aboutsummaryrefslogtreecommitdiffstats
path: root/lib/orber/src/fixed.erl
blob: 63058256c9fd94b65863da4e7fe2f01f293858f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
%%--------------------------------------------------------------------
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2002-2009. All Rights Reserved.
%% 
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%% 
%% %CopyrightEnd%
%%
%%
%%--------------------------------------------------------------------
%% File    : fixed.erl
%% Purpose : 
%%--------------------------------------------------------------------

-module(fixed).

-include_lib("orber/include/corba.hrl").

%%-----------------------------------------------------------------
%% External exports
%%-----------------------------------------------------------------
-export([create/3, add/2, subtract/2, divide/2, multiply/2, unary_minus/1,
	 get_typecode/1]).

%%-----------------------------------------------------------------
%% Internal exports
%%-----------------------------------------------------------------
-export([]).

%%-----------------------------------------------------------------
%% Definitions
%%-----------------------------------------------------------------
-define(get_max(__X, __Y), if __X > __Y -> __X; true -> __Y end).
-define(get_min(__X, __Y), if __X > __Y -> __Y; true -> __X end).

-define(BASE, 100000000000000000000000000000000).
-define(FIXED_MAX,  9999999999999999999999999999999).
-define(FIXED_MIN, -9999999999999999999999999999999).

-define(DEBUG_LEVEL, 5).

%%-----------------------------------------------------------------
%% External functions
%%-----------------------------------------------------------------
create(Digits, Scale, Value) when is_integer(Digits) andalso Digits >= 0 andalso Digits < 32 andalso
				  is_integer(Scale) andalso Scale >= 0 andalso Digits >= Scale andalso
				  is_integer(Value) andalso Value =< ?FIXED_MAX andalso
				  Value >= ?FIXED_MIN ->
    case count_digits(abs(Value)) of
	Dig when Dig =< Digits ->
	    #fixed{digits = Digits, scale = Scale, value = Value};
	Overflow ->
	    orber:dbg("[~p] fixed:create(~p, ~p, ~p).~n"
		      "The Value exceeds the Digits limit: ~p, ~p", 
		      [?LINE, Digits, Scale, Value, Digits, Overflow], ?DEBUG_LEVEL),
	    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO})
    end;
create(Digits, Scale, Value) ->
    orber:dbg("[~p] fixed:add(~p, ~p, ~p).~n"
	      "At least one of the supplied arguments is incorrect.~n"
	      "Digits and Scale must be a positive integer with the following~n"
	      "limits:~n"
	      " * 0 =< Digits < 32~n"
	      " * Digits >= Scale~n"
	      " * Value range +/- 9999999999999999999999999999999", 
	      [?LINE, Digits, Scale, Value], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).


get_typecode(#fixed{digits = Digits, scale = Scale}) ->
    {tk_fixed, Digits, Scale};
get_typecode(Other) ->
    orber:dbg("[~p] fixed:get_typecode(~p).
The supplied argument is not a Fixed Type.", [?LINE, Other], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).

add(#fixed{digits = D1, scale = S1, value = V1}, 
    #fixed{digits = D2, scale = S2, value = V2}) ->
    Scale = ?get_max(S1, S2),
    Digits = ?get_max((D1-S1), (D2-S2)) + Scale +1,
    %% We must normalize the values before adding. Why?
    %% 4.23 and 5.2 are represented as 423 and 52. To be able to get the 
    %% correct result we must add 4230 and 5200 == 9430.
    {PV1, PV2} = normalize(S1, V1, S2, V2),
    check_fixed_overflow(#fixed{digits = Digits, 
				scale = Scale, 
				value = (PV1 + PV2)});
add(F1, F2) ->
    orber:dbg("[~p] fixed:add(~p, ~p).~n"
	      "At least one of the supplied arguments is not a Fixed Type.", 
	      [?LINE, F1, F2], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).


subtract(#fixed{digits = D1, scale = S1, value = V1}, 
	 #fixed{digits = D2, scale = S2, value = V2}) ->
    Scale = ?get_max(S1, S2),
    Digits = ?get_max((D1-S1), (D2-S2)) + Scale +1,
    {PV1, PV2} = normalize(S1, V1, S2, V2),
    check_fixed_overflow(#fixed{digits = Digits, 
				scale = Scale, 
				value = (PV1 - PV2)});
subtract(F1, F2) ->
    orber:dbg("[~p] fixed:subtract(~p, ~p).~n"
	      "At least one of the supplied arguments is not a Fixed Type.", 
	      [?LINE, F1, F2], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).

divide(#fixed{digits = D1, scale = S1, value = V1}, 
	    #fixed{digits = _D2, scale = S2, value = V2}) ->
    {PV1, PV2} = normalize(S1, V1, S2, V2),
    DigitsMin = (D1-S1+S2),
    R1 = (PV1 div PV2),
    R2 = (R1*?BASE + (PV1 rem PV2) * (?BASE div PV2)),
    {Result2, Sinf} = delete_zeros_value(R2, 0, R1),
    check_fixed_overflow(#fixed{digits = DigitsMin + Sinf, scale = Sinf, 
				value = Result2});
divide(F1, F2) ->
    orber:dbg("[~p] fixed:divide(~p, ~p).~n"
	      "At least one of the supplied arguments is not a Fixed Type.", 
	      [?LINE, F1, F2], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).


multiply(#fixed{digits = D1, scale = S1, value = V1}, 
	 #fixed{digits = D2, scale = S2, value = V2}) ->
    check_fixed_overflow(#fixed{digits = (D1+D2), 
				scale = (S1+S2), 
				value = V1*V2});
multiply(F1, F2) ->
    orber:dbg("[~p] fixed:multiply(~p, ~p).~n"
	      "At least one of the supplied arguments is not a Fixed Type.", 
	      [?LINE, F1, F2], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).

unary_minus(Fixed) when is_record(Fixed, fixed) ->
    Fixed#fixed{value = -(Fixed#fixed.value)};
unary_minus(Fixed) ->
    orber:dbg("[~p] fixed:unary_minus(~p).~n"
	      "The supplied argument is not a Fixed Type.", 
	      [?LINE, Fixed], ?DEBUG_LEVEL),
    corba:raise(#'BAD_PARAM'{completion_status=?COMPLETED_NO}).



%%-----------------------------------------------------------------
%% Internal functions
%%-----------------------------------------------------------------
%% Pretty?! No, but since we now the upper-limit this is the fastest way
%% to calculate 10^x
power(0) ->  1;
power(1) ->  10;
power(2) ->  100;
power(3) ->  1000;
power(4) ->  10000;
power(5) ->  100000;
power(6) ->  1000000;
power(7) ->  10000000;
power(8) ->  100000000;
power(9) ->  1000000000;
power(10) -> 10000000000;
power(11) -> 100000000000;
power(12) -> 1000000000000;
power(13) -> 10000000000000;
power(14) -> 100000000000000;
power(15) -> 1000000000000000;
power(16) -> 10000000000000000;
power(17) -> 100000000000000000;
power(18) -> 1000000000000000000;
power(19) -> 10000000000000000000;
power(20) -> 100000000000000000000;
power(21) -> 1000000000000000000000;
power(22) -> 10000000000000000000000;
power(23) -> 100000000000000000000000;
power(24) -> 1000000000000000000000000;
power(25) -> 10000000000000000000000000;
power(26) -> 100000000000000000000000000;
power(27) -> 1000000000000000000000000000;
power(28) -> 10000000000000000000000000000;
power(29) -> 100000000000000000000000000000;
power(30) -> 1000000000000000000000000000000;
power(31) -> 10000000000000000000000000000000;
power(_) ->  10000000000000000000000000000000.



%% If the result of an operation (+, -, * or /) causes overflow we use this 
%% operation. However, since these calculations are performed during compiletime,
%% shouldn't the IDL-specification be changed to not cause overflow?! But, since
%% the OMG standard allows this we must support it.
check_fixed_overflow(#fixed{digits = Digits, scale = Scale, value = Value}) ->
    case count_digits(abs(Value)) of
	overflow ->
	    {N, NewVal} = cut_overflow(0, Value),
	    if
		N > Scale ->
		    #fixed{digits = 31, scale = 0, value = NewVal};
		true ->
		    NewScale = Scale - N,
		    {NewVal2, Removed} = delete_zeros(NewVal, NewScale),
		    #fixed{digits = 31, scale = NewScale-Removed, value = NewVal2}
	    end;
	Count when Count > Digits ->
	    Diff = Count-Digits,
	    if
		Diff > Scale ->
		    #fixed{digits = Digits, scale = 0, 
			   value = (Value div power(Diff))};
		true ->
		    NewScale = Scale-Diff,
		    {NewVal, Removed} = delete_zeros((Value div power(Diff)), NewScale),
		    #fixed{digits = Digits-Removed, 
			   scale = NewScale-Removed, 
			   value = NewVal}
	    end;
	Count ->
	    {NewVal, Removed} = delete_zeros(Value, Scale),
	    #fixed{digits = Count-Removed, scale = Scale-Removed, value = NewVal}
    end.

%% This function see to that the values are of the same baase.
normalize(S, V1, S, V2) ->
    {V1, V2};
normalize(S1, V1, S2, V2) when S1 > S2 ->
    {V1, V2*power(S1-S2)};
normalize(S1, V1, S2, V2) ->
    {V1*power(S2-S1), V2}.

%% If we have access to the integer part of the fixed type we use this
%% operation to remove all trailing zeros. If we know the scale, length of
%% fraction part, we can use delete_zeros as well. But, after a division
%% it's hard to know the scale and we don't need to calcluate the integer part.
delete_zeros_value(0, N, _) ->
    {0, 32-N};
delete_zeros_value(X, N, M) when X > M, (X rem 10) == 0 ->
    delete_zeros_value((X div 10), N+1, M);
delete_zeros_value(X, N, _) ->
    {X, 32-N}.

%% If we know the exact scale of a fixed type we can use this operation to
%% remove all trailing zeros.
delete_zeros(0, _) ->
    {0,0};
delete_zeros(X, Max) ->
    delete_zeros(X, 0, Max).
delete_zeros(X, Max, Max) ->
    {X, Max};
delete_zeros(X, N, Max) when (X rem 10) == 0 ->
    delete_zeros((X div 10), N+1, Max);
delete_zeros(X, N, _) ->
    {X, N}.
                            
cut_overflow(N, X) when X > ?FIXED_MAX ->
    cut_overflow(N+1, (X div 10));
cut_overflow(N, X) ->
    {N, X}.
    
%% A fast way to check the size of a fixed data type.
count_digits(X) when X >  ?FIXED_MAX -> overflow;
count_digits(X) when X >= 1000000000000000000000000000000 -> 31;
count_digits(X) when X >= 100000000000000000000000000000 -> 30;
count_digits(X) when X >= 10000000000000000000000000000 -> 29;
count_digits(X) when X >= 1000000000000000000000000000 -> 28;
count_digits(X) when X >= 100000000000000000000000000 -> 27;
count_digits(X) when X >= 10000000000000000000000000 -> 26;
count_digits(X) when X >= 1000000000000000000000000 -> 25;
count_digits(X) when X >= 100000000000000000000000 -> 24;
count_digits(X) when X >= 10000000000000000000000 -> 23;
count_digits(X) when X >= 1000000000000000000000 -> 22;
count_digits(X) when X >= 100000000000000000000 -> 21;
count_digits(X) when X >= 10000000000000000000 -> 20;
count_digits(X) when X >= 1000000000000000000 -> 19;
count_digits(X) when X >= 100000000000000000 -> 18;
count_digits(X) when X >= 10000000000000000 -> 17;
count_digits(X) when X >= 1000000000000000 -> 16;
count_digits(X) when X >= 100000000000000 -> 15;
count_digits(X) when X >= 10000000000000 -> 14;
count_digits(X) when X >= 1000000000000 -> 13;
count_digits(X) when X >= 100000000000 -> 12;
count_digits(X) when X >= 10000000000 -> 11;
count_digits(X) when X >= 1000000000 -> 10;
count_digits(X) when X >= 100000000 -> 9;
count_digits(X) when X >= 10000000 -> 8;
count_digits(X) when X >= 1000000 -> 7;
count_digits(X) when X >= 100000 -> 6;
count_digits(X) when X >= 10000 -> 5;
count_digits(X) when X >= 1000 -> 4;
count_digits(X) when X >= 100 -> 3;
count_digits(X) when X >= 10 -> 2;
count_digits(_X) -> 1.

%%-----------------------------------------------------------------
%%------------- END OF MODULE -------------------------------------
%%-----------------------------------------------------------------