (1 bsl ?LIMB_IX_BITS)).
-define(LIMB_IX(Index), (Index bsr ?LIMB_IX_BITS)).
-define(BIT_IX(Index), (Index band (?LIMB_BITS - 1))).
-define(BIT_MASK(Index), (1 bsl ?BIT_IX(Index))).
%% bitord(): fast at union/2 and can be compared for equality with '=:='
-type bitord() :: orddict:orddict(non_neg_integer(), 0..((1 bsl ?LIMB_BITS)-1)).
-spec bitord_new() -> bitord().
bitord_new() -> [].
-spec bitord_union(bitord(), bitord()) -> bitord().
bitord_union(Lhs, Rhs) ->
orddict:merge(fun(_, L, R) -> L bor R end, Lhs, Rhs).
-spec bitord_intersect(bitord(), bitord()) -> bitord().
bitord_intersect([], _) -> [];
bitord_intersect(_, []) -> [];
bitord_intersect([{K, L}|Ls], [{K, R}|Rs]) ->
[{K, L band R} | bitord_intersect(Ls, Rs)];
bitord_intersect([{LK, _}|Ls], [{RK, _}|_]=Rs) when LK < RK ->
bitord_intersect(Ls, Rs);
bitord_intersect([{LK, _}|_]=Ls, [{RK, _}|Rs]) when LK > RK ->
bitord_intersect(Ls, Rs).
-spec bitord_from_ordset(ordsets:ordset(non_neg_integer())) -> bitord().
bitord_from_ordset([]) -> [];
bitord_from_ordset([B|Bs]) ->
bitord_from_ordset_1(Bs, ?LIMB_IX(B), ?BIT_MASK(B)).
bitord_from_ordset_1([B|Bs], Key, Val) when Key =:= ?LIMB_IX(B) ->
bitord_from_ordset_1(Bs, Key, Val bor ?BIT_MASK(B));
bitord_from_ordset_1([B|Bs], Key, Val) ->
[{Key,Val} | bitord_from_ordset_1(Bs, ?LIMB_IX(B), ?BIT_MASK(B))];
bitord_from_ordset_1([], Key, Val) -> [{Key, Val}].
%% bitarr(): fast (enough) at get/2
-type bitarr() :: array:array(0..((1 bsl ?LIMB_BITS)-1)).
-spec bitarr_new() -> bitarr().
bitarr_new() -> array:new({default, 0}).
-spec bitarr_get(non_neg_integer(), bitarr()) -> boolean().
bitarr_get(Index, Array) ->
Limb = array:get(?LIMB_IX(Index), Array),
0 =/= (Limb band ?BIT_MASK(Index)).
-spec bitarr_set(non_neg_integer(), bitarr()) -> bitarr().
bitarr_set(Index, Array) ->
Limb0 = array:get(?LIMB_IX(Index), Array),
Limb = Limb0 bor ?BIT_MASK(Index),
array:set(?LIMB_IX(Index), Limb, Array).
-spec bitarr_from_bitord(bitord()) -> bitarr().
bitarr_from_bitord(Ord) ->
array:from_orddict(Ord, 0).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Sixth pass: Partition-local liveness analysis
%%
%% As temps are not spilled when exiting a partition in mode2, only
%% partition-local uses need to be considered when deciding which temps need
%% restoring at partition entry.
-type plive() :: #{label() =>
{call, liveset(), [label()]}
| {nocall, {liveset(), liveset()}, liveset(), [label()]}}.
-spec plive_analyse(cfg()) -> plive().
plive_analyse(CFG) ->
Defs0 = plive_init(CFG),
PO = cfg_postorder(CFG),
plive_dataf(PO, Defs0).
-spec plive_init(cfg()) -> plive().
plive_init(#cfg{bbs = BBs}) ->
maps:from_list(
[begin
{L, case HasCall of
true ->
{Gen, _} = plive_init_scan(bb_code(BB)),
{call, Gen, Succs};
false ->
GenKill = plive_init_scan(bb_code(BB)),
{nocall, GenKill, liveset_empty(), Succs}
end}
end || {L, BB = #bb{has_call=HasCall, succ=Succs}} <- maps:to_list(BBs)]).
-spec plive_init_scan([instr()]) -> {liveset(), liveset()}.
plive_init_scan([]) -> {liveset_empty(), liveset_empty()};
plive_init_scan([#instr{def=InstrKill, use=InstrGen}|Is]) ->
{Gen0, Kill0} = plive_init_scan(Is),
Gen1 = liveset_subtract(Gen0, InstrKill),
Gen = liveset_union(Gen1, InstrGen),
Kill1 = liveset_union(Kill0, InstrKill),
Kill = liveset_subtract(Kill1, InstrGen),
{Gen, Kill}.
-spec plive_dataf([label()], plive()) -> plive().
plive_dataf(Labels, PLive0) ->
case plive_dataf_once(Labels, PLive0, 0) of
{PLive, 0} -> PLive;
{PLive, _Changed} ->
plive_dataf(Labels, PLive)
end.
-spec plive_dataf_once([label()], plive(), non_neg_integer()) ->
{plive(), non_neg_integer()}.
plive_dataf_once([], PLive, Changed) -> {PLive, Changed};
plive_dataf_once([L|Ls], PLive0, Changed0) ->
Liveset =
case Liveset0 = maps:get(L, PLive0) of
{call, Livein, Succs} ->
{call, Livein, Succs};
{nocall, {Gen, Kill} = GenKill, _OldLivein, Succs} ->
Liveout = pliveout(L, PLive0),
Livein = liveset_union(Gen, liveset_subtract(Liveout, Kill)),
{nocall, GenKill, Livein, Succs}
end,
Changed = case Liveset =:= Liveset0 of
true -> Changed0;
false -> Changed0+1
end,
plive_dataf_once(Ls, PLive0#{L := Liveset}, Changed).
-spec pliveout(label(), plive()) -> liveset().
pliveout(L, PLive) ->
liveset_union([plivein(S, PLive) || S <- psuccs(L, PLive)]).
-spec psuccs(label(), plive()) -> [label()].
psuccs(L, PLive) -> psuccs_val(maps:get(L, PLive)).
psuccs_val({call, _Livein, Succs}) -> Succs;
psuccs_val({nocall, _GenKill, _Livein, Succs}) -> Succs.
-spec plivein(label(), plive()) -> liveset().
plivein(L, PLive) -> plivein_val(maps:get(L, PLive)).
plivein_val({call, Livein, _Succs}) -> Livein;
plivein_val({nocall, _GenKill, Livein, _Succs}) -> Livein.
liveset_empty() -> ordsets:new().
liveset_subtract(A, B) -> ordsets:subtract(A, B).
liveset_union(A, B) -> ordsets:union(A, B).
liveset_union(LivesetList) -> ordsets:union(LivesetList).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Third pass: Compute dataflow analyses required for placing mode3
%% spills/restores.
%% Reuse analysis implementation in hipe_restore_reuse.
%% XXX: hipe_restore_reuse has it's own "rdef"; we would like to reuse that one
%% too.
-type avail() :: hipe_restore_reuse:avail().
-spec avail_analyse(target_cfg(), liveness(), target()) -> avail().
avail_analyse(CFG, Liveness, Target) ->
hipe_restore_reuse:analyse(CFG, Liveness, Target).
-spec mode3_split_in_block(label(), avail()) -> ordsets:ordset(temp()).
mode3_split_in_block(L, Avail) ->
hipe_restore_reuse:split_in_block(L, Avail).
-spec mode3_block_renameset(label(), avail()) -> ordsets:ordset(temp()).
mode3_block_renameset(L, Avail) ->
hipe_restore_reuse:renamed_in_block(L, Avail).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Seventh pass
%%
%% Compute program space partitioning, collect information required by the
%% heuristic.
-type part_key() :: label().
-type part_dsets() :: hipe_dsets:dsets(part_key()).
-type part_dsets_map() :: #{part_key() => part_key()}.
-type ducounts() :: #{part_key() => ducount()}.
-spec scan(cfg(), liveness(), plive(), weights(), defs(), rdefs(), avail(),
target()) -> {cfg(), ducounts(), costs(), part_dsets()}.
scan(CFG0, Liveness, PLive, Weights, Defs, RDefs, Avail, Target) ->
#cfg{rpo_labels = Labels, bbs = BBs0} = CFG0,
CFG = CFG0#cfg{bbs=#{}}, % kill reference
DSets0 = hipe_dsets:new(Labels),
Costs0 = costs_new(),
{BBs, DUCounts0, Costs1, DSets1} =
scan_bbs(maps:to_list(BBs0), Liveness, PLive, Weights, Defs, RDefs, Avail,
Target, #{}, Costs0, DSets0, []),
{RLList, DSets2} = hipe_dsets:to_rllist(DSets1),
{Costs, DSets} = costs_map_roots(DSets2, Costs1),
DUCounts = collect_ducounts(RLList, DUCounts0, #{}),
{CFG#cfg{bbs=maps:from_list(BBs)}, DUCounts, Costs, DSets}.
-spec collect_ducounts([{label(), [label()]}], ducounts(), ducounts())
-> ducounts().
collect_ducounts([], _, Acc) -> Acc;
collect_ducounts([{R,Ls}|RLs], DUCounts, Acc) ->
DUCount = lists:foldl(
fun(Key, FAcc) ->
ducount_merge(maps:get(Key, DUCounts, ducount_new()), FAcc)
end, ducount_new(), Ls),
collect_ducounts(RLs, DUCounts, Acc#{R => DUCount}).
-spec scan_bbs([{label(), bb()}], liveness(), plive(), weights(), defs(),
rdefs(), avail(), target(), ducounts(), costs(), part_dsets(),
[{label(), bb()}])
-> {[{label(), bb()}], ducounts(), costs(), part_dsets()}.
scan_bbs([], _Liveness, _PLive, _Weights, _Defs, _RDefs, _Avail, _Target,
DUCounts, Costs, DSets, Acc) ->
{Acc, DUCounts, Costs, DSets};
scan_bbs([{L,BB}|BBs], Liveness, PLive, Weights, Defs, RDefs, Avail, Target,
DUCounts0, Costs0, DSets0, Acc) ->
Wt = weight(L, Weights),
{DSets, Costs5, EntryCode, ExitCode, RDefout, Liveout} =
case bb_has_call(BB) of
false ->
DSets1 = lists:foldl(fun(S, DS) -> hipe_dsets:union(L, S, DS) end,
DSets0, bb_succ(BB)),
{DSets1, Costs0, bb_code(BB), [], rdefout(L, RDefs),
liveout(Liveness, L, Target)};
true ->
LastI = #instr{def=LastDef} = bb_last(BB),
LiveBefore = ordsets:subtract(liveout(Liveness, L, Target), LastDef),
%% We can omit the spill of a temp that has not been defined since the
%% last time it was spilled
SpillSet = defsetf_intersect_ordset(LiveBefore, defbutlast(L, Defs)),
Costs1 = costs_insert(exit, L, Wt, SpillSet, Costs0),
Costs4 = lists:foldl(fun({S, BranchWt}, Costs2) ->
SLivein = livein(Liveness, S, Target),
SPLivein = plivein(S, PLive),
SWt = weight_scaled(L, BranchWt, Weights),
Costs3 = costs_insert(entry1, S, SWt, SLivein, Costs2),
costs_insert(entry2, S, SWt, SPLivein, Costs3)
end, Costs1, branch_preds(LastI#instr.i, Target)),
{DSets0, Costs4, bb_butlast(BB), [LastI], rdefsetf_empty(), LiveBefore}
end,
Mode3Splits = mode3_split_in_block(L, Avail),
{RevEntryCode, Restored} = scan_bb_fwd(EntryCode, Mode3Splits, [], []),
{Code, DUCount, Mode2Spills} =
scan_bb(RevEntryCode, Wt, RDefout, Liveout, ducount_new(), [], ExitCode),
DUCounts = DUCounts0#{L => DUCount},
M2SpillSet = ordsets:from_list(Mode2Spills),
Costs6 = costs_insert(spill, L, Wt, M2SpillSet, Costs5),
Mode3Renames = mode3_block_renameset(L, Avail),
Costs7 = costs_insert(restore, L, Wt, ordsets:intersection(M2SpillSet, Mode3Renames), Costs6),
Costs8 = costs_insert(restore, L, Wt, ordsets:from_list(Restored), Costs7),
Costs = add_unsplit_mode3_costs(DUCount, Mode3Renames, L, Costs8),
scan_bbs(BBs, Liveness, PLive, Weights, Defs, RDefs, Avail, Target, DUCounts,
Costs, DSets, [{L,BB#bb{code=Code}}|Acc]).
-spec add_unsplit_mode3_costs(ducount(), ordsets:ordset(temp()), label(), costs())
-> costs().
add_unsplit_mode3_costs(DUCount, Mode3Renames, L, Costs) ->
Unsplit = orddict_without_ordset(Mode3Renames,
orddict:from_list(ducount_to_list(DUCount))),
add_unsplit_mode3_costs_1(Unsplit, L, Costs).
-spec add_unsplit_mode3_costs_1([{temp(),float()}], label(), costs())
-> costs().
add_unsplit_mode3_costs_1([], _L, Costs) -> Costs;
add_unsplit_mode3_costs_1([{T,C}|Cs], L, Costs) ->
add_unsplit_mode3_costs_1(Cs, L, costs_insert(restore, L, C, [T], Costs)).
%% @doc Returns a new orddict without keys in Set and their associated values.
-spec orddict_without_ordset(ordsets:ordset(K), orddict:orddict(K, V))
-> orddict:orddict(K, V).
orddict_without_ordset([S|Ss], [{K,_}|_]=Dict) when S < K ->
orddict_without_ordset(Ss, Dict);
orddict_without_ordset([S|_]=Set, [D={K,_}|Ds]) when S > K ->
[D|orddict_without_ordset(Set, Ds)];
orddict_without_ordset([_S|Ss], [{_K,_}|Ds]) -> % _S == _K
orddict_without_ordset(Ss, Ds);
orddict_without_ordset(_, []) -> [];
orddict_without_ordset([], Dict) -> Dict.
%% Scans the code forward, collecting and inserting mode3 restores
-spec scan_bb_fwd([instr()], ordsets:ordset(temp()), ordsets:ordset(temp()),
[code_elem()])
-> {[code_elem()], ordsets:ordset(temp())}.
scan_bb_fwd([], [], Restored, Acc) -> {Acc, Restored};
scan_bb_fwd([I|Is], SplitHere0, Restored0, Acc0) ->
#instr{def=Def, use=Use} = I,
{ToRestore, SplitHere1} =
lists:partition(fun(R) -> lists:member(R, Use) end, SplitHere0),
SplitHere = lists:filter(fun(R) -> not lists:member(R, Def) end, SplitHere1),
Acc =
case ToRestore of
[] -> [I | Acc0];
_ -> [I, #mode3_restores{temps=ToRestore} | Acc0]
end,
scan_bb_fwd(Is, SplitHere, ToRestore ++ Restored0, Acc).
%% Scans the code backwards, collecting def/use counts and mode2 spills
-spec scan_bb([code_elem()], float(), rdefsetf(), liveset(), ducount(),
[temp()], [code_elem()])
-> {[code_elem()], ducount(), [temp()]}.
scan_bb([], _Wt, _RDefout, _Liveout, DUCount, Spills, Acc) ->
{Acc, DUCount, Spills};
scan_bb([I=#mode3_restores{}|Is], Wt, RDefout, Liveout, DUCount, Spills, Acc) ->
scan_bb(Is, Wt, RDefout, Liveout, DUCount, Spills, [I|Acc]);
scan_bb([I|Is], Wt, RDefout, Liveout, DUCount0, Spills0, Acc0) ->
#instr{def=Def,use=Use} = I,
DUCount = ducount_add(Use, Wt, ducount_add(Def, Wt, DUCount0)),
Livein = liveness_step(I, Liveout),
RDefin = rdef_step(I, RDefout),
%% The temps that would be spilled after I in mode 2
NewSpills = ordset_subtract_rdefsetf(
ordsets:intersection(Def, Liveout),
RDefout),
?ASSERT(NewSpills =:= (NewSpills -- Spills0)),
Spills = NewSpills ++ Spills0,
Acc1 = case NewSpills of
[] -> Acc0;
_ -> [#mode2_spills{temps=NewSpills}|Acc0]
end,
scan_bb(Is, Wt, RDefin, Livein, DUCount, Spills, [I|Acc1]).
-spec liveness_step(instr(), liveset()) -> liveset().
liveness_step(#instr{def=Def, use=Use}, Liveout) ->
ordsets:union(Use, ordsets:subtract(Liveout, Def)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% First pass: compute basic-block weighting
-type weights() :: no_bb_weights
| {hipe_bb_weights:bb_weights(), float()}.
-spec weight(label(), weights()) -> float().
weight(L, Weights) -> weight_scaled(L, 1.0, Weights).
-spec compute_weights(target_cfg(), target_module(), target_context(),
comp_options()) -> weights().
compute_weights(CFG, TargetMod, TargetContext, Options) ->
case proplists:get_bool(range_split_weights, Options) of
false -> no_bb_weights;
true ->
{hipe_bb_weights:compute(CFG, TargetMod, TargetContext),
?WEIGHT_CONST_FUN(proplists:get_value(range_split_weight_power,
Options, ?DEFAULT_WEIGHT_POWER))}
end.
-spec weight_scaled(label(), float(), weights()) -> float().
weight_scaled(_L, _Scale, no_bb_weights) -> 1.0;
weight_scaled(L, Scale, {Weights, Const}) ->
Wt0 = hipe_bb_weights:weight(L, Weights) * Scale,
Wt = erlang:min(erlang:max(Wt0, 0.0000000000000000001), 10000.0),
?WEIGHT_FUN(Wt, Const).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Heuristic splitting decision.
%%
%% Decide which temps to split, in which parts, and pick new names for them.
-type spill_mode() :: mode1 % Spill temps at partition exits
| mode2 % Spill temps at definitions
| mode3.% Spill temps at definitions, restore temps at uses
-type ren() :: #{temp() => {spill_mode(), temp()}}.
-type renames() :: #{label() => ren()}.
-record(heur_par, {
mode1_fudge :: float(),
min_gain :: float()
}).
-type heur_par() :: #heur_par{}.
-spec decide(ducounts(), costs(), target(), comp_options()) -> renames().
decide(DUCounts, Costs, Target, Options) ->
Par = #heur_par{
mode1_fudge = proplists:get_value(range_split_mode1_fudge, Options,
?DEFAULT_MODE1_FUDGE),
min_gain = proplists:get_value(range_split_min_gain, Options,
?DEFAULT_MIN_GAIN)},
decide_parts(maps:to_list(DUCounts), Costs, Target, Par, #{}).
-spec decide_parts([{part_key(), ducount()}], costs(), target(),
heur_par(), renames())
-> renames().
decide_parts([], _Costs, _Target, _Par, Acc) -> Acc;
decide_parts([{Part,DUCount}|Ps], Costs, Target, Par, Acc) ->
Spills = decide_temps(ducount_to_list(DUCount), Part, Costs, Target, Par,
#{}),
decide_parts(Ps, Costs, Target, Par, Acc#{Part => Spills}).
-spec decide_temps([{temp(), float()}], part_key(), costs(), target(),
heur_par(), ren())
-> ren().
decide_temps([], _Part, _Costs, _Target, _Par, Acc) -> Acc;
decide_temps([{Temp, SpillGain}|Ts], Part, Costs, Target, Par, Acc0) ->
SpillCost1 = costs_query(Temp, entry1, Part, Costs)
+ costs_query(Temp, exit, Part, Costs),
SpillCost2 = costs_query(Temp, entry2, Part, Costs)
+ costs_query(Temp, spill, Part, Costs),
SpillCost3 = costs_query(Temp, restore, Part, Costs),
Acc =
%% SpillCost1 =:= 0.0 usually means the temp is local to the partition;
%% hence no need to split it
case (SpillCost1 =/= 0.0) %% maps:is_key(Temp, S)
andalso (not is_precoloured(Temp, Target))
andalso ((Par#heur_par.min_gain*SpillCost1 < SpillGain)
orelse (Par#heur_par.min_gain*SpillCost2 < SpillGain)
orelse (Par#heur_par.min_gain*SpillCost3 < SpillGain))
of
false -> Acc0;
true ->
Mode =
if Par#heur_par.mode1_fudge*SpillCost1 < SpillCost2,
Par#heur_par.mode1_fudge*SpillCost1 < SpillCost3 ->
mode1;
SpillCost2 < SpillCost3 ->
mode2;
true ->
mode3
end,
Acc0#{Temp => {Mode, new_reg_nr(Target)}}
end,
decide_temps(Ts, Part, Costs, Target, Par, Acc).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Eighth pass: Rewrite program performing range splitting.
-spec rewrite(cfg(), target_cfg(), target(), liveness(), plive(), defs(),
avail(), part_dsets_map(), renames(), temps())
-> target_cfg().
rewrite(#cfg{bbs=BBs}, TCFG, Target, Liveness, PLive, Defs, Avail, DSets,
Renames, Temps) ->
rewrite_bbs(maps:to_list(BBs), Target, Liveness, PLive, Defs, Avail, DSets,
Renames, Temps, TCFG).
-spec rewrite_bbs([{label(), bb()}], target(), liveness(), plive(), defs(),
avail(), part_dsets_map(), renames(), temps(), target_cfg())
-> target_cfg().
rewrite_bbs([], _Target, _Liveness, _PLive, _Defs, _Avail, _DSets, _Renames,
_Temps, TCFG) ->
TCFG;
rewrite_bbs([{L,BB}|BBs], Target, Liveness, PLive, Defs, Avail, DSets, Renames,
Temps, TCFG0) ->
Code0Rev = lists:reverse(bb_code(BB)),
EntryRen = maps:get(maps:get(L,DSets), Renames),
M3Ren = mode3_block_renameset(L, Avail),
SubstFun = rewrite_subst_fun(Target, EntryRen, M3Ren),
Fun = fun(I) -> subst_temps(SubstFun, I, Target) end,
{Code, TCFG} =
case bb_has_call(BB) of
false ->
Code1 = rewrite_instrs(Code0Rev, Fun, EntryRen, M3Ren, Temps, Target,
[]),
{Code1, TCFG0};
true ->
CallI0 = hd(Code0Rev),
Succ = bb_succ(BB),
{CallTI, TCFG1} = inject_restores(Succ, Target, Liveness, PLive, DSets,
Renames, Temps, CallI0#instr.i, TCFG0),
Liveout1 = liveness_step(CallI0, liveout(Liveness, L, Target)),
Defout = defbutlast(L, Defs),
SpillMap = mk_spillmap(EntryRen, Liveout1, Defout, Temps, Target),
Code1 = rewrite_instrs(tl(Code0Rev), Fun, EntryRen, M3Ren, Temps,
Target, []),
Code2 = lift_spills(lists:reverse(Code1), Target, SpillMap, [CallTI]),
{Code2, TCFG1}
end,
TBB = hipe_bb:code_update(bb(TCFG, L, Target), Code),
rewrite_bbs(BBs, Target, Liveness, PLive, Defs, Avail, DSets, Renames, Temps,
update_bb(TCFG, L, TBB, Target)).
-spec rewrite_instrs([code_elem()], rewrite_fun(), ren(),
ordsets:ordset(temp()), temps(), target(),
[target_instr()])
-> [target_instr()].
rewrite_instrs([], _Fun, _Ren, _M3Ren, _Temps, _Target, Acc) -> Acc;
rewrite_instrs([I|Is], Fun, Ren, M3Ren, Temps, Target, Acc0) ->
Acc =
case I of
#instr{i=TI} -> [Fun(TI)|Acc0];
#mode2_spills{temps=Mode2Spills} ->
add_mode2_spills(Mode2Spills, Target, Ren, M3Ren, Temps, Acc0);
#mode3_restores{temps=Mode3Restores} ->
add_mode3_restores(Mode3Restores, Target, Ren, Temps, Acc0)
end,
rewrite_instrs(Is, Fun, Ren, M3Ren, Temps, Target, Acc).
-spec add_mode2_spills(ordsets:ordset(temp()), target(), ren(),
ordsets:ordset(temp()), temps(), [target_instr()])
-> [target_instr()].
add_mode2_spills([], _Target, _Ren, _M3Ren, _Temps, Acc) -> Acc;
add_mode2_spills([R|Rs], Target, Ren, M3Ren, Temps, Acc0) ->
Acc =
case Ren of
#{R := {Mode, NewName}} when Mode =:= mode2; Mode =:= mode3 ->
case Mode =/= mode3 orelse lists:member(R, M3Ren) of
false -> Acc0;
true ->
#{R := T} = Temps,
SpillInstr = mk_move(update_reg_nr(NewName, T, Target), T, Target),
[SpillInstr|Acc0]
end;
#{} ->
Acc0
end,
add_mode2_spills(Rs, Target, Ren, M3Ren, Temps, Acc).
-spec add_mode3_restores(ordsets:ordset(temp()), target(), ren(), temps(),
[target_instr()])
-> [target_instr()].
add_mode3_restores([], _Target, _Ren, _Temps, Acc) -> Acc;
add_mode3_restores([R|Rs], Target, Ren, Temps, Acc) ->
case Ren of
#{R := {mode3, NewName}} ->
#{R := T} = Temps,
RestoreInstr = mk_move(T, update_reg_nr(NewName, T, Target), Target),
add_mode3_restores(Rs, Target, Ren, Temps, [RestoreInstr|Acc]);
#{} ->
add_mode3_restores(Rs, Target, Ren, Temps, Acc)
end.
-type rewrite_fun() :: fun((target_instr()) -> target_instr()).
-type subst_fun() :: fun((target_temp()) -> target_temp()).
-spec rewrite_subst_fun(target(), ren(), ordsets:ordset(temp())) -> subst_fun().
rewrite_subst_fun(Target, Ren, M3Ren) ->
fun(Temp) ->
Reg = reg_nr(Temp, Target),
case Ren of
#{Reg := {Mode, NewName}} ->
case Mode =/= mode3 orelse lists:member(Reg, M3Ren) of
false -> Temp;
true -> update_reg_nr(NewName, Temp, Target)
end;
#{} -> Temp
end
end.
-type spillmap() :: [{temp(), target_instr()}].
-spec mk_spillmap(ren(), liveset(), defsetf(), temps(), target())
-> spillmap().
mk_spillmap(Ren, Livein, Defout, Temps, Target) ->
[begin
Temp = maps:get(Reg, Temps),
{NewName, mk_move(update_reg_nr(NewName, Temp, Target), Temp, Target)}
end || {Reg, {mode1, NewName}} <- maps:to_list(Ren),
lists:member(Reg, Livein), defsetf_member(Reg, Defout)].
-spec mk_restores(ren(), liveset(), liveset(), temps(), target())
-> [target_instr()].
mk_restores(Ren, Livein, PLivein, Temps, Target) ->
[begin
Temp = maps:get(Reg, Temps),
mk_move(Temp, update_reg_nr(NewName, Temp, Target), Target)
end || {Reg, {Mode, NewName}} <- maps:to_list(Ren),
( (Mode =:= mode1 andalso lists:member(Reg, Livein ))
orelse (Mode =:= mode2 andalso lists:member(Reg, PLivein)))].
-spec inject_restores([label()], target(), liveness(), plive(),
part_dsets_map(), renames(), temps(), target_instr(),
target_cfg())
-> {target_instr(), target_cfg()}.
inject_restores([], _Target, _Liveness, _PLive, _DSets, _Renames, _Temps, CFTI,
TCFG) ->
{CFTI, TCFG};
inject_restores([L|Ls], Target, Liveness, PLive, DSets, Renames, Temps, CFTI0,
TCFG0) ->
Ren = maps:get(maps:get(L,DSets), Renames),
Livein = livein(Liveness, L, Target),
PLivein = plivein(L, PLive),
{CFTI, TCFG} =
case mk_restores(Ren, Livein, PLivein, Temps, Target) of
[] -> {CFTI0, TCFG0}; % optimisation
Restores ->
RestBBLbl = new_label(Target),
Code = Restores ++ [mk_goto(L, Target)],
CFTI1 = redirect_jmp(CFTI0, L, RestBBLbl, Target),
TCFG1 = update_bb(TCFG0, RestBBLbl, hipe_bb:mk_bb(Code), Target),
{CFTI1, TCFG1}
end,
inject_restores(Ls, Target, Liveness, PLive, DSets, Renames, Temps, CFTI,
TCFG).
%% Heuristic. Move spills up until we meet the edge of the BB or a definition of
%% that temp.
-spec lift_spills([target_instr()], target(), spillmap(), [target_instr()])
-> [target_instr()].
lift_spills([], _Target, SpillMap, Acc) ->
[SpillI || {_, SpillI} <- SpillMap] ++ Acc;
lift_spills([I|Is], Target, SpillMap0, Acc) ->
Def = reg_defines(I, Target),
{Spills0, SpillMap} =
lists:partition(fun({Reg,_}) -> lists:member(Reg, Def) end, SpillMap0),
Spills = [SpillI || {_, SpillI} <- Spills0],
lift_spills(Is, Target, SpillMap, [I|Spills ++ Acc]).
reg_defines(I, Target) ->
reg_names(defines(I,Target), Target).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Costs ADT
%%
%% Keeps track of cumulative cost of spilling temps in particular partitions
%% using particular spill modes.
-type cost_map() :: #{[part_key()|temp()] => float()}.
-type cost_key() :: entry1 | entry2 | exit | spill | restore.
-record(costs, {entry1 = #{} :: cost_map()
,entry2 = #{} :: cost_map()
,exit = #{} :: cost_map()
,spill = #{} :: cost_map()
,restore = #{} :: cost_map()
}).
-type costs() :: #costs{}.
-spec costs_new() -> costs().
costs_new() -> #costs{}.
-spec costs_insert(cost_key(), part_key(), float(), liveset(), costs())
-> costs().
costs_insert(entry1, A, Weight, Liveset, Costs=#costs{entry1=Entry1}) ->
Costs#costs{entry1=costs_insert_1(A, Weight, Liveset, Entry1)};
costs_insert(entry2, A, Weight, Liveset, Costs=#costs{entry2=Entry2}) ->
Costs#costs{entry2=costs_insert_1(A, Weight, Liveset, Entry2)};
costs_insert(exit, A, Weight, Liveset, Costs=#costs{exit=Exit}) ->
Costs#costs{exit=costs_insert_1(A, Weight, Liveset, Exit)};
costs_insert(spill, A, Weight, Liveset, Costs=#costs{spill=Spill}) ->
Costs#costs{spill=costs_insert_1(A, Weight, Liveset, Spill)};
costs_insert(restore, A, Weight, Liveset, Costs=#costs{restore=Restore}) ->
Costs#costs{restore=costs_insert_1(A, Weight, Liveset, Restore)}.
costs_insert_1(A, Weight, Liveset, CostMap0) when is_float(Weight) ->
lists:foldl(fun(Live, CostMap1) ->
map_update_counter([A|Live], Weight, CostMap1)
end, CostMap0, Liveset).
-spec costs_map_roots(part_dsets(), costs()) -> {costs(), part_dsets()}.
costs_map_roots(DSets0, Costs) ->
{Entry1, DSets1} = costs_map_roots_1(DSets0, Costs#costs.entry1),
{Entry2, DSets2} = costs_map_roots_1(DSets1, Costs#costs.entry2),
{Exit, DSets3} = costs_map_roots_1(DSets2, Costs#costs.exit),
{Spill, DSets4} = costs_map_roots_1(DSets3, Costs#costs.spill),
{Restore, DSets} = costs_map_roots_1(DSets4, Costs#costs.restore),
{#costs{entry1=Entry1,entry2=Entry2,exit=Exit,spill=Spill,restore=Restore},
DSets}.
costs_map_roots_1(DSets0, CostMap) ->
{NewEs, DSets} = lists:mapfoldl(fun({[A|T], Wt}, DSets1) ->
{AR, DSets2} = hipe_dsets:find(A, DSets1),
{{[AR|T], Wt}, DSets2}
end, DSets0, maps:to_list(CostMap)),
{maps_from_list_merge(NewEs, fun erlang:'+'/2, #{}), DSets}.
maps_from_list_merge([], _MF, Acc) -> Acc;
maps_from_list_merge([{K,V}|Ps], MF, Acc) ->
maps_from_list_merge(Ps, MF, case Acc of
#{K := OV} -> Acc#{K := MF(V, OV)};
#{} -> Acc#{K => V}
end).
-spec costs_query(temp(), cost_key(), part_key(), costs()) -> float().
costs_query(Temp, entry1, Part, #costs{entry1=Entry1}) ->
costs_query_1(Temp, Part, Entry1);
costs_query(Temp, entry2, Part, #costs{entry2=Entry2}) ->
costs_query_1(Temp, Part, Entry2);
costs_query(Temp, exit, Part, #costs{exit=Exit}) ->
costs_query_1(Temp, Part, Exit);
costs_query(Temp, spill, Part, #costs{spill=Spill}) ->
costs_query_1(Temp, Part, Spill);
costs_query(Temp, restore, Part, #costs{restore=Restore}) ->
costs_query_1(Temp, Part, Restore).
costs_query_1(Temp, Part, CostMap) ->
Key = [Part|Temp],
case CostMap of
#{Key := Wt} -> Wt;
#{} -> 0.0
end.
-spec map_update_counter(Key, number(), #{Key => number(), OK => OV})
-> #{Key := number(), OK => OV}.
map_update_counter(Key, Incr, Map) ->
case Map of
#{Key := Orig} -> Map#{Key := Orig + Incr};
#{} -> Map#{Key => Incr}
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Def and use counting ADT
-type ducount() :: #{temp() => float()}.
-spec ducount_new() -> ducount().
ducount_new() -> #{}.
-spec ducount_add([temp()], float(), ducount()) -> ducount().
ducount_add([], _Weight, DUCount) -> DUCount;
ducount_add([T|Ts], Weight, DUCount0) ->
DUCount =
case DUCount0 of
#{T := Count} -> DUCount0#{T := Count + Weight};
#{} -> DUCount0#{T => Weight}
end,
ducount_add(Ts, Weight, DUCount).
ducount_to_list(DUCount) -> maps:to_list(DUCount).
-spec ducount_merge(ducount(), ducount()) -> ducount().
ducount_merge(DCA, DCB) when map_size(DCA) < map_size(DCB) ->
ducount_merge_1(ducount_to_list(DCA), DCB);
ducount_merge(DCA, DCB) when map_size(DCA) >= map_size(DCB) ->
ducount_merge_1(ducount_to_list(DCB), DCA).
ducount_merge_1([], DUCount) -> DUCount;
ducount_merge_1([{T,AC}|Ts], DUCount0) ->
DUCount =
case DUCount0 of
#{T := BC} -> DUCount0#{T := AC + BC};
#{} -> DUCount0#{T => AC}
end,
ducount_merge_1(Ts, DUCount).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Target module interface functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-define(TGT_IFACE_0(N), N( {M,C}) -> M:N( C)).
-define(TGT_IFACE_1(N), N(A1, {M,C}) -> M:N(A1, C)).
-define(TGT_IFACE_2(N), N(A1,A2, {M,C}) -> M:N(A1,A2, C)).
-define(TGT_IFACE_3(N), N(A1,A2,A3,{M,C}) -> M:N(A1,A2,A3,C)).
?TGT_IFACE_2(bb).
?TGT_IFACE_1(def_use).
?TGT_IFACE_1(defines).
?TGT_IFACE_1(defines_all_alloc).
?TGT_IFACE_1(is_precoloured).
?TGT_IFACE_1(mk_goto).
?TGT_IFACE_2(mk_move).
?TGT_IFACE_0(new_label).
?TGT_IFACE_0(new_reg_nr).
?TGT_IFACE_1(number_of_temporaries).
?TGT_IFACE_3(redirect_jmp).
?TGT_IFACE_1(reg_nr).
?TGT_IFACE_1(reverse_postorder).
?TGT_IFACE_2(subst_temps).
?TGT_IFACE_3(update_bb).
?TGT_IFACE_2(update_reg_nr).
branch_preds(Instr, {TgtMod,TgtCtx}) ->
merge_sorted_preds(lists:keysort(1, TgtMod:branch_preds(Instr, TgtCtx))).
livein(Liveness, L, Target={TgtMod,TgtCtx}) ->
ordsets:from_list(reg_names(TgtMod:livein(Liveness, L, TgtCtx), Target)).
liveout(Liveness, L, Target={TgtMod,TgtCtx}) ->
ordsets:from_list(reg_names(TgtMod:liveout(Liveness, L, TgtCtx), Target)).
merge_sorted_preds([]) -> [];
merge_sorted_preds([{L, P1}, {L, P2}|LPs]) ->
merge_sorted_preds([{L, P1+P2}|LPs]);
merge_sorted_preds([LP|LPs]) -> [LP|merge_sorted_preds(LPs)].
reg_names(Regs, {TgtMod,TgtCtx}) ->
[TgtMod:reg_nr(X,TgtCtx) || X <- Regs].
|