1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
|
%% -*- coding: utf-8; erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2002-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% File : hipe_ssa.inc
%% Authors : Christoffer Vikström, Daniel Deogun, and Jesper Bengtsson
%% Created : March 2002
%% Purpose : Provides code which converts the code of a CFG into SSA
%% (Static Single Assignment) form and back.
%% A routine to check for SSA-ness is also provided.
%%
%% Major Modifications:
%% * Feb 2003: Per Gustafsson - added SSA checker.
%% * Aug 2003: Per Gustafsson - added removal of dead code.
%% * Feb 2004: Kostis Sagonas - made it work on RTL level too.
%% * Feb 2004: Tobias Lindahl - re-wrote the unconvert/1 function.
%%----------------------------------------------------------------------
-export([convert/1, check/1, unconvert/1, remove_dead_code/1]).
-include("../main/hipe.hrl").
-include("../flow/cfg.hrl"). %% needed for the specs
-include("../ssa/hipe_ssa_liveness.inc"). %% needed for dead code removal
%%----------------------------------------------------------------------
%%
%% NOTE! When the phi-instructions are placed, it is important that
%% the internal order is preserved. Otherwise the (correct) order:
%%
%% v1 := phi({1, v2}, {2, v11})
%% v2 := phi({1, v11}, {2, v12})
%%
%% can become (the incorrect)
%%
%% v2 := phi({1, v11}, {2, v12})
%% v1 := phi({1, v2}, {2, v11})
%%
%% that will set v1 to the _new_ value of v2 instead of the old value.
%%
%%----------------------------------------------------------------------
-spec convert(#cfg{}) -> #cfg{}.
convert(CFG) ->
CFG1 = insertNewStartNode(CFG),
?opt_start_timer("Dominator Tree construction"),
DomTree = hipe_dominators:domTree_create(CFG1),
?opt_stop_timer("Dominator Tree construction done"),
?opt_start_timer("Dominance Frontier"),
DomFrontier = hipe_dominators:domFrontier_create(CFG1, DomTree),
?opt_stop_timer("Dominance Frontier done"),
?opt_start_timer("placement of Phi-nodes"),
CFG2 = place_phi(CFG1, DomFrontier),
?opt_stop_timer("placement of Phi-nodes done"),
?opt_start_timer("Rename"),
CFG3 = rename(CFG2, DomTree),
?opt_stop_timer("Rename done"),
CFG3.
%%----------------------------------------------------------------------
insertNewStartNode(CFG) ->
StartLabel = ?CFG:start_label(CFG),
NewStartLabel = ?CODE:label_name(?CODE:mk_new_label()),
BB = hipe_bb:mk_bb([?CODE:mk_goto(StartLabel)]),
CFG2 = ?CFG:bb_add(CFG, NewStartLabel, BB),
?CFG:start_label_update(CFG2, NewStartLabel).
%%======================================================================
%% PlacePhi Algorithm
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : place_phi/2
%% Purpose : Places phi nodes at appropriate places in the CFG.
%% Arguments : CFG - Control Flow Graph.
%% DF - Dominance Frontier.
%% Returns : CFG with phi functions.
%%----------------------------------------------------------------------
place_phi(CFG, DF) ->
AssMap = insertParams(CFG),
AssMap2 = preProcess(CFG, AssMap),
VarList = gb_trees:to_list(AssMap2),
Liveness = ?LIVENESS:analyze(CFG),
variableTraverse(CFG, DF, gb_trees:empty(), gb_trees:empty(),
0, AssMap2, Liveness, VarList).
%%----------------------------------------------------------------------
%% Procedure : insertParams/1
%% Purpose : Inserts the parameters of the CFG into the AssMap.
%% Arguments : CFG - Control Flow Graph
%% Returns : AssMap - Assignment map.
%%----------------------------------------------------------------------
insertParams(CFG) ->
StartLabel = ?CFG:start_label(CFG),
Params = ?CFG:params(CFG),
insertParams(Params, StartLabel, gb_trees:empty()).
insertParams([Param|T], StartLabel, AssMap) ->
insertParams(T, StartLabel, gb_trees:insert(Param, [StartLabel], AssMap));
insertParams([], _, AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : preProcessg/2
%% Purpose : Creates the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment map
%% Returns : AssMap.
%%----------------------------------------------------------------------
preProcess(CFG, AssMap) ->
traverseLabels(CFG, ?CFG:labels(CFG), AssMap).
%%----------------------------------------------------------------------
%% Procedure : traverseLabels/3
%% Purpose : Traverses all labels and adds all assignments in the basic
%% block to the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment Map
%% Label - A label for a node
%% Returns : AssMap.
%%----------------------------------------------------------------------
traverseLabels(CFG, [Label|T], AssMap) ->
Code = get_code_from_label(CFG, Label),
NewVarList = getAssignments(Code),
traverseLabels(CFG, T, updateAssMap(NewVarList, Label, AssMap));
traverseLabels(_, [], AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : getAssignments/1
%% Purpose : Retrieves all assigned variables in a basic block.
%% Arguments : InstrLst - A list of instructions from a basic block.
%% VarList - A list of variables.
%% Returns : VarList.
%% Notes : This function may return a list containing duplicates.
%%----------------------------------------------------------------------
getAssignments(InstrList) -> getAssignments(InstrList, []).
getAssignments([Instr|T], VarList) ->
getAssignments(T, defs_to_rename(Instr) ++ VarList);
getAssignments([], VarList) -> VarList.
%%----------------------------------------------------------------------
%% Procedure : updateAssMap/3
%% Purpose : Updates the assignment map with. Each variable in the AssVar
%% list is inserted with the value Label.
%% Arguments : Label - a label of a node
%% AssVar - a variable that is assigned at Label
%% AssMap - Assignment map.
%% Returns : AssMap.
%%----------------------------------------------------------------------
updateAssMap([AssVar|T], Label, AssMap) ->
Lst = getAssMap(AssVar, AssMap),
updateAssMap(T, Label, gb_trees:enter(AssVar, [Label|Lst], AssMap));
updateAssMap([], _, AssMap) -> AssMap.
getAssMap(AssVar, AssMap) ->
case gb_trees:lookup(AssVar, AssMap) of
{value, L} -> L;
none -> []
end.
%%----------------------------------------------------------------------
%% Procedure : variableTraverse/7
%% Purpose : This function traverses all variables and adds phi functions
%% at appropriate nodes.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes which already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have been done
%% AssMap - Assignment map
%% VarLst - Variable list that is traversed
%% Returns : CFG.
%%----------------------------------------------------------------------
variableTraverse(CFG, DFMap, HasAlready, Work,
IterCount, AssMap, Liveness, [{Var,_}|VarLst]) ->
IterCount2 = IterCount + 1,
DefLst = getAssMap(Var, AssMap),
{Work2, WorkLst2} = workListBuilder(DefLst, Work, [], IterCount2),
{CFG2, HasAlready2, Work3} = doWork(CFG, DFMap, HasAlready,
Work2, IterCount2, WorkLst2,
Var, Liveness),
variableTraverse(CFG2, DFMap, HasAlready2, Work3,
IterCount2, AssMap, Liveness, VarLst);
variableTraverse(CFG, _, _, _, _, _, _, []) -> CFG.
%%----------------------------------------------------------------------
%% Procedure : workListBuilder/4
%% Purpose : Builds the worklist that the algorithm is working on.
%% Arguments : Work -
%% WorkLst - The worklist that is worked through
%% IterCount - Counter of how many itterations that has been done
%% Node - A node in the CFG
%% Returns :
%%----------------------------------------------------------------------
workListBuilder([Node|T], Work, WorkLst, IterCount) ->
case getCount(Node, Work) of
0 ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount);
_ ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount)
end;
workListBuilder([], Work, WorkLst, _IterCount) ->
{Work, WorkLst}.
getCount(Key, Dict) ->
case gb_trees:lookup(Key, Dict) of
{value, V} -> V;
none -> 0
end.
%%----------------------------------------------------------------------
%% Procedure : doWork/7
%% Purpose : This procedure works itself through the worklist and checks
%% if a node needs any phi functions.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work}
%%----------------------------------------------------------------------
doWork(CFG, DFMap, HasAlready, Work, IterCount,
[Node|WorkLst], Var, Liveness) ->
DFofX = hipe_dominators:domFrontier_get(Node, DFMap),
{CFG2, HasAlready2, Work2, WorkLst2} =
checkPhiNeeds(CFG, DFofX, HasAlready, Work,
IterCount, WorkLst, Var, Liveness),
doWork(CFG2, DFMap, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
doWork(CFG, _, HasAlready, Work, _, [], _, _) ->
{CFG, HasAlready, Work}.
%%----------------------------------------------------------------------
%% Procedure : checkPhiNeeds/7
%% Purpose : This function checks if a node needs a phi function and adds
%% one if its needed.
%% Arguments : CFG - Control Flow Graph
%% DFofX - Dominance Frontier of a node
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work, WorkLst}
%%----------------------------------------------------------------------
checkPhiNeeds(CFG, [Node|DFofX], HasAlready, Work,
IterCount, WorkLst, Var, Liveness) ->
case getCount(Node, HasAlready) < IterCount of
true ->
LiveIn = ?LIVENESS:livein(Liveness, Node),
case lists:member(Var, LiveIn) of
true ->
CFG2 = insertPhiCode(CFG, Node, Var),
HasAlready2 = gb_trees:enter(Node, IterCount, HasAlready),
case getCount(Node, Work) < IterCount of
true ->
Work2 = gb_trees:enter(Node, IterCount, Work),
WorkLst2 = [Node|WorkLst],
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
false ->
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work,
IterCount, WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
checkPhiNeeds(CFG, [], HasAlready, Work, _, WorkLst, _, _) ->
{CFG, HasAlready, Work, WorkLst}.
%%----------------------------------------------------------------------
%% Procedure : insertPhiCode/3
%% Purpose :
%% Arguments : CFG - Control Flow Graph
%% Node - A node
%% Var - A variable
%% Returns : CFG
%%----------------------------------------------------------------------
insertPhiCode(CFG, Node, Var) ->
BB = ?CFG:bb(CFG, Node),
Phi = ?CODE:mk_phi(Var),
Code = [Phi | hipe_bb:code(BB)],
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code)).
%%======================================================================
%% SSA Renaming pass
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : rename/2
%% Purpose : Renames all the variables in the CFG according to the SSA
%% conversion algorithm.
%% Arguments : CFG - The CFG being translated.
%% DomTree - The dominator tree of the CFG.
%% Returns : A CFG where all variables are renamed.
%%----------------------------------------------------------------------
rename(CFG, DomTree) ->
%% Reset the appropriate variable index so that we start from low
%% variable numbers again
reset_var_indx(),
{CFG2,Current} = insertRenamedParams(CFG),
rename(CFG2, ?CFG:start_label(CFG2), DomTree, Current).
rename(CFG, Node, DomTree, Current) ->
BB = ?CFG:bb(CFG, Node),
Statements = hipe_bb:code(BB),
{Statements2,Current2} = renameVars(Statements, Current),
CFG1 = ?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Statements2)),
Succ = ?CFG:succ(CFG1, Node),
CFG2 = updateSuccPhi(Succ, Node, CFG1, Current2),
Children = hipe_dominators:domTree_getChildren(Node, DomTree),
childrenRename(Children, CFG2, DomTree, Current2).
%%----------------------------------------------------------------------
%% Procedure : childrenRename/5
%% Purpose : Renames all the nodes in a list according to the SSA
%% conversion algorithm.
%% Arguments : ChildList - the list of nodes being renamed
%% CFG - the CFG that the children are a part of
%% DomTree - The dominator tree for the CFG
%% Current - the current index of all variables encountered
%% Returns : CFG
%%----------------------------------------------------------------------
childrenRename([Child|Children], CFG, DomTree, Current) ->
CFG2 = rename(CFG, Child, DomTree, Current),
childrenRename(Children, CFG2, DomTree, Current);
childrenRename([], CFG, _, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : renameVars/3
%% Purpose : Renames the variables in basic block
%% Arguments : Statements - the basic block
%% Current - the current index of all variables encountered
%% Returns : {Statements,Current}
%%----------------------------------------------------------------------
renameVars(Statements, Current) ->
renameVars(Statements, Current, []).
renameVars([Statement|Statements], Current, Result) ->
Statement2 = renameUses(Statement, Current),
{Statement3,Current2} = renameDefs(Statement2, Current),
renameVars(Statements, Current2, [Statement3|Result]);
renameVars([], Current, Result) ->
{lists:reverse(Result),Current}.
%%----------------------------------------------------------------------
%% Procedure : renameUses/2
%% Purpose : Renames all the uses of a variable in a statement.
%% Arguments : Statement - the statement being renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameUses(Statement, Current) ->
case ?CODE:is_phi(Statement) of
true -> Statement;
false -> VarList = uses_to_rename(Statement),
updateStatementUses(VarList, Statement, Current)
end.
%%----------------------------------------------------------------------
%% Procedure : updateStatementUses/3
%% Purpose : Traverses the variable list and renames all the instances
%% of a variable in the Statement uses to its current value.
%% Arguments : VarList - the list of variables being updated.
%% Statement - the statement being updated.
%% Current - the current index of all variables encountered.
%% Returns : An updated statement.
%%----------------------------------------------------------------------
updateStatementUses(Vars, Statement, Current) ->
Substs = [{Var,gb_trees:get(Var, Current)} || Var <- Vars],
?CODE:subst_uses(Substs, Statement).
%%----------------------------------------------------------------------
%% Procedure : renameDefs/3
%% Purpose : Renames all the definitons in Statement.
%% Arguments : Statement - the statement where the definitions are being
%% renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameDefs(Statement, Current) ->
VarList = defs_to_rename(Statement),
updateStatementDefs(VarList, Statement, Current).
%%----------------------------------------------------------------------
%% Procedure : updateStatementDefs/4
%% Purpose : traverses a variable list and exchanges all instances of
%% the variable in the statements definitions by its current
%% value.
%% Arguments : VariableList - the list of varibles being renamed
%% Statement - the statement whos definitions are being changed
%% Current - the current index of all variables encountered
%% Returns : {Statement, Current}
%% Notes : Per Gustafsson:
%% I changed this function to update the statement only when
%% all substitutions are found.
%%----------------------------------------------------------------------
updateStatementDefs(Vars, Statement, Current) ->
updateStatementDefs(Vars, Statement, Current, []).
updateStatementDefs([Var|Vars], Statement, Current, Acc) ->
{NewVar,Current2} = updateIndices(Current, Var),
updateStatementDefs(Vars, Statement, Current2, [{Var,NewVar}|Acc]);
updateStatementDefs([], Statement, Current, Acc) ->
Statement2 = ?CODE:subst_defines(Acc, Statement),
{Statement2,Current}.
%%----------------------------------------------------------------------
%% Procedure : updateIndices/3
%% Purpose : This function is used for updating the Current hash table
%% and for getting a new variable/fp variable/register.
%% Arguments : Current - Hash table containg the current index for a
%% particular variable.
%% Variable - The variable that is used as key in the hash table.
%% Returns : A two-tuple containing the new variable and Current.
%%----------------------------------------------------------------------
updateIndices(Current, Variable) ->
case ?CODE:is_var(Variable) of
true ->
NewVar = ?CODE:mk_new_var(),
{NewVar,gb_trees:enter(Variable, NewVar, Current)};
false ->
case is_fp_temp(Variable) of
true ->
NewFVar = mk_new_fp_temp(),
{NewFVar,gb_trees:enter(Variable, NewFVar, Current)};
false ->
NewReg = ?CODE:mk_new_reg(),
{NewReg,gb_trees:enter(Variable, NewReg, Current)}
end
end.
%%----------------------------------------------------------------------
%% Procedure : updateSuccPhi/4
%% Purpose : This function is used for updating phi functions in a
%% particular node's successors. That is, the function
%% traverses the successor list of a node and updates the
%% arguments in the phi function calls.
%% Arguments : Succ - A successor to the node Parent.
%% T - The remainder of the successor list
%% Parent - The parent of the node Succ
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updateSuccPhi([Succ|T], Parent, CFG, Current) ->
CFG2 = updatePhi(Succ, Parent, CFG, Current),
updateSuccPhi(T, Parent, CFG2, Current);
updateSuccPhi([], _, CFG, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : updatePhi/4
%% Purpose : This function prepares for an update of a phi function call.
%% That is, if a statement contains a phi function call
%% then the number of predecessors are computed and the index
%% of the parent in the predecessor list is used for computing
%% which variable in the argument list of the phi function call
%% that need to be updated.
%% Arguments : Node - A node in the CFG
%% Parent - The parent of the node Node in the dominator tree
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updatePhi(Node, Parent, CFG, Current) ->
BB = ?CFG:bb(CFG, Node),
case hipe_bb:code(BB) of
[Code|_] = Statements ->
case ?CODE:is_phi(Code) of
true ->
Code2 = updateCode(Statements, Parent, Current),
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code2));
_ ->
CFG
end;
_ ->
CFG
end.
%%----------------------------------------------------------------------
%% Procedure : updateCode/3
%% Purpose : This function updates a statement that contains a phi
%% function, i.e. it changes the arguments in the phi
%% function to their correct names.
%% Arguments : Code - A list of code
%% Pred - A predecessor of the node containing the
%% phi-function
%% Current - Hash table containing the current index for a
%% particular variable
%% Returns : A list of Code
%%----------------------------------------------------------------------
updateCode(Code, Pred, Current) ->
updateCode(Code, Pred, Current, []).
updateCode([Stat|Stats] = Statements, Pred, Current, Result) ->
case ?CODE:is_phi(Stat) of
true ->
Var = ?CODE:phi_id(Stat),
Result2 = case gb_trees:lookup(Var, Current) of
none ->
[Stat|Result];
{value,Var2} ->
Stat2 = ?CODE:phi_enter_pred(Stat, Pred, Var2),
[Stat2|Result]
end,
updateCode(Stats, Pred, Current, Result2);
_ ->
Result ++ Statements
end.
%%----------------------------------------------------------------------
%% Procedure : insertRenamedParams/1
%% Purpose : Inserts the parameters of the CFG into the working hashmaps.
%% Arguments : CFG - the target control flow graph.
%% Returns : {CFG,Current}
%%----------------------------------------------------------------------
insertRenamedParams(CFG) ->
Params = ?CFG:params(CFG),
%% Current - the current variable we are working on.
{Current,Params2} = insertRenamedParams(Params, gb_trees:empty(), []),
CFG2 = ?CFG:params_update(CFG, Params2),
{CFG2,Current}.
insertRenamedParams([Param|Params], Current, Result) ->
{Var,Current2} = updateIndices(Current, Param),
insertRenamedParams(Params, Current2, [Var|Result]);
insertRenamedParams([], Current, Result) ->
{Current,lists:reverse(Result)}.
%%======================================================================
%% SSA Checker
%%======================================================================
%%
%% @doc Checks the control flow graph CFG of a function for SSA-ness.
%% More specifically, it checks that all variables in the CFG are only
%% defined once and that all uses of each variable in the function are
%% dominated by a define. If a variable does not abide by these rules,
%% a warning message will be printed on stdout.
%%
-spec check(#cfg{}) -> 'ok'.
check(CFG) ->
Labels = ?CFG:labels(CFG),
VarTree = traverse_labels(Labels, CFG),
DomTree = hipe_dominators:domTree_create(CFG),
test_uses(Labels, VarTree, DomTree, CFG).
%%
%% @doc Traverses all the labels in a CFG.
%%
traverse_labels(Labels, CFG) ->
VarTree = add_args(?CFG:params(CFG)),
traverse_labels(Labels, VarTree, CFG).
traverse_labels([Label|Rest], VarTree, CFG) ->
Code = get_code_from_label(CFG, Label),
NewVarTree = traverse_code(Code, VarTree, Label),
traverse_labels(Rest, NewVarTree, CFG);
traverse_labels([], VarTree, _CFG) ->
VarTree.
%%
%% @doc Traverses the code in a basic block.
%%
traverse_code([Instr|Rest], VarTree, Label) ->
Defined = defs_to_rename(Instr),
NewVarTree = add_to_var_tree(Defined, VarTree, Instr, Label),
traverse_code(Rest, NewVarTree, Label);
traverse_code([], VarTree, _) ->
VarTree.
%%
%% @doc
%% Adds a variable to the variable tree if the variable is defined.
%% The entry in the variable tree will have the variable as key and a
%% two tuple consisting of a list of Instructions and a list of labels
%% where the variable is defined. If a variable is defined a second
%% time a warning message to this effect is printed on stdout.
%%
add_to_var_tree([Var|Rest], VarTree, Instr, Label) ->
NewVarTree =
case gb_trees:lookup(Var, VarTree) of
{value,{OldInstr,OldLabel}} ->
?WARNING_MSG("Variable: ~w defined a second time\n"++
"in Instr: ~w\n"++
"at Label: ~w\n"++
"variable was first defined at Label(s) ~w\n"++
"in Instr(s): ~w\n -> non SSA form\n",
[Var,Instr,Label,OldLabel,OldInstr]),
gb_trees:update(Var, {[Instr|OldInstr],[Label|OldLabel]}, VarTree);
none ->
gb_trees:insert(Var, {[Instr],[Label]}, VarTree)
end,
add_to_var_tree(Rest, NewVarTree, Instr, Label);
add_to_var_tree([], VarTree, _, _) ->
VarTree.
%%
%% @doc Adds the argument of a function to the VarTree.
%% They are defined at Label 0.
%%
add_args(Args) ->
add_args(Args, gb_trees:empty()).
add_args([Arg|Rest], VarTree) ->
add_args(Rest, gb_trees:insert(Arg, {[argument_variable],[0]}, VarTree));
add_args([], VarTree) ->
VarTree.
%%
%% The functions below test that a use is dominated by a corresponding def.
%%
%%
%% This function is analogous to traverse_labels.
%%
test_uses([Label|Rest], VarTree, DomTree,CFG) ->
Code = get_code_from_label(CFG, Label),
test_code(Code, VarTree, Label, DomTree, CFG, []),
test_uses(Rest, VarTree, DomTree, CFG);
test_uses([], _VarTree, _DomTree, _CFG) ->
ok.
%%
%% This function is analogous to traverse_code.
%%
test_code([Instr|Instrs], VarTree, Label, DomTree, CFG, Old) ->
case ?CODE:is_phi(Instr) of
true ->
ArgList = ?CODE:phi_arglist(Instr),
case ArgList of
[_Arg] ->
?WARNING_MSG("Phi with only one source at BB with label ~w:\n",
[Label]),
%% case ?CODE of
%% hipe_rtl -> ?CODE:pp_block(get_code_from_label(CFG, Label));
%% _ -> ok
%% end,
ok;
[_|_] -> ok
end,
lists:foreach(fun ({Pred,Var}) ->
def_doms_use([Var], VarTree, Pred, DomTree,
get_code_from_label(CFG,Pred))
end, ArgList);
false ->
Uses = uses_to_rename(Instr),
def_doms_use(Uses, VarTree, Label, DomTree, Old)
end,
test_code(Instrs, VarTree, Label, DomTree, CFG, [Instr|Old]);
test_code([], _VarTree, _Label, _DomTree, _CFG, _Old) ->
ok.
get_code_from_label(CFG, Label) ->
case ?CFG:bb(CFG,Label) of
not_found ->
?error_msg("Basic block with label ~w was not found\n", [Label]);
%% ?EXIT('Detected serious problem in SSA form');
BB ->
hipe_bb:code(BB)
end.
%%
%% This function checks whether a use is dominated by a def.
%% There are five different cases:
%% 1. A use of an argument register. This use is dominated by the def.
%% 2. Use and Def in same basic block if Use comes first this will
%% lead to a warning message, otherwise it is ok.
%% 3. The deinition is in a basic block that dominates the basic block
%% of the use. This is ok.
%% 4. The definition is in a basic block that does not dominate the use.
%% This will result in a warning message being printed.
%% 5. A use without any definition. This will result in a warning message
%% being printed.
%%
def_doms_use([Var|Vars], VarTree, Label, DomTree, Old) ->
case gb_trees:lookup(Var, VarTree) of
{value,{_,[DefLabel|_]}} ->
case DefLabel of
0 ->
ok;
Label ->
Fun = fun(X) -> Defs = defs_to_rename(X),
lists:any(fun(Y) -> Var == Y end, Defs)
end,
case lists:any(Fun, Old) of
true ->
ok;
false ->
?WARNING_MSG("Variable : ~w used before definition in bb: ~w\n",
[Var,Label])
end;
_ ->
case hipe_dominators:domTree_dominates(DefLabel, Label, DomTree) of
true ->
ok;
false ->
?WARNING_MSG("Definition does not dominate use for variable: ~w "++
"at label: ~w (definition label: ~w)\n",
[Var, Label, DefLabel])
end
end;
none ->
?WARNING_MSG("Use with no definition of variable: ~w at label: ~w\n",
[Var, Label])
end,
def_doms_use(Vars, VarTree, Label, DomTree, Old);
def_doms_use([], _VarTree, _Label, _DomTree, _Old) ->
ok.
%%======================================================================
%% SSA Un-Converter
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : unconvert/2
%% Purpose : Removes all phi functions and propagates all
%% assignments up to the appropriate predecessors.
%% Arguments : CFG - Control Flow Graph
%% Node - A node in the CFG
%% Returns : CFG
%% Note : The call to remove_trivial_bbs is needed so that moves,
%% which are introduced in new basic blocks as part of the
%% un-conversion, are merged with the basic blocks of their
%% predecessors, if possible.
%%----------------------------------------------------------------------
-spec unconvert(#cfg{}) -> #cfg{}.
unconvert(CFG) ->
?CFG:remove_trivial_bbs(unconvert(?CFG:reverse_postorder(CFG), CFG)).
unconvert([Node|Nodes], CFG) ->
BB = ?CFG:bb(CFG, Node),
Code = hipe_bb:code(BB),
{Phis,Code2} = getPhiFuncts(Code, []),
case Phis of
[] ->
unconvert(Nodes, CFG);
_ ->
BB2 = hipe_bb:code_update(BB, Code2),
CFG2 = ?CFG:bb_add(CFG, Node, BB2),
Pred = ?CFG:pred(CFG2, Node),
PredMoveMap = get_moves(Pred, Phis),
CFG3 = insert_move_bbs(PredMoveMap, Node, CFG2),
unconvert(Nodes, CFG3)
end;
unconvert([], CFG) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : get_moves/2 and /3
%% Purpose : Find the moves that corresponds to phi-instructions of
%% a block. Try to merge incoming edges to avoid duplicate
%% blocks.
%% Arguments : Preds - The predecessors to this block.
%% Phis - The phi instructions that used to start this block.
%% Returns : [{ListOfMoves, [Preds]}]
%%----------------------------------------------------------------------
get_moves(Preds, Phis) ->
get_moves(Preds, Phis, gb_trees:empty()).
get_moves([Pred|Left], Phis, Map)->
Moves = get_moves_from_phis(Pred, Phis, []),
NewMap =
case gb_trees:lookup(Moves, Map) of
none -> gb_trees:insert(Moves, [Pred], Map);
{value,List} -> gb_trees:update(Moves, [Pred|List], Map)
end,
get_moves(Left, Phis, NewMap);
get_moves([], _Phis, Map) ->
gb_trees:to_list(Map).
%%----------------------------------------------------------------------
%% Procedure : get_moves_from_phis/3
%% Purpose : Find all the moves that should be done in the edge
%% coming in from Pred.
%% Arguments : Pred - The predecessor
%% Phis - Reverse list of phi instructions.
%% Returns : [{Dst,Src}] representing the move instructions;
%% ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
get_moves_from_phis(Pred, [Phi|Left], Acc) ->
Dst = ?CODE:phi_dst(Phi),
Src = ?CODE:phi_arg(Phi, Pred),
NewAcc = [{Dst, Src}|Acc],
get_moves_from_phis(Pred, Left, NewAcc);
get_moves_from_phis(_Pred, [], Acc) ->
Acc.
%%----------------------------------------------------------------------
%% Procedure : insert_move_bbs/3
%% Purpose : Create the bbs that contains the moves.
%% Arguments : Ordset - The move instruction tuples {Dst, Src}
%% Preds - The predecessors that needs the moves in Ordset
%% Label - The original label that contained the phis.
%% Cfg - The current cfg
%% Returns : The new Cfg.
%%----------------------------------------------------------------------
insert_move_bbs([{Ordset,Preds}|Left], Label, Cfg) ->
Code = create_moves(Ordset, []) ++ [?CODE:mk_goto(Label)],
BB = hipe_bb:mk_bb(Code),
NewLabel = ?CODE:label_name(?CODE:mk_new_label()),
NewCfg1 = ?CFG:bb_add(Cfg, NewLabel, BB),
NewCfg2 = lists:foldl(fun(X, Acc) ->
?CFG:redirect(Acc, X, Label, NewLabel)
end,
NewCfg1, Preds),
insert_move_bbs(Left, Label, NewCfg2);
insert_move_bbs([], _Label, Cfg) ->
Cfg.
create_moves([{X,X}|Left], Acc) ->
create_moves(Left, Acc);
create_moves([{Dst,Src}|Left], Acc) ->
create_moves(Left, [makePhiMove(Dst, Src)|Acc]);
create_moves([], Acc) ->
%% NOTE: ORDERING IS SIGNIFICANT!
lists:reverse(Acc).
%%----------------------------------------------------------------------
%% Procedure : getPhiFuncts/2
%% Purpose : This function returns the list of phi-functions from a
%% list of intermediate code instructions.
%% Arguments :
%% List - A list of Code
%% Result - Accumulative parameter to store the result
%% Returns : Reverse list of the phi instructions. ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
getPhiFuncts([I|T] = List, Result) ->
case ?CODE:is_phi(I) of
true ->
getPhiFuncts(T, [I|Result]);
false ->
{Result,List}
end;
getPhiFuncts([], Result) ->
{Result,[]}.
%%======================================================================
%% Dead Code Elimination on SSA form
%%======================================================================
-spec remove_dead_code(#cfg{}) -> #cfg{}.
remove_dead_code(CFG) ->
Lbls = ?CFG:reverse_postorder(CFG),
Liveness = ssa_liveness__analyze(CFG),
case do_lbls(Lbls, CFG, Liveness, false) of
{CFG1,true} ->
remove_dead_code(CFG1);
{CFG1,false} ->
CFG1
end.
do_lbls([Lbl|Rest], CFG, Liveness, Changed) ->
LiveOut = gb_sets:from_list(ssa_liveness__liveout(Liveness, Lbl)),
BB = ?CFG:bb(CFG, Lbl),
Code = hipe_bb:code(BB),
{NewCode,NewChanged} = do_code(lists:reverse(Code), LiveOut, Changed, []),
NewBB = hipe_bb:code_update(BB, NewCode),
NewCFG = ?CFG:bb_add(CFG, Lbl, NewBB),
do_lbls(Rest, NewCFG, Liveness, NewChanged);
do_lbls([], CFG, _Liveness, Changed) ->
{CFG,Changed}.
do_code([Instr|Instrs], LiveOut, Changed, Acc) ->
Def = ?CODE:defines(Instr),
Use = ?CODE:uses(Instr),
DefSet = gb_sets:from_list(Def),
UseSet = gb_sets:from_list(Use),
LiveIn = gb_sets:union(gb_sets:difference(LiveOut, DefSet), UseSet),
case gb_sets:is_empty(gb_sets:intersection(DefSet, LiveOut)) of
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
true ->
case ?CODE:is_safe(Instr) of
true ->
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_continuation(Instr) of
[] ->
do_code(Instrs, LiveOut, true, Acc);
SuccLblName ->
NewInstr = ?CODE:mk_goto(SuccLblName),
do_code(Instrs, LiveOut, true, [NewInstr|Acc])
end;
false ->
do_code(Instrs, LiveOut, true, Acc)
end;
false -> %% not a safe instruction - cannot be removed
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_dstlist(Instr) of
[] -> %% result was not used anyway; no change
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
[_Dst] -> %% remove the unused assignment to call's destination
NewInstr = ?CODE:call_dstlist_update(Instr, []),
do_code(Instrs, LiveIn, true, [NewInstr|Acc]);
[_|_] -> %% calls with multiple dests are left untouched
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end;
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end
end
end;
do_code([], _LiveOut, Changed, Acc) ->
{Acc,Changed}.
|