1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
%% -*- erlang-indent-level: 2 -*-
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%@doc
%% RESTORE REUSE LIVE RANGE SPLITTING PASS
%%
%% This is a simple live range splitter that tries to avoid sequences where a
%% temporary is accessed on stack multiple times by keeping a copy of that temp
%% around in a register.
%%
%% At any point where a temporary that is expected to be spilled (see uses of
%% spills_add_list/2) is defined or used, this pass considers that temporary
%% "available".
%%
%% Limitations:
%% * If a live range part starts with several different restores, this module
%% will introduce a new temp number for each of them, and later be forced to
%% generate phi blocks. It would be more efficient to introduce just a
%% single temp number. That would also remove the need for the phi blocks.
%% * If a live range part ends in a definition, that definition should just
%% define the base temp rather than the substitution, since some CISC
%% targets might be able to inline the memory access in the instruction.
-module(hipe_restore_reuse).
-export([split/4]).
-compile(inline).
%% -define(DO_ASSERT, 1).
-include("../main/hipe.hrl").
-type target_cfg() :: any().
-type liveness() :: any().
-type target_module() :: module().
-type target_context() :: any().
-type target() :: {target_module(), target_context()}.
-type label() :: non_neg_integer().
-type reg() :: non_neg_integer().
-type instr() :: any().
-type temp() :: any().
-spec split(target_cfg(), liveness(), target_module(), target_context())
-> target_cfg().
split(CFG, Liveness, TargetMod, TargetContext) ->
Target = {TargetMod, TargetContext},
Avail = analyse(CFG, Liveness, Target),
rewrite(CFG, Target, Avail).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-type avail() :: #{label() => avail_bb()}.
-record(avail_bb, {
%% Blocks where HasCall is true are considered to have too high
%% register pressure to support a register copy of a temp
has_call :: boolean(),
%% AvailOut: Temps that can be split (are available)
out :: availset(),
%% Gen: AvailOut generated locally
gen :: availset(),
%% WantIn: Temps that are split
want :: regset(),
%% Self: Temps with avail-want pairs locally
self :: regset(),
%% DefIn: Temps shadowed by later def in same live range part
defin :: regset(),
pred :: [label()],
succ :: [label()]
}).
-type avail_bb() :: #avail_bb{}.
avail_get(L, Avail) -> maps:get(L, Avail).
avail_set(L, Val, Avail) -> maps:put(L, Val, Avail).
avail_has_call(L, Avail) -> (avail_get(L, Avail))#avail_bb.has_call.
avail_out(L, Avail) -> (avail_get(L, Avail))#avail_bb.out.
avail_self(L, Avail) -> (avail_get(L, Avail))#avail_bb.self.
avail_pred(L, Avail) -> (avail_get(L, Avail))#avail_bb.pred.
avail_succ(L, Avail) -> (avail_get(L, Avail))#avail_bb.succ.
avail_in(L, Avail) ->
case avail_pred(L, Avail) of
[] -> availset_empty(); % entry
Pred ->
lists:foldl(fun(P, ASet) ->
availset_intersect(avail_out(P, Avail), ASet)
end, availset_top(), Pred)
end.
want_in(L, Avail) -> (avail_get(L, Avail))#avail_bb.want.
want_out(L, Avail) ->
lists:foldl(fun(S, Set) ->
ordsets:union(want_in(S, Avail), Set)
end, ordsets:new(), avail_succ(L, Avail)).
def_in(L, Avail) -> (avail_get(L, Avail))#avail_bb.defin.
def_out(L, Avail) ->
case avail_succ(L, Avail) of
[] -> ordsets:new(); % entry
Succ ->
ordsets:intersection([def_in(S, Avail) || S <- Succ])
end.
-type regset() :: ordsets:ordset(reg()).
-type availset() :: top | regset().
availset_empty() -> [].
availset_top() -> top.
availset_intersect(top, B) -> B;
availset_intersect(A, top) -> A;
availset_intersect(A, B) -> ordsets:intersection(A, B).
availset_union(top, _) -> top;
availset_union(_, top) -> top;
availset_union(A, B) -> ordsets:union(A, B).
ordset_intersect_availset(OS, top) -> OS;
ordset_intersect_availset(OS, AS) -> ordsets:intersection(OS, AS).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Analysis pass
%%
%% The analysis pass collects the set of temps we're interested in splitting
%% (Spills), and computes three dataflow analyses for this subset of temps.
%%
%% Avail, which is the set of temps which are available in register from a
%% previous (potential) spill or restore without going through a HasCall
%% block.
%% Want, which is a liveness analysis for the subset of temps used by an
%% instruction that are also in Avail at that point. In other words, Want is
%% the set of temps that are split (has a register copy) at a particular
%% point.
%% Def, which are the temps that are already going to be spilled later, and so
%% need not be spilled when they're defined.
%%
%% Lastly, it computes the set Self for each block, which is the temps that have
%% avail-want pairs in the same block, and so should be split in that block even
%% if they're not in WantIn for the block.
-spec analyse(target_cfg(), liveness(), target()) -> avail().
analyse(CFG, Liveness, Target) ->
Avail0 = analyse_init(CFG, Liveness, Target),
RPO = reverse_postorder(CFG, Target),
AvailLs = [L || L <- RPO, not avail_has_call(L, Avail0)],
Avail1 = avail_dataf(AvailLs, Avail0),
Avail2 = analyse_filter_want(maps:keys(Avail1), Avail1),
PO = lists:reverse(RPO),
want_dataf(PO, Avail2).
-spec analyse_init(target_cfg(), liveness(), target()) -> avail().
analyse_init(CFG, Liveness, Target) ->
analyse_init(labels(CFG, Target), CFG, Liveness, Target, #{}, []).
-spec analyse_init([label()], target_cfg(), liveness(), target(), spillset(),
[{label(), avail_bb()}])
-> avail().
analyse_init([], _CFG, _Liveness, Target, Spills0, Acc) ->
%% Precoloured temps can't be spilled
Spills = spills_filter(fun(R) -> not is_precoloured(R, Target) end, Spills0),
analyse_init_1(Acc, Spills, []);
analyse_init([L|Ls], CFG, Liveness, Target, Spills0, Acc) ->
{DefIn, Gen, Self, Want, HasCall0} =
analyse_scan(hipe_bb:code(bb(CFG, L, Target)), Target,
ordsets:new(), ordsets:new(), ordsets:new(),
ordsets:new()),
{Spills, Out, HasCall} =
case HasCall0 of
false -> {Spills0, availset_top(), false};
{true, CallDefs} ->
Spill = ordsets:subtract(liveout(Liveness, L, Target), CallDefs),
{spills_add_list(Spill, Spills0), Gen, true}
end,
Pred = hipe_gen_cfg:pred(CFG, L),
Succ = hipe_gen_cfg:succ(CFG, L),
Val = #avail_bb{gen=Gen, want=Want, self=Self, out=Out, has_call=HasCall,
pred=Pred, succ=Succ, defin=DefIn},
analyse_init(Ls, CFG, Liveness, Target, Spills, [{L, Val} | Acc]).
-spec analyse_init_1([{label(), avail_bb()}], spillset(),
[{label(), avail_bb()}])
-> avail().
analyse_init_1([], _Spills, Acc) -> maps:from_list(Acc);
analyse_init_1([{L, Val0}|Vs], Spills, Acc) ->
#avail_bb{out=Out,gen=Gen,want=Want,self=Self} = Val0,
Val = Val0#avail_bb{
out = spills_filter_availset(Out, Spills),
gen = spills_filter_availset(Gen, Spills),
want = spills_filter_availset(Want, Spills),
self = spills_filter_availset(Self, Spills)},
analyse_init_1(Vs, Spills, [{L, Val} | Acc]).
-type spillset() :: #{reg() => []}.
-spec spills_add_list([reg()], spillset()) -> spillset().
spills_add_list([], Spills) -> Spills;
spills_add_list([R|Rs], Spills) -> spills_add_list(Rs, Spills#{R => []}).
-spec spills_filter_availset(availset(), spillset()) -> availset().
spills_filter_availset([E|Es], Spills) ->
case Spills of
#{E := _} -> [E|spills_filter_availset(Es, Spills)];
#{} -> spills_filter_availset(Es, Spills)
end;
spills_filter_availset([], _) -> [];
spills_filter_availset(top, _) -> top.
spills_filter(Fun, Spills) -> maps:filter(fun(K, _) -> Fun(K) end, Spills).
-spec analyse_scan([instr()], target(), Defset, Gen, Self, Want)
-> {Defset, Gen, Self, Want, HasCall} when
HasCall :: false | {true, regset()},
Defset :: regset(),
Gen :: availset(),
Self :: regset(),
Want :: regset().
analyse_scan([], _Target, Defs, Gen, Self, Want) ->
{Defs, Gen, Self, Want, false};
analyse_scan([I|Is], Target, Defs0, Gen0, Self0, Want0) ->
{DefL, UseL} = reg_def_use(I, Target),
Use = ordsets:from_list(UseL),
Def = ordsets:from_list(DefL),
Self = ordsets:union(ordsets:intersection(Use, Gen0), Self0),
Want = ordsets:union(ordsets:subtract(Use, Defs0), Want0),
Defs = ordsets:union(Def, Defs0),
case defines_all_alloc(I, Target) of
true ->
[] = Is, %assertion
{Defs, ordsets:new(), Self, Want, {true, Def}};
false ->
Gen = ordsets:union(ordsets:union(Def, Use), Gen0),
analyse_scan(Is, Target, Defs, Gen, Self, Want)
end.
-spec avail_dataf([label()], avail()) -> avail().
avail_dataf(RPO, Avail0) ->
case avail_dataf_once(RPO, Avail0, 0) of
{Avail, 0} -> Avail;
{Avail, _Changed} ->
avail_dataf(RPO, Avail)
end.
-spec avail_dataf_once([label()], avail(), non_neg_integer())
-> {avail(), non_neg_integer()}.
avail_dataf_once([], Avail, Changed) -> {Avail, Changed};
avail_dataf_once([L|Ls], Avail0, Changed0) ->
ABB = #avail_bb{out=OldOut, gen=Gen} = avail_get(L, Avail0),
In = avail_in(L, Avail0),
{Changed, Avail} =
case availset_union(In, Gen) of
OldOut -> {Changed0, Avail0};
Out -> {Changed0+1, avail_set(L, ABB#avail_bb{out=Out}, Avail0)}
end,
avail_dataf_once(Ls, Avail, Changed).
-spec analyse_filter_want([label()], avail()) -> avail().
analyse_filter_want([], Avail) -> Avail;
analyse_filter_want([L|Ls], Avail0) ->
ABB = #avail_bb{want=Want0, defin=DefIn0} = avail_get(L, Avail0),
In = avail_in(L, Avail0),
Want = ordset_intersect_availset(Want0, In),
DefIn = ordset_intersect_availset(DefIn0, In),
Avail = avail_set(L, ABB#avail_bb{want=Want, defin=DefIn}, Avail0),
analyse_filter_want(Ls, Avail).
-spec want_dataf([label()], avail()) -> avail().
want_dataf(PO, Avail0) ->
case want_dataf_once(PO, Avail0, 0) of
{Avail, 0} -> Avail;
{Avail, _Changed} ->
want_dataf(PO, Avail)
end.
-spec want_dataf_once([label()], avail(), non_neg_integer())
-> {avail(), non_neg_integer()}.
want_dataf_once([], Avail, Changed) -> {Avail, Changed};
want_dataf_once([L|Ls], Avail0, Changed0) ->
ABB0 = #avail_bb{want=OldIn,defin=OldDef} = avail_get(L, Avail0),
AvailIn = avail_in(L, Avail0),
Out = want_out(L, Avail0),
DefOut = def_out(L, Avail0),
{Changed, Avail} =
case {ordsets:union(ordset_intersect_availset(Out, AvailIn), OldIn),
ordsets:union(ordset_intersect_availset(DefOut, AvailIn), OldDef)}
of
{OldIn, OldDef} -> {Changed0, Avail0};
{In, DefIn} ->
ABB = ABB0#avail_bb{want=In,defin=DefIn},
{Changed0+1, avail_set(L, ABB, Avail0)}
end,
want_dataf_once(Ls, Avail, Changed).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Rewrite pass
-type subst_dict() :: orddict:orddict(reg(), reg()).
-type input() :: #{label() => subst_dict()}.
-spec rewrite(target_cfg(), target(), avail()) -> target_cfg().
rewrite(CFG, Target, Avail) ->
RPO = reverse_postorder(CFG, Target),
rewrite(RPO, Target, Avail, #{}, CFG).
-spec rewrite([label()], target(), avail(), input(), target_cfg())
-> target_cfg().
rewrite([], _Target, _Avail, _Input, CFG) -> CFG;
rewrite([L|Ls], Target, Avail, Input0, CFG0) ->
SplitHere = split_in_block(L, Avail),
{Input1, LInput} =
case Input0 of
#{L := LInput0} -> {Input0, LInput0};
#{} -> {Input0#{L => []}, []} % entry block
end,
?ASSERT([] =:= [X || X <- SplitHere, orddict:is_key(X, LInput)]),
?ASSERT(want_in(L, Avail) =:= orddict:fetch_keys(LInput)),
{CFG1, LOutput} =
case {SplitHere, LInput} of
{[], []} -> % optimisation (rewrite will do nothing, so skip it)
{CFG0, LInput};
_ ->
Code0 = hipe_bb:code(BB=bb(CFG0, L, Target)),
DefOut = def_out(L, Avail),
{Code, LOutput0, _DefIn} =
rewrite_instrs(Code0, Target, LInput, DefOut, SplitHere),
{update_bb(CFG0, L, hipe_bb:code_update(BB, Code), Target), LOutput0}
end,
{Input, CFG} = rewrite_succs(avail_succ(L, Avail), Target, L, LOutput, Avail,
Input1, CFG1),
rewrite(Ls, Target, Avail, Input, CFG).
-spec split_in_block(label(), avail()) -> ordsets:ordset(reg()).
split_in_block(L, Avail) ->
ordsets:subtract(ordsets:union(avail_self(L, Avail), want_out(L, Avail)),
want_in(L, Avail)).
-spec rewrite_instrs([instr()], target(), subst_dict(), regset(), [reg()])
-> {[instr()], subst_dict(), regset()}.
rewrite_instrs([], _Target, Output, DefOut, []) ->
{[], Output, DefOut};
rewrite_instrs([I|Is], Target, Input0, BBDefOut, SplitHere0) ->
{TDef, TUse} = def_use(I, Target),
{Def, Use} = {reg_names(TDef, Target), reg_names(TUse, Target)},
%% Restores are generated in forward order by picking temps from SplitHere as
%% they're used or defined. After the last instruction, all temps have been
%% picked.
{ISplits, SplitHere} =
lists:partition(fun(R) ->
lists:member(R, Def) orelse lists:member(R, Use)
end, SplitHere0),
{Input, Restores} =
case ISplits of
[] -> {Input0, []};
_ ->
make_splits(ISplits, Target, TDef, TUse, Input0, [])
end,
%% Here's the recursive call
{Acc0, Output, DefOut} =
rewrite_instrs(Is, Target, Input, BBDefOut, SplitHere),
%% From here we're processing instructions in reverse order, because to avoid
%% redundant spills we need to walk the 'def' dataflow, which is in reverse.
SubstFun = fun(Temp) ->
case orddict:find(reg_nr(Temp, Target), Input) of
{ok, NewTemp} -> NewTemp;
error -> Temp
end
end,
Acc1 = insert_spills(TDef, Target, Input, DefOut, Acc0),
Acc = Restores ++ [subst_temps(SubstFun, I, Target) | Acc1],
DefIn = ordsets:union(DefOut, ordsets:from_list(Def)),
{Acc, Output, DefIn}.
-spec make_splits([reg()], target(), [temp()], [temp()], subst_dict(),
[instr()])
-> {subst_dict(), [instr()]}.
make_splits([], _Target, _TDef, _TUse, Input, Acc) ->
{Input, Acc};
make_splits([S|Ss], Target, TDef, TUse, Input0, Acc0) ->
SubstReg = new_reg_nr(Target),
{Acc, Subst} =
case find_reg_temp(S, TUse, Target) of
error ->
{ok, Temp} = find_reg_temp(S, TDef, Target),
{Acc0, update_reg_nr(SubstReg, Temp, Target)};
{ok, Temp} ->
Subst0 = update_reg_nr(SubstReg, Temp, Target),
Acc1 = [mk_move(Temp, Subst0, Target) | Acc0],
{Acc1, Subst0}
end,
Input = orddict:store(S, Subst, Input0),
make_splits(Ss, Target, TDef, TUse, Input, Acc).
-spec find_reg_temp(reg(), [temp()], target()) -> error | {ok, temp()}.
find_reg_temp(_Reg, [], _Target) -> error;
find_reg_temp(Reg, [T|Ts], Target) ->
case reg_nr(T, Target) of
Reg -> {ok, T};
_ -> find_reg_temp(Reg, Ts, Target)
end.
-spec insert_spills([temp()], target(), subst_dict(), regset(), [instr()])
-> [instr()].
insert_spills([], _Target, _Input, _DefOut, Acc) -> Acc;
insert_spills([T|Ts], Target, Input, DefOut, Acc0) ->
R = reg_nr(T, Target),
Acc =
case orddict:find(R, Input) of
error -> Acc0;
{ok, Subst} ->
case lists:member(R, DefOut) of
true -> Acc0;
false -> [mk_move(Subst, T, Target) | Acc0]
end
end,
insert_spills(Ts, Target, Input, DefOut, Acc).
-spec rewrite_succs([label()], target(), label(), subst_dict(), avail(),
input(), target_cfg()) -> {input(), target_cfg()}.
rewrite_succs([], _Target, _P, _POutput, _Avail, Input, CFG) -> {Input, CFG};
rewrite_succs([L|Ls], Target, P, POutput, Avail, Input0, CFG0) ->
NewLInput = orddict_with_ordset(want_in(L, Avail), POutput),
{Input, CFG} =
case Input0 of
#{L := LInput} ->
CFG2 =
case required_phi_moves(LInput, NewLInput) of
[] -> CFG0;
ReqMovs ->
PhiLb = new_label(Target),
Code = [mk_move(S,D,Target) || {S,D} <- ReqMovs]
++ [mk_goto(L, Target)],
PhiBB = hipe_bb:mk_bb(Code),
CFG1 = update_bb(CFG0, PhiLb, PhiBB, Target),
bb_redirect_jmp(L, PhiLb, P, CFG1, Target)
end,
{Input0, CFG2};
#{} ->
{Input0#{L => NewLInput}, CFG0}
end,
rewrite_succs(Ls, Target, P, POutput, Avail, Input, CFG).
-spec bb_redirect_jmp(label(), label(), label(), target_cfg(), target())
-> target_cfg().
bb_redirect_jmp(From, To, Lb, CFG, Target) ->
BB0 = bb(CFG, Lb, Target),
Last = redirect_jmp(hipe_bb:last(BB0), From, To, Target),
BB = hipe_bb:code_update(BB0, hipe_bb:butlast(BB0) ++ [Last]),
update_bb(CFG, Lb, BB, Target).
-spec required_phi_moves(subst_dict(), subst_dict()) -> [{reg(), reg()}].
required_phi_moves([], []) -> [];
required_phi_moves([P|Is], [P|Os]) -> required_phi_moves(Is, Os);
required_phi_moves([{K, In}|Is], [{K, Out}|Os]) ->
[{Out, In}|required_phi_moves(Is, Os)].
%% @doc Returns a new orddict with the keys in Set and their associated values.
-spec orddict_with_ordset(ordsets:ordset(K), orddict:orddict(K, V))
-> orddict:orddict(K, V).
orddict_with_ordset([S|Ss], [{K, _}|_]=Dict) when S < K ->
orddict_with_ordset(Ss, Dict);
orddict_with_ordset([S|_]=Set, [{K, _}|Ds]) when S > K ->
orddict_with_ordset(Set, Ds);
orddict_with_ordset([_S|Ss], [{_K, _}=P|Ds]) -> % _S == _K
[P|orddict_with_ordset(Ss, Ds)];
orddict_with_ordset([], _) -> [];
orddict_with_ordset(_, []) -> [].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Target module interface functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-define(TGT_IFACE_0(N), N( {M,C}) -> M:N( C)).
-define(TGT_IFACE_1(N), N(A1, {M,C}) -> M:N(A1, C)).
-define(TGT_IFACE_2(N), N(A1,A2, {M,C}) -> M:N(A1,A2, C)).
-define(TGT_IFACE_3(N), N(A1,A2,A3,{M,C}) -> M:N(A1,A2,A3,C)).
?TGT_IFACE_2(bb).
?TGT_IFACE_1(def_use).
?TGT_IFACE_1(defines_all_alloc).
?TGT_IFACE_1(is_precoloured).
?TGT_IFACE_1(labels).
?TGT_IFACE_1(mk_goto).
?TGT_IFACE_2(mk_move).
?TGT_IFACE_0(new_label).
?TGT_IFACE_0(new_reg_nr).
?TGT_IFACE_3(redirect_jmp).
?TGT_IFACE_1(reg_nr).
?TGT_IFACE_1(reverse_postorder).
?TGT_IFACE_2(subst_temps).
?TGT_IFACE_3(update_bb).
?TGT_IFACE_2(update_reg_nr).
liveout(Liveness, L, Target={TgtMod,TgtCtx}) ->
ordsets:from_list(reg_names(TgtMod:liveout(Liveness, L, TgtCtx), Target)).
reg_names(Regs, {TgtMod,TgtCtx}) ->
[TgtMod:reg_nr(X,TgtCtx) || X <- Regs].
reg_def_use(I, Target) ->
{TDef, TUse} = def_use(I, Target),
{reg_names(TDef, Target), reg_names(TUse, Target)}.
|