1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
|
%% Copyright (c) 2008,2009 Robert Virding. All rights reserved.
%%
%% Redistribution and use in source and binary forms, with or without
%% modification, are permitted provided that the following conditions
%% are met:
%%
%% 1. Redistributions of source code must retain the above copyright
%% notice, this list of conditions and the following disclaimer.
%% 2. Redistributions in binary form must reproduce the above copyright
%% notice, this list of conditions and the following disclaimer in the
%% documentation and/or other materials provided with the distribution.
%%
%% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
%% "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
%% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
%% FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
%% COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
%% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
%% BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
%% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
%% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
%% LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
%% ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
%% POSSIBILITY OF SUCH DAMAGE.
%%% A Lexical Analyser Generator for Erlang.
%%%
%%% Most of the algorithms used here are taken pretty much as
%%% described in the "Dragon Book" by Aho, Sethi and Ullman. Some
%%% completing details were taken from "Compiler Design in C" by
%%% Hollub.
-module(leex).
-export([compile/3,file/1,file/2,format_error/1]).
-import(lists, [member/2,reverse/1,sort/1,delete/2,
keysearch/3,keysort/2,keydelete/3,keyfind/3,
map/2,foldl/3,foreach/2,flatmap/2]).
-import(string, [substr/2,substr/3,span/2]).
-import(ordsets, [is_element/2,add_element/2,union/2]).
-import(orddict, [store/3]).
-include("erl_compile.hrl").
%%-include_lib("stdlib/include/erl_compile.hrl").
-define(LEEXINC, "leexinc.hrl"). % Include file
-define(LEEXLIB, parsetools). % Leex is in lib parsetools
%%-define(LEEXLIB, leex). % Leex is in lib leex
-define(DEFS_HEAD, "Definitions.").
-define(RULE_HEAD, "Rules.").
-define(CODE_HEAD, "Erlang code.").
-record(leex, {xfile=[], % Xrl file
efile=[], % Erl file
ifile=[], % Include file
gfile=[], % Graph file
module, % Module name
opts=[], % Options
posix=false, % POSIX regular expressions
errors=[],
warnings=[]
}).
-record(nfa_state, {no,edges=[],accept=noaccept}).
-record(dfa_state, {no,nfa=[],trans=[],accept=noaccept}).
%%%
%%% Exported functions
%%%
%%% Interface to erl_compile.
compile(Input0, Output0,
#options{warning = WarnLevel, verbose=Verbose, includes=Includes}) ->
Input = assure_extension(shorten_filename(Input0), ".xrl"),
Output = assure_extension(shorten_filename(Output0), ".erl"),
Includefile = lists:sublist(Includes, 1),
Opts = [{scannerfile,Output},{includefile,Includefile},{verbose,Verbose},
{report_errors,true},{report_warnings,WarnLevel > 0}],
case file(Input, Opts) of
{ok, _} ->
ok;
error ->
error
end.
%% file(File) -> ok | error.
%% file(File, Options) -> ok | error.
file(File) -> file(File, []).
file(File, Opts0) ->
case is_filename(File) of
no -> erlang:error(badarg, [File,Opts0]);
_ -> ok
end,
Opts = case options(Opts0) of
badarg ->
erlang:error(badarg, [File,Opts0]);
Options ->
Options
end,
St0 = #leex{},
St1 = filenames(File, Opts, St0), % Get all the filenames
St = try
{ok,REAs,Actions,Code,St2} = parse_file(St1),
{DFA,DF} = make_dfa(REAs, St2),
St3 = out_file(St2, DFA, DF, Actions, Code),
case lists:member(dfa_graph, St3#leex.opts) of
true -> out_dfa_graph(St3, DFA, DF);
false -> St3
end
catch #leex{}=St4 ->
St4
end,
leex_ret(St).
format_error({file_error, Reason}) ->
io_lib:fwrite("~s",[file:format_error(Reason)]);
format_error(missing_defs) -> "missing Definitions";
format_error(missing_rules) -> "missing Rules";
format_error(missing_code) -> "missing Erlang code";
format_error(empty_rules) -> "no rules";
format_error(bad_rule) -> "bad rule";
format_error({regexp,E})->
Es = case E of
{interval_range,_} -> "interval range";
{unterminated,Cs} ->
"unterminated " ++ Cs;
{illegal_char,Cs} ->
"illegal character " ++ Cs;
{posix_cc,What} ->
["illegal POSIX character class ",io_lib:write_string(What)];
{char_class,What} ->
["illegal character class ",io_lib:write_string(What)]
end,
["bad regexp `",Es,"'"];
format_error(ignored_characters) ->
"ignored characters".
%%%
%%% Local functions
%%%
assure_extension(File, Ext) ->
lists:concat([strip_extension(File, Ext), Ext]).
%% Assumes File is a filename.
strip_extension(File, Ext) ->
case filename:extension(File) of
Ext -> filename:rootname(File);
_Other -> File
end.
options(Options0) when is_list(Options0) ->
try
Options = flatmap(fun(return) -> short_option(return, true);
(report) -> short_option(report, true);
({return,T}) -> short_option(return, T);
({report,T}) -> short_option(report, T);
(T) -> [T]
end, Options0),
options(Options, [scannerfile,includefile,report_errors,
report_warnings,return_errors,return_warnings,
verbose,dfa_graph], [])
catch error: _ -> badarg
end;
options(Option) ->
options([Option]).
short_option(return, T) ->
[{return_errors,T}, {return_warnings,T}];
short_option(report, T) ->
[{report_errors,T}, {report_warnings,T}].
options(Options0, [Key|Keys], L) when is_list(Options0) ->
Options = case member(Key, Options0) of
true ->
[atom_option(Key)|delete(Key, Options0)];
false ->
Options0
end,
V = case keysearch(Key, 1, Options) of
{value, {Key, Filename0}} when Key =:= includefile;
Key =:= scannerfile ->
case is_filename(Filename0) of
no ->
badarg;
Filename ->
{ok,[{Key,Filename}]}
end;
{value,{Key,Bool}} when Bool; not Bool ->
{ok,[{Key, Bool}]};
{value,{Key, _}} ->
badarg;
false ->
{ok,[{Key,default_option(Key)}]}
end,
case V of
badarg ->
badarg;
{ok,KeyValueL} ->
NewOptions = keydelete(Key, 1, Options),
options(NewOptions, Keys, KeyValueL ++ L)
end;
options([], [], L) ->
foldl(fun({_,false}, A) -> A;
({Tag,true}, A) -> [Tag|A];
(F,A) -> [F|A]
end, [], L);
options(_Options, _, _L) ->
badarg.
default_option(dfa_graph) -> false;
default_option(includefile) -> [];
default_option(report_errors) -> true;
default_option(report_warnings) -> true;
default_option(return_errors) -> false;
default_option(return_warnings) -> false;
default_option(scannerfile) -> [];
default_option(verbose) -> false.
atom_option(dfa_graph) -> {dfa_graph,true};
atom_option(report_errors) -> {report_errors,true};
atom_option(report_warnings) -> {report_warnings,true};
atom_option(return_errors) -> {return_errors,true};
atom_option(return_warnings) -> {return_warnings,true};
atom_option(verbose) -> {verbose,true};
atom_option(Key) -> Key.
is_filename(T) ->
try filename:flatten(T) of
Filename -> Filename
catch error: _ -> no
end.
shorten_filename(Name0) ->
{ok,Cwd} = file:get_cwd(),
case lists:prefix(Cwd, Name0) of
false -> Name0;
true ->
case lists:nthtail(length(Cwd), Name0) of
"/"++N -> N;
N -> N
end
end.
leex_ret(St) ->
report_errors(St),
report_warnings(St),
Es = pack_errors(St#leex.errors),
Ws = pack_warnings(St#leex.warnings),
if
Es =:= [] ->
case member(return_warnings, St#leex.opts) of
true -> {ok, St#leex.efile, Ws};
false -> {ok, St#leex.efile}
end;
true ->
case member(return_errors, St#leex.opts) of
true -> {error, Es, Ws};
false -> error
end
end.
pack_errors([{File,_} | _] = Es) ->
[{File, flatmap(fun({_,E}) -> [E] end, sort(Es))}];
pack_errors([]) ->
[].
pack_warnings([{File,_} | _] = Ws) ->
[{File, flatmap(fun({_,W}) -> [W] end, sort(Ws))}];
pack_warnings([]) ->
[].
report_errors(St) ->
when_opt(fun () ->
foreach(fun({File,{none,Mod,E}}) ->
io:fwrite("~s: ~s\n",
[File,Mod:format_error(E)]);
({File,{Line,Mod,E}}) ->
io:fwrite("~s:~w: ~s\n",
[File,Line,Mod:format_error(E)])
end, sort(St#leex.errors))
end, report_errors, St#leex.opts).
report_warnings(St) ->
when_opt(fun () ->
foreach(fun({File,{none,Mod,W}}) ->
io:fwrite("~s: Warning: ~s\n",
[File,Mod:format_error(W)]);
({File,{Line,Mod,W}}) ->
io:fwrite("~s:~w: Warning: ~s\n",
[File,Line,Mod:format_error(W)])
end, sort(St#leex.warnings))
end, report_warnings, St#leex.opts).
add_error(E, St) ->
add_error(St#leex.xfile, E, St).
add_error(File, Error, St) ->
throw(St#leex{errors = [{File,Error}|St#leex.errors]}).
add_warning(Line, W, St) ->
St#leex{warnings = [{St#leex.xfile,{Line,leex,W}}|St#leex.warnings]}.
%% filenames(File, Options, State) -> State.
%% The default output dir is the current directory unless an
%% explicit one has been given in the options.
filenames(File, Opts, St0) ->
Dir = filename:dirname(File),
Base = filename:basename(File, ".xrl"),
Xfile = filename:join(Dir, Base ++ ".xrl"),
Efile = Base ++ ".erl",
Gfile = Base ++ ".dot",
Module = list_to_atom(Base),
St1 = St0#leex{xfile=Xfile,
opts=Opts,
module=Module},
{value,{includefile,Ifile0}} = keysearch(includefile, 1, Opts),
Ifile = inc_file_name(Ifile0),
%% Test for explicit scanner file.
{value,{scannerfile,Ofile}} = keysearch(scannerfile, 1, Opts),
if
Ofile =:= [] ->
St1#leex{efile=filename:join(Dir, Efile),
ifile=Ifile,
gfile=filename:join(Dir, Gfile)};
true ->
D = filename:dirname(Ofile),
St1#leex{efile=Ofile,
ifile=Ifile,
gfile=filename:join(D, Gfile)}
end.
when_opt(Do, Opt, Opts) ->
case member(Opt, Opts) of
true -> Do();
false -> ok
end.
verbose_print(St, Format, Args) ->
when_opt(fun () -> io:fwrite(Format, Args) end, verbose, St#leex.opts).
%% parse_file(State) -> {ok,[REA],[Action],Code,NewState} | throw(NewState)
%% when
%% REA = {RegExp,ActionNo};
%% Action = {ActionNo,ActionString};
%% Code = {StartLine, StartPos, NumOfLines}. Where the Erlang code is.
%%
%% Read and parse the file Xfile.
%% After each section of the file has been parsed we directly call the
%% next section. This is done when we detect a line we don't recognise
%% in the current section. The file format is very simple and Erlang
%% token based, we allow empty lines and Erlang style comments.
parse_file(St0) ->
case file:open(St0#leex.xfile, [read]) of
{ok,Xfile} ->
try
verbose_print(St0, "Parsing file ~s, ", [St0#leex.xfile]),
%% We KNOW that errors throw so we can ignore them here.
{ok,Line1,St1} = parse_head(Xfile, St0),
{ok,Line2,Macs,St2} = parse_defs(Xfile, Line1, St1),
{ok,Line3,REAs,Actions,St3} =
parse_rules(Xfile, Line2, Macs, St2),
{ok,Code,St4} = parse_code(Xfile, Line3, St3),
verbose_print(St1, "contained ~w rules.~n", [length(REAs)]),
{ok,REAs,Actions,Code,St4}
after file:close(Xfile)
end;
{error,Error} ->
add_error({none,leex,{file_error,Error}}, St0)
end.
%% parse_head(File, State) -> {ok,NextLine,State}.
%% Parse the head of the file. Skip all comments and blank lines.
parse_head(Ifile, St) -> {ok,nextline(Ifile, 0),St}.
%% parse_defs(File, Line, State) -> {ok,NextLine,Macros,State}.
%% Parse the macro definition section of a file. This must exist.
%% The section is ended by a non-blank line which is not a macro def.
parse_defs(Ifile, {ok,?DEFS_HEAD ++ Rest,L}, St) ->
St1 = warn_ignored_chars(L, Rest, St),
parse_defs(Ifile, nextline(Ifile, L), [], St1);
parse_defs(_, {ok,_,L}, St) ->
add_error({L,leex,missing_defs}, St);
parse_defs(_, {eof,L}, St) ->
add_error({L,leex,missing_defs}, St).
parse_defs(Ifile, {ok,Chars,L}=Line, Ms, St) ->
%% This little beauty matches out a macro definition, RE's are so clear.
MS = "^[ \t]*([A-Z_][A-Za-z0-9_]*)[ \t]*=[ \t]*([^ \t\r\n]*)[ \t\r\n]*\$",
case re:run(Chars, MS, [{capture,all_but_first,list}]) of
{match,[Name,Def]} ->
%%io:fwrite("~p = ~p\n", [Name,Def]),
parse_defs(Ifile, nextline(Ifile, L), [{Name,Def}|Ms], St);
_ -> {ok,Line,Ms,St} % Anything else
end;
parse_defs(_, Line, Ms, St) ->
{ok,Line,Ms,St}.
%% parse_rules(File, Line, Macros, State) -> {ok,NextLine,REAs,Actions,State}.
%% Parse the RE rules section of the file. This must exist.
parse_rules(Ifile, {ok,?RULE_HEAD ++ Rest,L}, Ms, St) ->
St1 = warn_ignored_chars(L, Rest, St),
parse_rules(Ifile, nextline(Ifile, L), Ms, [], [], 0, St1);
parse_rules(_, {ok,_,L}, _, St) ->
add_error({L,leex,missing_rules}, St);
parse_rules(_, {eof,L}, _, St) ->
add_error({L,leex,missing_rules}, St).
%% parse_rules(File, Result, Macros, RegExpActions, Actions, Acount, State) ->
%% {ok,NextCLine,RegExpActions,Actions,NewState} | throw(NewState)
parse_rules(Ifile, NextLine, Ms, REAs, As, N, St) ->
case NextLine of
{ok,?CODE_HEAD ++ _Rest,_} ->
parse_rules_end(Ifile, NextLine, REAs, As, St);
{ok,Chars,L0} ->
%%io:fwrite("~w: ~p~n", [L0,Chars]),
case collect_rule(Ifile, Chars, L0) of
{ok,Re,Atoks,L1} ->
{ok,REA,A,St1} = parse_rule(Re, L0, Atoks, Ms, N, St),
parse_rules(Ifile, nextline(Ifile, L1), Ms,
[REA|REAs], [A|As], N+1, St1);
{error,E} -> add_error(E, St)
end;
{eof,_} ->
parse_rules_end(Ifile, NextLine, REAs, As, St)
end.
parse_rules_end(_, {ok,_,L}, [], [], St) ->
add_error({L,leex,empty_rules}, St);
parse_rules_end(_, {eof,L}, [], [], St) ->
add_error({L,leex,empty_rules}, St);
parse_rules_end(_, NextLine, REAs, As, St) ->
%% Must be *VERY* careful to put rules in correct order!
{ok,NextLine,reverse(REAs),reverse(As),St}.
%% collect_rule(File, Line, Lineno) ->
%% {ok,RegExp,ActionTokens,NewLineno} | {error,E}.
%% Collect a complete rule by reading lines until the the regexp and
%% action has been read. Keep track of line number.
collect_rule(Ifile, Chars, L0) ->
%% Erlang strings are 1 based, but re 0 :-(
{match,[{St0,Len}|_]} = re:run(Chars, "[^ \t\r\n]+"),
St = St0 + 1,
%%io:fwrite("RE = ~p~n", [substr(Chars, St, Len)]),
case collect_action(Ifile, substr(Chars, St+Len), L0, []) of
{ok,[{':',_}|Toks],L1} -> {ok,substr(Chars, St, Len),Toks,L1};
{ok,_,_} -> {error,{L0,leex,bad_rule}};
{eof,L1} -> {error,{L1,leex,bad_rule}};
{error,E,_} -> {error,E}
end.
collect_action(Ifile, Chars, L0, Cont0) ->
case erl_scan:tokens(Cont0, Chars, L0) of
{done,{ok,Toks,_},_} -> {ok,Toks,L0};
{done,{eof,_},_} -> {eof,L0};
{done,{error,E,_},_} -> {error,E,L0};
{more,Cont1} ->
collect_action(Ifile, io:get_line(Ifile, leex), L0+1, Cont1)
end.
%% parse_rule(RegExpString, RegExpLine, ActionTokens, Macros, Counter, State) ->
%% {ok,{RE,Action},ActionData,State}.
%% Parse one regexp after performing macro substition.
parse_rule(S, Line, [{dot,_}], Ms, N, St) ->
case parse_rule_regexp(S, Ms, St) of
{ok,R} ->
{ok,{R,N},{N,empty_action},St};
{error,E} ->
add_error({Line,leex,E}, St)
end;
parse_rule(S, Line, Atoks, Ms, N, St) ->
case parse_rule_regexp(S, Ms, St) of
{ok,R} ->
%%io:fwrite("RE = ~p~n", [R]),
%% Check for token variables.
TokenChars = var_used('TokenChars', Atoks),
TokenLen = var_used('TokenLen', Atoks),
TokenLine = var_used('TokenLine', Atoks),
{ok,{R,N},{N,Atoks,TokenChars,TokenLen,TokenLine},St};
{error,E} ->
add_error({Line,leex,E}, St)
end.
var_used(Name, Toks) ->
case keyfind(Name, 3, Toks) of
{var,_,Name} -> true; %It's the var we want
_ -> false
end.
%% parse_rule_regexp(RegExpString, Macros, State) ->
%% {ok,RegExp} | {error,Error}.
%% Substitute in macros and parse RegExpString. Cannot use re:replace
%% here as it uses info in replace string (&).
parse_rule_regexp(RE0, [{M,Exp}|Ms], St) ->
Split= re:split(RE0, "\\{" ++ M ++ "\\}", [{return,list}]),
RE1 = string:join(Split, Exp),
parse_rule_regexp(RE1, Ms, St);
parse_rule_regexp(RE, [], St) ->
%%io:fwrite("RE = ~p~n", [RE]),
case re_parse(RE, St) of
{ok,R} -> {ok,R};
{error,E} -> {error,{regexp,E}}
end.
%% parse_code(File, Line, State) -> {ok,Code,NewState}.
%% Finds the line and the position where the code section of the file
%% begins. This must exist.
parse_code(Ifile, {ok,?CODE_HEAD ++ Rest,CodeL}, St) ->
St1 = warn_ignored_chars(CodeL, Rest, St),
{ok, CodePos} = file:position(Ifile, cur),
%% Just count the lines; copy the code from file to file later.
NCodeLines = count_lines(Ifile, 0),
{ok,{CodeL,CodePos,NCodeLines},St1};
parse_code(_, {ok,_,L}, St) ->
add_error({L,leex,missing_code}, St);
parse_code(_, {eof,L}, St) ->
add_error({L,leex,missing_code}, St).
count_lines(File, N) ->
case io:get_line(File, leex) of
eof -> N;
_Line -> count_lines(File, N+1)
end.
%% nextline(InputFile, PrevLineNo) -> {ok,Chars,LineNo} | {eof,LineNo}.
%% Get the next line skipping comment lines and blank lines.
nextline(Ifile, L) ->
case io:get_line(Ifile, leex) of
eof -> {eof,L};
Chars ->
case substr(Chars, span(Chars, " \t\n")+1) of
[$%|_Rest] -> nextline(Ifile, L+1);
[] -> nextline(Ifile, L+1);
_Other -> {ok,Chars,L+1}
end
end.
warn_ignored_chars(Line, S, St) ->
case non_white(S) of
[] -> St;
_ -> add_warning(Line, ignored_characters, St)
end.
non_white(S) ->
[C || C <- S, C > $\s, C < $\200 orelse C > $\240].
%% This is the regular expression grammar used. It is equivalent to the
%% one used in AWK, except that we allow ^ $ to be used anywhere and fail
%% in the matching.
%%
%% reg -> alt : '$1'.
%% alt -> seq "|" seq ... : {alt,['$1','$2'...]}.
%% seq -> repeat repeat ... : {seq,['$1','$2'...]}.
%% repeat -> repeat "*" : {kclosure,'$1'}.
%% repeat -> repeat "+" : {pclosure,'$1'}.
%% repeat -> repeat "?" : {optional,'$1'}.
%% repeat -> repeat "{" [Min],[Max] "}" : {interval,'$1',Min,Max}
%% repeat -> single : '$1'.
%% single -> "(" reg ")" : {sub,'$2',Number}.
%% single -> "^" : bos/bol.
%% single -> "$" : eos/eol.
%% single -> "." : any.
%% single -> "[" class "]" : {char_class,char_class('$2')}
%% single -> "[" "^" class "]" : {comp_class,char_class('$3')}.
%% single -> "\"" chars "\"" : {lit,'$2'}.
%% single -> "\\" char : {lit,['$2']}.
%% single -> char : {lit,['$1']}.
%% single -> empty : epsilon.
%% The grammar of the current regular expressions. The actual parser
%% is a recursive descent implementation of the grammar.
%% re_parse(Chars, State) -> {ok,RegExp} | {error,Error}.
re_parse(Cs0, St) ->
case catch re_reg(Cs0, 0, St) of
{RE,_,[]} -> {ok,RE};
{_,_,[C|_]} -> {error,{illegal_char,[C]}};
{parse_error,E} -> {error,E}
end.
parse_error(E) -> throw({parse_error,E}).
re_reg(Cs, Sn, St) -> re_alt(Cs, Sn, St).
re_alt(Cs0, Sn0, St) ->
{L,Sn1,Cs1} = re_seq(Cs0, Sn0, St),
case re_alt1(Cs1, Sn1, St) of
{[],Sn2,Cs2} -> {L,Sn2,Cs2};
{Rs,Sn2,Cs2} -> {{alt,[L|Rs]},Sn2,Cs2}
end.
re_alt1([$||Cs0], Sn0, St) ->
{L,Sn1,Cs1} = re_seq(Cs0, Sn0, St),
{Rs,Sn2,Cs2} = re_alt1(Cs1, Sn1, St),
{[L|Rs],Sn2,Cs2};
re_alt1(Cs, Sn, _) -> {[],Sn,Cs}.
%% Parse a sequence of regexps. Don't allow the empty sequence.
%% re_seq(Cs0, Sn0, St) ->
%% {L,Sn1,Cs1} = repeat(Cs0, Sn0, St),
%% case re_seq1(Cs1, Sn1, St) of
%% {[],Sn2,Cs2} -> {L,Sn2,Cs2};
%% {Rs,Sn2,Cs2} -> {{seq,[L|Rs]},Sn2,Cs2}
%% end.
%% re_seq(Chars, SubNumber, State) -> {RegExp,SubNumber,Chars}.
%% Parse a sequence of regexps. Allow the empty sequence, returns epsilon.
re_seq(Cs0, Sn0, St) ->
case re_seq1(Cs0, Sn0, St) of
{[],Sn1,Cs1} -> {epsilon,Sn1,Cs1};
{[R],Sn1,Cs1} -> {R,Sn1,Cs1};
{Rs,Sn1,Cs1} -> {{seq,Rs},Sn1,Cs1}
end.
re_seq1([C|_]=Cs0, Sn0, St) when C /= $|, C /= $) ->
{L,Sn1,Cs1} = re_repeat(Cs0, Sn0, St),
{Rs,Sn2,Cs2} = re_seq1(Cs1, Sn1, St),
{[L|Rs],Sn2,Cs2};
re_seq1(Cs, Sn, _) -> {[],Sn,Cs}.
%% re_repeat(Chars, SubNumber, State) -> {RegExp,SubNumber,Chars}.
re_repeat(Cs0, Sn0, St) ->
{S,Sn1,Cs1} = re_single(Cs0, Sn0, St),
re_repeat1(Cs1, Sn1, S, St).
re_repeat1([$*|Cs], Sn, S, St) -> re_repeat1(Cs, Sn, {kclosure,S}, St);
re_repeat1([$+|Cs], Sn, S, St) -> re_repeat1(Cs, Sn, {pclosure,S}, St);
re_repeat1([$?|Cs], Sn, S, St) -> re_repeat1(Cs, Sn, {optional,S}, St);
%% { only starts interval when ere is true, otherwise normal character.
re_repeat1([${|Cs0], Sn, S, #leex{posix=true}=St) -> % $}
case re_interval_range(Cs0) of
{Min,Max,[$}|Cs1]} when is_integer(Min), is_integer(Max), Min =< Max ->
re_repeat1(Cs1, Sn, {interval,S,Min,Max}, St);
{Min,Max,[$}|Cs1]} when is_integer(Min), is_atom(Max) ->
re_repeat1(Cs1, Sn, {interval,S,Min,Max}, St);
{_,_,Cs1} -> parse_error({interval_range,string_between([${|Cs0], Cs1)})
end;
re_repeat1(Cs, Sn, S, _) -> {S,Sn,Cs}.
%% re_single(Chars, SubNumber, State) -> {RegExp,SubNumber,Chars}.
%% Parse a re_single regexp.
re_single([$(|Cs0], Sn0, St) -> % $)
Sn1 = Sn0 + 1, % Keep track of sub count anyway
case re_reg(Cs0, Sn1, St) of
{S,Sn2,[$)|Cs1]} -> {S,Sn2,Cs1};
%%{S,Sn2,[$)|Cs1]} -> {{sub,S,Sn1},Sn2,Cs1};
_ -> parse_error({unterminated,"("})
end;
%% These are not legal inside a regexp.
%% re_single([$^|Cs], Sn, St) -> {bos,Sn,Cs};
%% re_single([$$|Cs], Sn, St) -> {eos,Sn,Cs};
%% re_single([$.|Cs], Sn, St) -> {any,Sn,Cs};
re_single([$.|Cs], Sn, _) -> {{comp_class,"\n"},Sn,Cs}; % Do this here?
re_single("[^" ++ Cs0, Sn, St) ->
case re_char_class(Cs0, St) of
{Cc,[$]|Cs1]} -> {{comp_class,Cc},Sn,Cs1};
_ -> parse_error({unterminated,"["})
end;
re_single([$[|Cs0], Sn, St) ->
case re_char_class(Cs0, St) of
{Cc,[$]|Cs1]} -> {{char_class,Cc},Sn,Cs1};
_ -> parse_error({unterminated,"["})
end;
re_single([$\\|Cs0], Sn, _) ->
{C,Cs1} = re_char($\\, Cs0),
{{lit,[C]},Sn,Cs1};
re_single([C|Cs0], Sn, St) ->
case special_char(C, St) of
true -> parse_error({illegal_char,[C]});
false ->
{C,Cs1} = re_char(C, Cs0),
{{lit,[C]},Sn,Cs1}
end.
-define(IS_HEX(C), C >= $0 andalso C =< $9 orelse
C >= $A andalso C =< $F orelse
C >= $a andalso C =< $f).
%% re_char(Char, Chars) -> {CharValue,Chars}.
%% Reads one character value from the input list, it knows about escapes.
re_char($\\, [O1,O2,O3|S]) when
O1 >= $0, O1 =< $7, O2 >= $0, O2 =< $7, O3 >= $0, O3 =< $7 ->
{(O1*8 + O2)*8 + O3 - 73*$0,S};
re_char($\\, [$x,H1,H2|S]) when ?IS_HEX(H1), ?IS_HEX(H2) ->
{erlang:list_to_integer([H1,H2], 16),S};
re_char($\\,[$x,${|S0]) ->
re_hex(S0, []);
re_char($\\,[$x|_]) ->
parse_error({illegal_char,"\\x"});
re_char($\\, [C|S]) -> {escape_char(C),S};
re_char($\\, []) -> parse_error({unterminated,"\\"});
re_char(C, S) -> {C,S}. % Just this character
re_hex([C|Cs], L) when ?IS_HEX(C) -> re_hex(Cs, [C|L]);
re_hex([$}|S], L0) ->
L = lists:reverse(L0),
case erlang:list_to_integer(L, 16) of
C when C =< 16#10FFFF -> {C,S};
_ -> parse_error({illegal_char,[$\\,$x,${|L]++"}"})
end;
re_hex(_, _) -> parse_error({unterminated,"\\x{"}).
%% special_char(Char, State) -> bool().
%% These are the special characters for an ERE.
%% N.B. ]}) are only special in the context after [{(.
special_char($^, _) -> true;
special_char($., _) -> true;
special_char($[, _) -> true;
special_char($$, _) -> true;
special_char($(, _) -> true;
special_char($), _) -> true;
special_char($|, _) -> true;
special_char($*, _) -> true;
special_char($+, _) -> true;
special_char($?, _) -> true;
special_char(${, #leex{posix=true}) -> true; % Only when POSIX set
special_char($\\, _) -> true;
special_char(_, _) -> false.
%% re_char_class(Chars, State) -> {CharClass,Chars}.
%% Parse a character class.
re_char_class([$]|Cs], St) -> % Must special case this.
re_char_class(Cs, [$]], St);
re_char_class(Cs, St) -> re_char_class(Cs, [], St).
re_char_class("[:" ++ Cs0, Cc, #leex{posix=true}=St) ->
%% POSIX char class only.
case posix_cc(Cs0) of
{Pcl,":]" ++ Cs1} -> re_char_class(Cs1, [{posix,Pcl}|Cc], St);
{_,Cs1} -> parse_error({posix_cc,string_between(Cs0, Cs1)})
end;
re_char_class([C1|Cs0], Cc, St) when C1 /= $] ->
case re_char(C1, Cs0) of
{Cf,[$-,C2|Cs1]} when C2 /= $] ->
case re_char(C2, Cs1) of
{Cl,Cs2} when Cf < Cl ->
re_char_class(Cs2, [{range,Cf,Cl}|Cc], St);
{_,Cs2} ->
parse_error({char_class,string_between([C1|Cs0], Cs2)})
end;
{C,Cs1} -> re_char_class(Cs1, [C|Cc], St)
end;
re_char_class(Cs, Cc, _) -> {reverse(Cc),Cs}. % Preserve order
%% posix_cc(String) -> {PosixClass,RestString}.
%% Handle POSIX character classes.
posix_cc("alnum" ++ Cs) -> {alnum,Cs};
posix_cc("alpha" ++ Cs) -> {alpha,Cs};
posix_cc("blank" ++ Cs) -> {blank,Cs};
posix_cc("cntrl" ++ Cs) -> {cntrl,Cs};
posix_cc("digit" ++ Cs) -> {digit,Cs};
posix_cc("graph" ++ Cs) -> {graph,Cs};
posix_cc("lower" ++ Cs) -> {lower,Cs};
posix_cc("print" ++ Cs) -> {print,Cs};
posix_cc("punct" ++ Cs) -> {punct,Cs};
posix_cc("space" ++ Cs) -> {space,Cs};
posix_cc("upper" ++ Cs) -> {upper,Cs};
posix_cc("xdigit" ++ Cs) -> {xdigit,Cs};
posix_cc(Cs) -> parse_error({posix_cc,substr(Cs, 1, 5)}).
escape_char($n) -> $\n; % \n = LF
escape_char($r) -> $\r; % \r = CR
escape_char($t) -> $\t; % \t = TAB
escape_char($v) -> $\v; % \v = VT
escape_char($b) -> $\b; % \b = BS
escape_char($f) -> $\f; % \f = FF
escape_char($e) -> $\e; % \e = ESC
escape_char($s) -> $\s; % \s = SPACE
escape_char($d) -> $\d; % \d = DEL
escape_char(C) -> C. % Pass it straight through
%% re_interval_range(Chars) -> {Min,Max,RestChars}.
%% NoInt -> none,none
%% Int -> Int,none
%% Int, -> Int,any
%% Int1,Int2 -> Int1,Int2
re_interval_range(Cs0) ->
case re_number(Cs0) of
{none,Cs1} -> {none,none,Cs1};
{N,[$,|Cs1]} ->
case re_number(Cs1) of
{none,Cs2} -> {N,any,Cs2};
{M,Cs2} -> {N,M,Cs2}
end;
{N,Cs1} -> {N,none,Cs1}
end.
re_number([C|Cs]) when C >= $0, C =< $9 ->
re_number(Cs, C - $0);
re_number(Cs) -> {none,Cs}.
re_number([C|Cs], Acc) when C >= $0, C =< $9 ->
re_number(Cs, 10*Acc + (C - $0));
re_number(Cs, Acc) -> {Acc,Cs}.
string_between(Cs1, Cs2) ->
substr(Cs1, 1, length(Cs1)-length(Cs2)).
%% We use standard methods, Thompson's construction and subset
%% construction, to create first an NFA and then a DFA from the
%% regexps. A non-standard feature is that we work with sets of
%% character ranges (crs) instead sets of characters. This is most
%% noticeable when constructing DFAs. The major benefit is that we can
%% handle characters from any set, not just limited ASCII or 8859,
%% even 16/32 bit unicode.
%%
%% The whole range of characters is 0-maxchar, where maxchar is a BIG
%% number. We don't make any assumptions about the size of maxchar, it
%% is just bigger than any character.
%%
%% Using character ranges makes describing many regexps very simple,
%% for example the regexp "." just becomes the range
%% [{0-9},{11-maxchar}].
%% make_nfa(RegExpActions) -> {ok,{NFA,StartState}} | {error,E}.
%% Build a complete nfa from a list of {RegExp,Action}. The NFA field
%% accept has values {yes,Action}|no. The NFA is a list of states.
make_dfa(REAs, St) ->
{NFA,NF} = build_combined_nfa(REAs),
verbose_print(St, "NFA contains ~w states, ", [tuple_size(NFA)]),
{DFA0,DF0} = build_dfa(NFA, NF),
verbose_print(St, "DFA contains ~w states, ", [length(DFA0)]),
{DFA,DF} = minimise_dfa(DFA0, DF0),
verbose_print(St, "minimised to ~w states.~n", [length(DFA)]),
%%io:fwrite("~p\n", [{NF,NFA}]),
%%io:fwrite("~p\n", [{DF0,DFA0}]),
%%io:fwrite("~p\n", [{DF,DFA}]),
{DFA,DF}.
%% build_combined_nfa(RegExpActionList) -> {NFA,FirstState}.
%% Build the combined NFA using Thompson's construction straight out
%% of the book. Build the separate NFAs in the same order as the
%% rules so that the accepting have ascending states have ascending
%% state numbers. Start numbering the states from 1 as we put the
%% states in a tuple with the state number as the index.
%%
%% The edges from a state are a list of {CharRange,State} | {epsilon,State}.
build_combined_nfa(REAs) ->
{NFA0,Firsts,Free} = build_nfa_list(REAs, [], [], 1),
F = #nfa_state{no=Free,edges=epsilon_trans(Firsts)},
{list_to_tuple(keysort(#nfa_state.no, [F|NFA0])),Free}.
build_nfa_list([{RE,Action}|REAs], NFA0, Firsts, Free0) ->
{NFA1,Free1,First} = build_nfa(RE, Free0, Action),
build_nfa_list(REAs, NFA1 ++ NFA0, [First|Firsts], Free1);
build_nfa_list([], NFA, Firsts, Free) ->
{NFA,reverse(Firsts),Free}.
epsilon_trans(Firsts) -> [ {epsilon,F} || F <- Firsts ].
%% build_nfa(RegExp, NextState, Action) -> {NFA,NextState,FirstState}.
%% When building the NFA states for a regexp we don't build the end
%% state, just allocate a State for it and return this state's
%% number. This allows us to avoid building unnecessary states for
%% concatenation which would then have to be removed by overwriting
%% an existing state.
build_nfa(RE, N0, Action) ->
{NFA,N1,E} = build_nfa(RE, N0+1, N0, []),
{[#nfa_state{no=E,accept={accept,Action}}|NFA],N1,N0}.
%% build_nfa(RegExp, NextState, FirstState, NFA) -> {NFA,NextState,EndState}.
%% Build an NFA from the RegExp. NFA is a list of #nfa_state{} in no
%% predefined order. NextState is the number of the next free state
%% to use, FirstState is the the state which must be the start for
%% this regexp as a previous regexp refers to it, EndState is the
%% state to which this NFA will exit to. The number of the returned
%% EndState is already allocated!
build_nfa({alt,REs}, N, F, NFA) ->
build_nfa_alt(REs, N, F, NFA);
build_nfa({seq,REs}, N, F, NFA) ->
build_nfa_seq(REs, N, F, NFA);
build_nfa({kclosure,RE}, N0, F, NFA0) ->
{NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0),
E = N1, % End state
{[#nfa_state{no=F,edges=[{epsilon,N0},{epsilon,E}]},
#nfa_state{no=E1,edges=[{epsilon,N0},{epsilon,E}]}|NFA1],
N1+1,E};
build_nfa({pclosure,RE}, N0, F, NFA0) ->
{NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0),
E = N1, % End state
{[#nfa_state{no=F,edges=[{epsilon,N0}]},
#nfa_state{no=E1,edges=[{epsilon,N0},{epsilon,E}]}|NFA1],
N1+1,E};
build_nfa({optional,RE}, N0, F, NFA0) ->
{NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0),
E = N1, % End state
{[#nfa_state{no=F,edges=[{epsilon,N0},{epsilon,E}]},
#nfa_state{no=E1,edges=[{epsilon,E}]}|NFA1],
N1+1,E};
build_nfa({char_class,Cc}, N, F, NFA) ->
{[#nfa_state{no=F,edges=[{pack_cc(Cc),N}]}|NFA],N+1,N};
build_nfa({comp_class,Cc}, N, F, NFA) ->
{[#nfa_state{no=F,edges=[{comp_class(Cc),N}]}|NFA],N+1,N};
build_nfa({lit,Cs}, N, F, NFA) -> % Implicit concatenation
build_nfa_lit(Cs, N, F, NFA);
build_nfa(epsilon, N, F, NFA) -> % Just an epsilon transition
{[#nfa_state{no=F,edges=[{epsilon,N}]}|NFA],N+1,N}.
%% build_nfa_lit(Chars, NextState, FirstState, NFA) -> {NFA,NextState,EndState}.
%% Build an NFA for the sequence of literal characters.
build_nfa_lit(Cs, N0, F0, NFA0) ->
foldl(fun (C, {NFA,N,F}) ->
{[#nfa_state{no=F,edges=[{[{C,C}],N}]}|NFA],N+1,N}
end, {NFA0,N0,F0}, Cs).
%% build_nfa_lit([C|Cs], N, F, NFA0) when is_integer(C) ->
%% NFA1 = [#nfa_state{no=F,edges=[{[{C,C}],N}]}|NFA0],
%% build_nfa_lit(Cs, N+1, N, NFA1);
%% build_nfa_lit([], N, F, NFA) -> {NFA,N,F}.
%% build_nfa_seq(REs, NextState, FirstState, NFA) -> {NFA,NextState,EndState}.
%% Build an NFA for the regexps in a sequence.
build_nfa_seq(REs, N0, F0, NFA0) ->
foldl(fun (RE, {NFA,N,F}) -> build_nfa(RE, N, F, NFA) end,
{NFA0,N0,F0}, REs).
%% build_nfa_seq([RE|REs], N0, F, NFA0) ->
%% {NFA1,N1,E1} = build_nfa(RE, N0, F, NFA0),
%% build_nfa_seq(REs, N1, E1, NFA1);
%% build_nfa_seq([], N, F, NFA) -> {NFA,N,F}.
%% build_nfa_alt(REs, NextState, FirstState, NFA) -> {NFA,NextState,EndState}.
%% Build an NFA for the regexps in an alternative. N.B. we don't
%% handle empty alts here but the parser should never generate them
%% anyway.
build_nfa_alt([RE], N, F, NFA) -> build_nfa(RE, N, F, NFA);
build_nfa_alt([RE|REs], N0, F, NFA0) ->
{NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0),
{NFA2,N2,E2} = build_nfa_alt(REs, N1+1, N1, NFA1),
E = N2, % End state
{[#nfa_state{no=F,edges=[{epsilon,N0},{epsilon,N1}]},
#nfa_state{no=E1,edges=[{epsilon,E}]},
#nfa_state{no=E2,edges=[{epsilon,E}]}|NFA2],
N2+1,E}.
%% build_nfa_alt(REs, NextState, FirstState, NFA) -> {NFA,NextState,EndState}.
%% Build an NFA for the regexps in an alternative. Make one big
%% epsilon split state, not necessary but fun.
%% build_nfa_alt(REs, N0, F0, NFA0) ->
%% E = N0, % Must reserve End state first
%% {Fs,{NFA1,N1}} = mapfoldl(fun (RE, {NFA,N}) ->
%% build_nfa_alt1(RE, N, E, NFA)
%% end, {NFA0,N0+1}, REs),
%% {[#nfa_state{no=F0,edges=epsilon_trans(Fs)},
%% #nfa_state{no=E,edges=[{epsilon,N1}]}|NFA1],N1+1,N1}.
%% build_nfa_alt1(RE, N0, End, NFA0) ->
%% {NFA1,N1,E} = build_nfa(RE, N0+1, N0, NFA0),
%% {N0,{[#nfa_state{no=E,edges=[{epsilon,End}]}|NFA1],N1}}.
%% pack_cc(CharClass) -> CharClass
%% Pack and optimise a character class specification (bracket
%% expression). First sort it and then compact it.
pack_cc(Cc) ->
Crs = foldl(fun ({range,Cf,Cl}, Set) -> add_element({Cf,Cl}, Set);
(C, Set) -> add_element({C,C}, Set)
end, ordsets:new(), Cc),
pack_crs(Crs). % An ordset IS a list!
pack_crs([{C1,C2}=Cr,{C3,C4}|Crs]) when C1 =< C3, C2 >= C4 ->
%% C1 C2
%% C3 C4
pack_crs([Cr|Crs]);
pack_crs([{C1,C2},{C3,C4}|Crs]) when C2 >= C3, C2 < C4 ->
%% C1 C2
%% C3 C4
pack_crs([{C1,C4}|Crs]);
pack_crs([{C1,C2},{C3,C4}|Crs]) when C2 + 1 == C3 ->
%% C1 C2
%% C3 C4
pack_crs([{C1,C4}|Crs]);
pack_crs([Cr|Crs]) -> [Cr|pack_crs(Crs)];
pack_crs([]) -> [].
comp_class(Cc) ->
Crs = pack_cc(Cc),
Comp = comp_crs(Crs, 0),
%% io:fwrite("comp: ~p\n ~p\n", [Crs,Comp]),
Comp.
comp_crs([{0,C2}|Crs], 0) -> % Get first range right
comp_crs(Crs, C2+1);
comp_crs([{C1,C2}|Crs], Last) ->
[{Last,C1-1}|comp_crs(Crs, C2+1)];
comp_crs([], Last) -> [{Last,maxchar}].
%% build_dfa(NFA, NfaFirstState) -> {DFA,DfaFirstState}.
%% Build a DFA from an NFA using "subset construction". The major
%% difference from the book is that we keep the marked and unmarked
%% DFA states in seperate lists. New DFA states are added to the
%% unmarked list and states are marked by moving them to the marked
%% list. We assume that the NFA accepting state numbers are in
%% ascending order for the rules and use ordsets to keep this order.
build_dfa(NFA, Nf) ->
D = #dfa_state{no=0,nfa=eclosure([Nf], NFA)},
{build_dfa([D], 1, [], NFA),0}.
%% build_dfa([UnMarked], NextState, [Marked], NFA) -> DFA.
%% Traverse the unmarked states. Temporarily add the current unmarked
%% state to the marked list before calculating translation, this is
%% to avoid adding too many duplicate states. Add it properly to the
%% marked list afterwards with correct translations.
build_dfa([U|Us0], N0, Ms, NFA) ->
{Ts,Us1,N1} = build_dfa(U#dfa_state.nfa, Us0, N0, [], [U|Ms], NFA),
M = U#dfa_state{trans=Ts,accept=accept(U#dfa_state.nfa, NFA)},
build_dfa(Us1, N1, [M|Ms], NFA);
build_dfa([], _, Ms, _) -> Ms.
%% build_dfa([NfaState], [Unmarked], NextState, [Transition], [Marked], NFA) ->
%% {Transitions,UnmarkedStates,NextState}.
%% Foreach NFA state set calculate the legal translations. N.B. must
%% search *BOTH* the unmarked and marked lists to check if DFA state
%% already exists. As the range of characters is potentially VERY
%% large we cannot explicitly test all characters. Instead we first
%% calculate the set of all disjoint character ranges which are
%% possible candidates to the set of NFA states. The transitions are
%% an orddict so we get the transition lists in ascending order.
build_dfa(Set, Us, N, Ts, Ms, NFA) ->
%% List of all transition sets.
Crs0 = [Cr || S <- Set,
{Crs,_St} <- (element(S, NFA))#nfa_state.edges,
Crs /= epsilon, % Not an epsilon transition
Cr <- Crs ],
Crs1 = lists:usort(Crs0), % Must remove duplicates!
%% Build list of disjoint test ranges.
Test = disjoint_crs(Crs1),
%% io:fwrite("bd: ~p\n ~p\n ~p\n ~p\n", [Set,Crs0,Crs1,Test]),
build_dfa(Test, Set, Us, N, Ts, Ms, NFA).
%% disjoint_crs([CharRange]) -> [CharRange].
%% Take a sorted list of char ranges and make a sorted list of
%% disjoint char ranges. No new char range extends past an existing
%% char range.
disjoint_crs([{_C1,C2}=Cr1,{C3,_C4}=Cr2|Crs]) when C2 < C3 ->
%% C1 C2
%% C3 C4
[Cr1|disjoint_crs([Cr2|Crs])];
disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 == C3 ->
%% C1 C2
%% C3 C4
[{C1,C2}|disjoint_crs(add_element({C2+1,C4}, Crs))];
disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 >= C3, C2 < C4 ->
%% C1 C2
%% C3 C4
[{C1,C3-1}|disjoint_crs(union([{C3,C2},{C2+1,C4}], Crs))];
disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 == C4 ->
%% C1 C2
%% C3 C4
[{C1,C3-1}|disjoint_crs(add_element({C3,C4}, Crs))];
disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 > C4 ->
%% C1 C2
%% C3 C4
[{C1,C3-1}|disjoint_crs(union([{C3,C4},{C4+1,C2}], Crs))];
disjoint_crs([Cr|Crs]) -> [Cr|disjoint_crs(Crs)];
disjoint_crs([]) -> [].
build_dfa([Cr|Crs], Set, Us, N, Ts, Ms, NFA) ->
case eclosure(move(Set, Cr, NFA), NFA) of
S when S /= [] ->
case dfa_state_exist(S, Us, Ms) of
{yes,T} ->
build_dfa(Crs, Set, Us, N, store(Cr, T, Ts), Ms, NFA);
no ->
U = #dfa_state{no=N,nfa=S},
build_dfa(Crs, Set, [U|Us], N+1, store(Cr, N, Ts), Ms, NFA)
end;
[] ->
build_dfa(Crs, Set, Us, N, Ts, Ms, NFA)
end;
build_dfa([], _, Us, N, Ts, _, _) ->
{Ts,Us,N}.
%% dfa_state_exist(Set, Unmarked, Marked) -> {yes,State} | no.
dfa_state_exist(S, Us, Ms) ->
case keysearch(S, #dfa_state.nfa, Us) of
{value,#dfa_state{no=T}} -> {yes,T};
false ->
case keysearch(S, #dfa_state.nfa, Ms) of
{value,#dfa_state{no=T}} -> {yes,T};
false -> no
end
end.
%% eclosure([State], NFA) -> [State].
%% move([State], Char, NFA) -> [State].
%% These are straight out of the book. As eclosure uses ordsets then
%% the generated state sets are in ascending order.
eclosure(Sts, NFA) -> eclosure(Sts, NFA, []).
eclosure([St|Sts], NFA, Ec) ->
#nfa_state{edges=Es} = element(St, NFA),
eclosure([ N || {epsilon,N} <- Es,
not is_element(N, Ec) ] ++ Sts,
NFA, add_element(St, Ec));
eclosure([], _, Ec) -> Ec.
move(Sts, Cr, NFA) ->
%% io:fwrite("move1: ~p\n", [{Sts,Cr}]),
[ St || N <- Sts,
{Crs,St} <- (element(N, NFA))#nfa_state.edges,
Crs /= epsilon, % Not an epsilon transition
in_crs(Cr, Crs) ].
in_crs({C1,C2}, [{C3,C4}|_Crs]) when C1 >= C3, C2 =< C4 -> true;
in_crs(Cr, [Cr|_Crs]) -> true; % Catch bos and eos.
in_crs(Cr, [_|Crs]) -> in_crs(Cr, Crs);
in_crs(_Cr, []) -> false.
%% accept([State], NFA) -> {accept,A} | noaccept.
%% Scan down the state list until we find an accepting state.
accept([St|Sts], NFA) ->
case element(St, NFA) of
#nfa_state{accept={accept,A}} -> {accept,A};
#nfa_state{accept=noaccept} -> accept(Sts, NFA)
end;
accept([], _) -> noaccept.
%% minimise_dfa(DFA, DfaFirst) -> {DFA,DfaFirst}.
%% Minimise the DFA by removing equivalent states. We consider a
%% state if both the transitions and the their accept state is the
%% same. First repeatedly run throught the DFA state list removing
%% equivalent states and updating remaining transitions with
%% remaining equivalent state numbers. When no more reductions are
%% possible then pack the remaining state numbers to get consecutive
%% states.
minimise_dfa(DFA0, Df0) ->
case min_dfa(DFA0) of
{DFA1,[]} -> % No reduction!
{DFA2,Rs} = pack_dfa(DFA1),
{min_update(DFA2, Rs),min_use(Df0, Rs)};
{DFA1,Rs} ->
minimise_dfa(min_update(DFA1, Rs), min_use(Df0, Rs))
end.
min_dfa(DFA) -> min_dfa(DFA, [], []).
min_dfa([D|DFA0], Rs0, MDFA) ->
{DFA1,Rs1} = min_delete(DFA0, D#dfa_state.trans, D#dfa_state.accept,
D#dfa_state.no, Rs0, []),
min_dfa(DFA1, Rs1, [D|MDFA]);
min_dfa([], Rs, MDFA) -> {MDFA,Rs}.
%% min_delete(States, Trans, Action, NewN, Rs, MiniDFA) -> {MiniDFA,Rs}.
%% Delete all states with same transactions and action. Return
%% rewrites and minimised DFA with no duplicate states.
min_delete([#dfa_state{no=N,trans=T,accept=A}|DFA], T, A, NewN, Rs, MDFA) ->
min_delete(DFA, T, A, NewN, [{N,NewN}|Rs], MDFA);
min_delete([D|DFA], T, A, NewN, Rs, MDFA) ->
min_delete(DFA, T, A, NewN, Rs, [D|MDFA]);
min_delete([], _, _, _, Rs, MDFA) -> {MDFA,Rs}.
min_update(DFA, Rs) ->
[ D#dfa_state{trans=min_update_trans(D#dfa_state.trans, Rs)} || D <- DFA ].
min_update_trans(Tr, Rs) ->
[ {C,min_use(S, Rs)} || {C,S} <- Tr ].
min_use(Old, [{Old,New}|_]) -> New;
min_use(Old, [_|Reds]) -> min_use(Old, Reds);
min_use(Old, []) -> Old.
pack_dfa(DFA) -> pack_dfa(DFA, 0, [], []).
pack_dfa([D|DFA], NewN, Rs, PDFA) ->
pack_dfa(DFA, NewN+1,
[{D#dfa_state.no,NewN}|Rs], [D#dfa_state{no=NewN}|PDFA]);
pack_dfa([], _, Rs, PDFA) -> {PDFA,Rs}.
%% The main output is the yystate function which is built from the
%% DFA. It has the spec:
%%
%% yystate() -> InitialState.
%% yystate(State, InChars, Line, CurrTokLen, AcceptAction, AcceptLen) ->
%% {Action, AcceptLength, RestChars, Line} | Accepting end state
%% {Action, AcceptLength, RestChars, Line, State} | Accepting state
%% {reject, AcceptLength, CurrTokLen, RestChars, Line, State} |
%% {Action, AcceptLength, CurrTokLen, RestChars, Line, State}.
%% The return CurrTokLen is always the current number of characters
%% scanned in the current token. The returns have the follwoing
%% meanings:
%% {Action, AcceptLength, RestChars, Line} -
%% The scanner has reached an accepting end-state, for example after
%% a regexp "abc". Action is the action number and AcceptLength is
%% the length of the matching token.
%%
%% {Action, AcceptLength, RestChars, Line, State} -
%% The scanner has reached an accepting transition state, for example
%% after c in regexp "abc(xyz)?", continuation depends on
%% RestChars. If RestChars == [] (no more current characters) then we
%% need to get more characters to see if it is an end-state,
%% otherwise (eof or chars) then we have not found continuing
%% characters and it is an end state.
%%
%% {reject, AcceptLength, CurrTokLen, RestChars, Line, State} -
%% {Action, AcceptLength, CurrTokLen, RestChars, Line, State} -
%% The scanner has reached a non-accepting transistion state. If
%% RestChars == [] we need to get more characters to continue.
%% Otherwise if 'reject' then no accepting state has been reached it
%% is an error. If we have an Action and AcceptLength then these are
%% the last accept state, use them and continue from there.
%% out_file(LeexState, DFA, DfaStart, [Action], Code) -> ok | error.
%% Generate an output .erl file from the include file, the DFA and
%% the code for the actions.
out_file(St0, DFA, DF, Actions, Code) ->
verbose_print(St0, "Writing file ~s, ", [St0#leex.efile]),
case open_inc_file(St0) of
{ok,Ifile} ->
try
case file:open(St0#leex.efile, [write]) of
{ok,Ofile} ->
try
output_file_directive(Ofile, St0#leex.ifile, 0),
out_file(Ifile, Ofile, St0, DFA, DF, Actions,
Code, 1),
verbose_print(St0, "ok~n", []),
St0
after file:close(Ofile)
end;
{error,Error} ->
verbose_print(St0, "error~n", []),
add_error({none,leex,{file_error,Error}}, St0)
end
after file:close(Ifile)
end;
{{error,Error},Ifile} ->
add_error(Ifile, {none,leex,{file_error,Error}}, St0)
end.
open_inc_file(State) ->
Ifile = State#leex.ifile,
case file:open(Ifile, [read]) of
{ok,F} -> {ok,F};
Error -> {Error,Ifile}
end.
inc_file_name([]) ->
Incdir = filename:join(code:lib_dir(parsetools), "include"),
filename:join(Incdir, ?LEEXINC);
inc_file_name(Filename) ->
Filename.
%% out_file(IncFile, OutFile, State, DFA, DfaStart, Actions, Code, Line) -> ok
%% Copy the include file line by line substituting special lines with
%% generated code. We cheat by only looking at the first 5
%% characters.
out_file(Ifile, Ofile, St, DFA, DF, Actions, Code, L) ->
case io:get_line(Ifile, leex) of
eof -> output_file_directive(Ofile, St#leex.ifile, L);
Line ->
case substr(Line, 1, 5) of
"##mod" -> out_module(Ofile, St);
"##cod" -> out_erlang_code(Ofile, St, Code, L);
"##dfa" -> out_dfa(Ofile, St, DFA, Code, DF, L);
"##act" -> out_actions(Ofile, St#leex.xfile, Actions);
_ -> io:put_chars(Ofile, Line)
end,
out_file(Ifile, Ofile, St, DFA, DF, Actions, Code, L+1)
end.
out_module(File, St) ->
io:fwrite(File, "-module(~w).\n", [St#leex.module]).
out_erlang_code(File, St, Code, L) ->
{CodeL,CodePos,_NCodeLines} = Code,
output_file_directive(File, St#leex.xfile, CodeL),
{ok,Xfile} = file:open(St#leex.xfile, [read]),
try
{ok,_} = file:position(Xfile, CodePos),
{ok,_} = file:copy(Xfile, File)
after
file:close(Xfile)
end,
io:nl(File),
output_file_directive(File, St#leex.ifile, L).
out_dfa(File, St, DFA, Code, DF, L) ->
{_CodeL,_CodePos,NCodeLines} = Code,
%% Three file attributes before this one...
output_file_directive(File, St#leex.efile, L+(NCodeLines-1)+3),
io:fwrite(File, "yystate() -> ~w.~n~n", [DF]),
foreach(fun (S) -> out_trans(File, S) end, DFA),
io:fwrite(File, "yystate(S, Ics, Line, Tlen, Action, Alen) ->~n", []),
io:fwrite(File, " {Action,Alen,Tlen,Ics,Line,S}.~n", []).
out_trans(File, #dfa_state{no=N,trans=[],accept={accept,A}}) ->
%% Accepting end state, guaranteed done.
io:fwrite(File, "yystate(~w, Ics, Line, Tlen, _, _) ->~n", [N]),
io:fwrite(File, " {~w,Tlen,Ics,Line};~n", [A]);
out_trans(File, #dfa_state{no=N,trans=Tr,accept={accept,A}}) ->
%% Accepting state, but there maybe more.
foreach(fun (T) -> out_accept_tran(File, N, A, T) end, pack_trans(Tr)),
io:fwrite(File, "yystate(~w, Ics, Line, Tlen, _, _) ->~n", [N]),
io:fwrite(File, " {~w,Tlen,Ics,Line,~w};~n", [A,N]);
out_trans(File, #dfa_state{no=N,trans=Tr,accept=noaccept}) ->
%% Non-accepting transition state.
foreach(fun (T) -> out_noaccept_tran(File, N, T) end, pack_trans(Tr)),
io:fwrite(File, "yystate(~w, Ics, Line, Tlen, Action, Alen) ->~n", [N]),
io:fwrite(File, " {Action,Alen,Tlen,Ics,Line,~w};~n", [N]).
out_accept_tran(File, N, A, {{Cf,maxchar},S}) ->
out_accept_head_max(File, N, Cf),
out_accept_body(File, S, "Line", A);
out_accept_tran(File, N, A, {{Cf,Cl},S}) ->
out_accept_head_range(File, N, Cf, Cl),
out_accept_body(File, S, "Line", A);
out_accept_tran(File, N, A, {$\n,S}) ->
out_accept_head_1(File, N, $\n),
out_accept_body(File, S, "Line+1", A);
out_accept_tran(File, N, A, {C,S}) ->
out_accept_head_1(File, N, C),
out_accept_body(File, S, "Line", A).
out_accept_head_1(File, State, Char) ->
out_head_1(File, State, Char, "_", "_").
out_accept_head_max(File, State, Min) ->
out_head_max(File, State, Min, "_", "_").
out_accept_head_range(File, State, Min, Max) ->
out_head_range(File, State, Min, Max, "_", "_").
out_accept_body(File, Next, Line, Action) ->
out_body(File, Next, Line, io_lib:write(Action), "Tlen").
out_noaccept_tran(File, N, {{Cf,maxchar},S}) ->
out_noaccept_head_max(File, N, Cf),
out_noaccept_body(File, S, "Line");
out_noaccept_tran(File, N, {{Cf,Cl},S}) ->
out_noaccept_head_range(File, N, Cf, Cl),
out_noaccept_body(File, S, "Line");
out_noaccept_tran(File, N, {$\n,S}) ->
out_noaccept_head_1(File, N, $\n),
out_noaccept_body(File, S, "Line+1");
out_noaccept_tran(File, N, {C,S}) ->
out_noaccept_head_1(File, N, C),
out_noaccept_body(File, S, "Line").
out_noaccept_head_1(File, State, Char) ->
out_head_1(File, State, Char, "Action", "Alen").
out_noaccept_head_max(File, State, Min) ->
out_head_max(File, State, Min, "Action", "Alen").
out_noaccept_head_range(File, State, Min, Max) ->
out_head_range(File, State, Min, Max, "Action", "Alen").
out_noaccept_body(File, Next, Line) ->
out_body(File, Next, Line, "Action", "Alen").
out_head_1(File, State, Char, Action, Alen) ->
io:fwrite(File, "yystate(~w, [~w|Ics], Line, Tlen, ~s, ~s) ->\n",
[State,Char,Action,Alen]).
out_head_max(File, State, Min, Action, Alen) ->
io:fwrite(File, "yystate(~w, [C|Ics], Line, Tlen, ~s, ~s) when C >= ~w ->\n",
[State,Action,Alen,Min]).
out_head_range(File, State, Min, Max, Action, Alen) ->
io:fwrite(File, "yystate(~w, [C|Ics], Line, Tlen, ~s, ~s) when C >= ~w, C =< ~w ->\n",
[State,Action,Alen,Min,Max]).
out_body(File, Next, Line, Action, Alen) ->
io:fwrite(File, " yystate(~w, Ics, ~s, Tlen+1, ~s, ~s);\n",
[Next,Line,Action,Alen]).
%% pack_trans([{Crange,State}]) -> [{Crange,State}] when
%% Crange = {Char,Char} | Char.
%% Pack the translation table into something more suitable for
%% generating code. We KNOW how the pattern matching compiler works
%% so solitary characters are stored before ranges. We do this by
%% prepending singletons to the front of the packed transitions and
%% appending ranges to the back. This preserves the smallest to
%% largest order of ranges. Newline characters, $\n, are always
%% extracted and handled as singeltons.
pack_trans(Trs) -> pack_trans(Trs, []).
%% pack_trans(Trs) ->
%% Trs1 = pack_trans(Trs, []),
%% io:fwrite("tr:~p\n=> ~p\n", [Trs,Trs1]),
%% Trs1.
pack_trans([{{C,C},S}|Trs], Pt) -> % Singletons to the head
pack_trans(Trs, [{C,S}|Pt]);
%% Special detection and handling of $\n.
pack_trans([{{Cf,$\n},S}|Trs], Pt) ->
pack_trans([{{Cf,$\n-1},S}|Trs], [{$\n,S}|Pt]);
pack_trans([{{$\n,Cl},S}|Trs], Pt) ->
pack_trans([{{$\n+1,Cl},S}|Trs], [{$\n,S}|Pt]);
pack_trans([{{Cf,Cl},S}|Trs], Pt) when Cf < $\n, Cl > $\n ->
pack_trans([{{Cf,$\n-1},S},{{$\n+1,Cl},S}|Trs], [{$\n,S}|Pt]);
%% Small ranges become singletons.
pack_trans([{{Cf,Cl},S}|Trs], Pt) when Cl == Cf + 1 ->
pack_trans(Trs, [{Cf,S},{Cl,S}|Pt]);
pack_trans([Tr|Trs], Pt) -> % The default uninteresting case
pack_trans(Trs, Pt ++ [Tr]);
pack_trans([], Pt) -> Pt.
%% out_actions(File, XrlFile, ActionList) -> ok.
%% Write out the action table.
out_actions(File, XrlFile, As) ->
As1 = prep_out_actions(As),
foreach(fun (A) -> out_action(File, A) end, As1),
io:fwrite(File, "yyaction(_, _, _, _) -> error.~n", []),
foreach(fun (A) -> out_action_code(File, XrlFile, A) end, As1).
prep_out_actions(As) ->
map(fun ({A,empty_action}) ->
{A,empty_action};
({A,Code,TokenChars,TokenLen,TokenLine}) ->
Vs = [{TokenChars,"TokenChars"},
{TokenLen,"TokenLen"},
{TokenLine,"TokenLine"},
{TokenChars,"YYtcs"},
{TokenLen or TokenChars,"TokenLen"}],
Vars = [if F -> S; true -> "_" end || {F,S} <- Vs],
Name = list_to_atom(lists:concat([yyaction_,A])),
[Chars,Len,Line,_,_] = Vars,
Args = [V || V <- [Chars,Len,Line], V =/= "_"],
ArgsChars = string:join(Args, ", "),
{A,Code,Vars,Name,Args,ArgsChars}
end, As).
out_action(File, {A,empty_action}) ->
io:fwrite(File, "yyaction(~w, _, _, _) -> skip_token;~n", [A]);
out_action(File, {A,_Code,Vars,Name,_Args,ArgsChars}) ->
[_,_,Line,Tcs,Len] = Vars,
io:fwrite(File, "yyaction(~w, ~s, ~s, ~s) ->~n", [A,Len,Tcs,Line]),
if
Tcs =/= "_" ->
io:fwrite(File, " TokenChars = yypre(YYtcs, TokenLen),~n", []);
true -> ok
end,
io:fwrite(File, " ~s(~s);~n", [Name, ArgsChars]).
out_action_code(_File, _XrlFile, {_A,empty_action}) ->
ok;
out_action_code(File, XrlFile, {_A,Code,_Vars,Name,Args,ArgsChars}) ->
%% Should set the file to the .erl file, but instead assumes that
%% ?LEEXINC is syntactically correct.
io:fwrite(File, "\n-compile({inline,~w/~w}).\n", [Name, length(Args)]),
{line, L} = erl_scan:token_info(hd(Code), line),
output_file_directive(File, XrlFile, L-2),
io:fwrite(File, "~s(~s) ->~n", [Name, ArgsChars]),
io:fwrite(File, " ~s\n", [pp_tokens(Code, L)]).
%% pp_tokens(Tokens, Line) -> [char()].
%% Prints the tokens keeping the line breaks of the original code.
pp_tokens(Tokens, Line0) -> pp_tokens(Tokens, Line0, none).
pp_tokens([], _Line0, _) -> [];
pp_tokens([T | Ts], Line0, Prev) ->
{line, Line} = erl_scan:token_info(T, line),
[pp_sep(Line, Line0, Prev, T), pp_symbol(T) | pp_tokens(Ts, Line, T)].
pp_symbol({var,_,Var}) -> atom_to_list(Var);
pp_symbol({_,_,Symbol}) -> io_lib:fwrite("~p", [Symbol]);
pp_symbol({dot, _}) -> ".";
pp_symbol({Symbol, _}) -> atom_to_list(Symbol).
pp_sep(Line, Line0, Prev, T) when Line > Line0 ->
["\n " | pp_sep(Line - 1, Line0, Prev, T)];
pp_sep(_, _, {'.',_}, _) -> ""; % No space after '.' (not a dot)
pp_sep(_, _, {'#',_}, _) -> ""; % No space after '#'
pp_sep(_, _, {'(',_}, _) -> ""; % No space after '('
pp_sep(_, _, {'[',_}, _) -> ""; % No space after '['
pp_sep(_, _, _, {'.',_}) -> ""; % No space before '.'
pp_sep(_, _, _, {'#',_}) -> ""; % No space before '#'
pp_sep(_, _, _, {',',_}) -> ""; % No space before ','
pp_sep(_, _, _, {')',_}) -> ""; % No space before ')'
pp_sep(_, _, _, _) -> " ".
%% out_dfa_graph(LeexState, DFA, DfaStart) -> ok | error.
%% Writes the DFA to a .dot file in DOT-format which can be viewed
%% with Graphviz.
out_dfa_graph(St, DFA, DF) ->
verbose_print(St, "Writing DFA to file ~s, ", [St#leex.gfile]),
case file:open(St#leex.gfile, [write]) of
{ok,Gfile} ->
try
io:fwrite(Gfile, "digraph DFA {~n", []),
out_dfa_states(Gfile, DFA, DF),
out_dfa_edges(Gfile, DFA),
io:fwrite(Gfile, "}~n", []),
verbose_print(St, "ok~n", []),
St
after file:close(Gfile)
end;
{error,Error} ->
verbose_print(St, "error~n", []),
add_error({none,leex,{file_error,Error}}, St)
end.
out_dfa_states(File, DFA, DF) ->
foreach(fun (S) -> out_dfa_state(File, DF, S) end, DFA),
io:fwrite(File, "~n", []).
out_dfa_state(File, DF, #dfa_state{no=DF, accept={accept,_}}) ->
io:fwrite(File, " ~b [shape=doublecircle color=green];~n", [DF]);
out_dfa_state(File, DF, #dfa_state{no=DF, accept=noaccept}) ->
io:fwrite(File, " ~b [shape=circle color=green];~n", [DF]);
out_dfa_state(File, _, #dfa_state{no=S, accept={accept,_}}) ->
io:fwrite(File, " ~b [shape=doublecircle];~n", [S]);
out_dfa_state(File, _, #dfa_state{no=S, accept=noaccept}) ->
io:fwrite(File, " ~b [shape=circle];~n", [S]).
out_dfa_edges(File, DFA) ->
foreach(fun (#dfa_state{no=S,trans=Trans}) ->
Pt = pack_trans(Trans),
Tdict = foldl(fun ({Cr,T}, D) ->
orddict:append(T, Cr, D)
end, orddict:new(), Pt),
foreach(fun (T) ->
Crs = orddict:fetch(T, Tdict),
Edgelab = dfa_edgelabel(Crs),
io:fwrite(File, " ~b -> ~b [label=\"~s\"];~n",
[S,T,Edgelab])
end, sort(orddict:fetch_keys(Tdict)))
end, DFA).
dfa_edgelabel([C]) when is_integer(C) -> quote(C);
dfa_edgelabel(Cranges) ->
%% io:fwrite("el: ~p\n", [Cranges]),
"[" ++ map(fun ({A,B}) -> [quote(A), "-", quote(B)];
(C) -> [quote(C)]
end, Cranges) ++ "]".
output_file_directive(File, Filename, Line) ->
io:fwrite(File, <<"-file(~s, ~w).\n">>,
[format_filename(Filename), Line]).
format_filename(Filename) ->
io_lib:write_string(filename:flatten(Filename)).
quote($^) -> "\\^";
quote($.) -> "\\.";
quote($$) -> "\\$";
quote($-) -> "\\-";
quote($[) -> "\\[";
quote($]) -> "\\]";
quote($\s) -> "\\\\s";
quote($\") -> "\\\"";
quote($\b) -> "\\\\b";
quote($\f) -> "\\\\f";
quote($\n) -> "\\\\n";
quote($\r) -> "\\\\r";
quote($\t) -> "\\\\t";
quote($\e) -> "\\\\e";
quote($\v) -> "\\\\v";
quote($\d) -> "\\\\d";
quote($\\) -> "\\\\";
quote(C) when is_integer(C) ->
%% Must remove the $ and get the \'s right.
case io_lib:write_unicode_char(C) of
[$$,$\\|Cs] -> "\\\\" ++ Cs;
[$$|Cs] -> Cs
end;
quote(maxchar) ->
"MAXCHAR".
|