1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% Purpose: Help funtions for handling the TLS 1.3 (specific parts of)
%%% TLS handshake protocol
%%----------------------------------------------------------------------
-module(tls_handshake_1_3).
-include("tls_handshake_1_3.hrl").
-include("ssl_alert.hrl").
-include("ssl_cipher.hrl").
-include("ssl_connection.hrl").
-include("ssl_internal.hrl").
-include("ssl_record.hrl").
-include_lib("public_key/include/public_key.hrl").
%% Encode
-export([encode_handshake/1, decode_handshake/2]).
%% Create handshake messages
-export([certificate/5,
certificate_verify/4,
encrypted_extensions/0,
server_hello/4]).
-export([do_start/2,
do_negotiated/2,
do_wait_cert/2,
do_wait_cv/2,
do_wait_finished/2]).
%%====================================================================
%% Create handshake messages
%%====================================================================
server_hello(MsgType, SessionId, KeyShare, ConnectionStates) ->
#{security_parameters := SecParams} =
ssl_record:pending_connection_state(ConnectionStates, read),
Extensions = server_hello_extensions(MsgType, KeyShare),
#server_hello{server_version = {3,3}, %% legacy_version
cipher_suite = SecParams#security_parameters.cipher_suite,
compression_method = 0, %% legacy attribute
random = server_hello_random(MsgType, SecParams),
session_id = SessionId,
extensions = Extensions
}.
server_hello_extensions(MsgType, KeyShare) ->
SupportedVersions = #server_hello_selected_version{selected_version = {3,4}},
Extensions = #{server_hello_selected_version => SupportedVersions},
ssl_handshake:add_server_share(MsgType, Extensions, KeyShare).
server_hello_random(server_hello, #security_parameters{server_random = Random}) ->
Random;
%% For reasons of backward compatibility with middleboxes (see
%% Appendix D.4), the HelloRetryRequest message uses the same structure
%% as the ServerHello, but with Random set to the special value of the
%% SHA-256 of "HelloRetryRequest":
%%
%% CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91
%% C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C
server_hello_random(hello_retry_request, _) ->
crypto:hash(sha256, "HelloRetryRequest").
%% TODO: implement support for encrypted_extensions
encrypted_extensions() ->
#encrypted_extensions{
extensions = #{}
}.
certificate_request(SignAlgs0, SignAlgsCert0) ->
%% Input arguments contain TLS 1.2 algorithms due to backward compatibility
%% reasons. These {Hash, Algo} tuples must be filtered before creating the
%% the extensions.
SignAlgs = filter_tls13_algs(SignAlgs0),
SignAlgsCert = filter_tls13_algs(SignAlgsCert0),
Extensions0 = add_signature_algorithms(#{}, SignAlgs),
Extensions = add_signature_algorithms_cert(Extensions0, SignAlgsCert),
#certificate_request_1_3{
certificate_request_context = <<>>,
extensions = Extensions}.
add_signature_algorithms(Extensions, SignAlgs) ->
Extensions#{signature_algorithms =>
#signature_algorithms{signature_scheme_list = SignAlgs}}.
add_signature_algorithms_cert(Extensions, undefined) ->
Extensions;
add_signature_algorithms_cert(Extensions, SignAlgsCert) ->
Extensions#{signature_algorithms_cert =>
#signature_algorithms{signature_scheme_list = SignAlgsCert}}.
filter_tls13_algs(undefined) -> undefined;
filter_tls13_algs(Algo) ->
lists:filter(fun is_atom/1, Algo).
%% TODO: use maybe monad for error handling!
%% enum {
%% X509(0),
%% RawPublicKey(2),
%% (255)
%% } CertificateType;
%%
%% struct {
%% select (certificate_type) {
%% case RawPublicKey:
%% /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
%% opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
%%
%% case X509:
%% opaque cert_data<1..2^24-1>;
%% };
%% Extension extensions<0..2^16-1>;
%% } CertificateEntry;
%%
%% struct {
%% opaque certificate_request_context<0..2^8-1>;
%% CertificateEntry certificate_list<0..2^24-1>;
%% } Certificate;
certificate(OwnCert, CertDbHandle, CertDbRef, _CRContext, server) ->
case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of
{ok, _, Chain} ->
CertList = chain_to_cert_list(Chain),
%% If this message is in response to a CertificateRequest, the value of
%% certificate_request_context in that message. Otherwise (in the case
%%of server authentication), this field SHALL be zero length.
#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = CertList};
{error, Error} ->
?ALERT_REC(?FATAL, ?INTERNAL_ERROR, {server_has_no_suitable_certificates, Error})
end.
certificate_verify(PrivateKey, SignatureScheme,
#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = {Messages, _}}}, server) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, write),
#security_parameters{prf_algorithm = HKDFAlgo} = SecParamsR,
{HashAlgo, _, _} =
ssl_cipher:scheme_to_components(SignatureScheme),
Context = lists:reverse(Messages),
%% Transcript-Hash uses the HKDF hash function defined by the cipher suite.
THash = tls_v1:transcript_hash(Context, HKDFAlgo),
%% Digital signatures use the hash function defined by the selected signature
%% scheme.
case sign(THash, <<"TLS 1.3, server CertificateVerify">>,
HashAlgo, PrivateKey) of
{ok, Signature} ->
{ok, #certificate_verify_1_3{
algorithm = SignatureScheme,
signature = Signature
}};
{error, badarg} ->
{error, badarg}
end.
finished(#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = {Messages, _}}}) ->
#{security_parameters := SecParamsR,
cipher_state := #cipher_state{finished_key = FinishedKey}} =
ssl_record:current_connection_state(ConnectionStates, write),
#security_parameters{prf_algorithm = HKDFAlgo} = SecParamsR,
VerifyData = tls_v1:finished_verify_data(FinishedKey, HKDFAlgo, Messages),
#finished{
verify_data = VerifyData
}.
%%====================================================================
%% Encode handshake
%%====================================================================
encode_handshake(#certificate_request_1_3{
certificate_request_context = Context,
extensions = Exts})->
EncContext = encode_cert_req_context(Context),
BinExts = encode_extensions(Exts),
{?CERTIFICATE_REQUEST, <<EncContext/binary, BinExts/binary>>};
encode_handshake(#certificate_1_3{
certificate_request_context = Context,
certificate_list = Entries}) ->
EncContext = encode_cert_req_context(Context),
EncEntries = encode_cert_entries(Entries),
{?CERTIFICATE, <<EncContext/binary, EncEntries/binary>>};
encode_handshake(#certificate_verify_1_3{
algorithm = Algorithm,
signature = Signature}) ->
EncAlgo = encode_algorithm(Algorithm),
EncSign = encode_signature(Signature),
{?CERTIFICATE_VERIFY, <<EncAlgo/binary, EncSign/binary>>};
encode_handshake(#encrypted_extensions{extensions = Exts})->
{?ENCRYPTED_EXTENSIONS, encode_extensions(Exts)};
encode_handshake(#new_session_ticket{
ticket_lifetime = LifeTime,
ticket_age_add = Age,
ticket_nonce = Nonce,
ticket = Ticket,
extensions = Exts}) ->
TicketSize = byte_size(Ticket),
BinExts = encode_extensions(Exts),
{?NEW_SESSION_TICKET, <<?UINT32(LifeTime), ?UINT32(Age),
?BYTE(Nonce), ?UINT16(TicketSize), Ticket/binary,
BinExts/binary>>};
encode_handshake(#end_of_early_data{}) ->
{?END_OF_EARLY_DATA, <<>>};
encode_handshake(#key_update{request_update = Update}) ->
{?KEY_UPDATE, <<?BYTE(Update)>>};
encode_handshake(HandshakeMsg) ->
ssl_handshake:encode_handshake(HandshakeMsg, {3,4}).
%%====================================================================
%% Decode handshake
%%====================================================================
decode_handshake(?CERTIFICATE_REQUEST, <<?BYTE(0), ?UINT16(Size), EncExts:Size/binary>>) ->
Exts = decode_extensions(EncExts, certificate_request),
#certificate_request_1_3{
certificate_request_context = <<>>,
extensions = Exts};
decode_handshake(?CERTIFICATE_REQUEST, <<?BYTE(CSize), Context:CSize/binary,
?UINT16(Size), EncExts:Size/binary>>) ->
Exts = decode_extensions(EncExts, certificate_request),
#certificate_request_1_3{
certificate_request_context = Context,
extensions = Exts};
decode_handshake(?CERTIFICATE, <<?BYTE(0), ?UINT24(Size), Certs:Size/binary>>) ->
CertList = decode_cert_entries(Certs),
#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = CertList
};
decode_handshake(?CERTIFICATE, <<?BYTE(CSize), Context:CSize/binary,
?UINT24(Size), Certs:Size/binary>>) ->
CertList = decode_cert_entries(Certs),
#certificate_1_3{
certificate_request_context = Context,
certificate_list = CertList
};
decode_handshake(?CERTIFICATE_VERIFY, <<?UINT16(EncAlgo), ?UINT16(Size), Signature:Size/binary>>) ->
Algorithm = ssl_cipher:signature_scheme(EncAlgo),
#certificate_verify_1_3{
algorithm = Algorithm,
signature = Signature};
decode_handshake(?ENCRYPTED_EXTENSIONS, <<?UINT16(Size), EncExts:Size/binary>>) ->
#encrypted_extensions{
extensions = decode_extensions(EncExts, encrypted_extensions)
};
decode_handshake(?NEW_SESSION_TICKET, <<?UINT32(LifeTime), ?UINT32(Age),
?BYTE(Nonce), ?UINT16(TicketSize), Ticket:TicketSize/binary,
BinExts/binary>>) ->
Exts = decode_extensions(BinExts, encrypted_extensions),
#new_session_ticket{ticket_lifetime = LifeTime,
ticket_age_add = Age,
ticket_nonce = Nonce,
ticket = Ticket,
extensions = Exts};
decode_handshake(?END_OF_EARLY_DATA, _) ->
#end_of_early_data{};
decode_handshake(?KEY_UPDATE, <<?BYTE(Update)>>) ->
#key_update{request_update = Update};
decode_handshake(Tag, HandshakeMsg) ->
ssl_handshake:decode_handshake({3,4}, Tag, HandshakeMsg).
%%--------------------------------------------------------------------
%%% Internal functions
%%--------------------------------------------------------------------
encode_cert_req_context(<<>>) ->
<<?BYTE(0)>>;
encode_cert_req_context(Bin) ->
Size = byte_size(Bin),
<<?BYTE(Size), Bin/binary>>.
encode_cert_entries(Entries) ->
CertEntryList = encode_cert_entries(Entries, []),
Size = byte_size(CertEntryList),
<<?UINT24(Size), CertEntryList/binary>>.
encode_cert_entries([], Acc) ->
iolist_to_binary(lists:reverse(Acc));
encode_cert_entries([#certificate_entry{data = Data,
extensions = Exts} | Rest], Acc) ->
DSize = byte_size(Data),
BinExts = encode_extensions(Exts),
encode_cert_entries(Rest,
[<<?UINT24(DSize), Data/binary, BinExts/binary>> | Acc]).
encode_algorithm(Algo) ->
Scheme = ssl_cipher:signature_scheme(Algo),
<<?UINT16(Scheme)>>.
encode_signature(Signature) ->
Size = byte_size(Signature),
<<?UINT16(Size), Signature/binary>>.
decode_cert_entries(Entries) ->
decode_cert_entries(Entries, []).
decode_cert_entries(<<>>, Acc) ->
lists:reverse(Acc);
decode_cert_entries(<<?UINT24(DSize), Data:DSize/binary, ?UINT16(Esize), BinExts:Esize/binary,
Rest/binary>>, Acc) ->
Exts = decode_extensions(BinExts, certificate_request),
decode_cert_entries(Rest, [#certificate_entry{data = Data,
extensions = Exts} | Acc]).
encode_extensions(Exts)->
ssl_handshake:encode_extensions(extensions_list(Exts)).
decode_extensions(Exts, MessageType) ->
ssl_handshake:decode_extensions(Exts, {3,4}, MessageType).
extensions_list(HelloExtensions) ->
[Ext || {_, Ext} <- maps:to_list(HelloExtensions)].
%% TODO: add extensions!
chain_to_cert_list(L) ->
chain_to_cert_list(L, []).
%%
chain_to_cert_list([], Acc) ->
lists:reverse(Acc);
chain_to_cert_list([H|T], Acc) ->
chain_to_cert_list(T, [certificate_entry(H)|Acc]).
certificate_entry(DER) ->
#certificate_entry{
data = DER,
extensions = #{} %% Extensions not supported.
}.
%% The digital signature is then computed over the concatenation of:
%% - A string that consists of octet 32 (0x20) repeated 64 times
%% - The context string
%% - A single 0 byte which serves as the separator
%% - The content to be signed
%%
%% For example, if the transcript hash was 32 bytes of 01 (this length
%% would make sense for SHA-256), the content covered by the digital
%% signature for a server CertificateVerify would be:
%%
%% 2020202020202020202020202020202020202020202020202020202020202020
%% 2020202020202020202020202020202020202020202020202020202020202020
%% 544c5320312e332c207365727665722043657274696669636174655665726966
%% 79
%% 00
%% 0101010101010101010101010101010101010101010101010101010101010101
sign(THash, Context, HashAlgo, PrivateKey) ->
Content = build_content(Context, THash),
%% The length of the Salt MUST be equal to the length of the output
%% of the digest algorithm: rsa_pss_saltlen = -1
try public_key:sign(Content, HashAlgo, PrivateKey,
[{rsa_padding, rsa_pkcs1_pss_padding},
{rsa_pss_saltlen, -1},
{rsa_mgf1_md, HashAlgo}]) of
Signature ->
{ok, Signature}
catch
error:badarg ->
{error, badarg}
end.
verify(THash, Context, HashAlgo, Signature, PublicKey) ->
Content = build_content(Context, THash),
%% The length of the Salt MUST be equal to the length of the output
%% of the digest algorithm: rsa_pss_saltlen = -1
try public_key:verify(Content, HashAlgo, Signature, PublicKey,
[{rsa_padding, rsa_pkcs1_pss_padding},
{rsa_pss_saltlen, -1},
{rsa_mgf1_md, HashAlgo}]) of
Result ->
{ok, Result}
catch
error:badarg ->
{error, badarg}
end.
build_content(Context, THash) ->
Prefix = binary:copy(<<32>>, 64),
<<Prefix/binary,Context/binary,?BYTE(0),THash/binary>>.
%%====================================================================
%% Handle handshake messages
%%====================================================================
do_start(#client_hello{cipher_suites = ClientCiphers,
session_id = SessionId,
extensions = Extensions} = _Hello,
#state{connection_states = _ConnectionStates0,
ssl_options = #ssl_options{ciphers = ServerCiphers,
signature_algs = ServerSignAlgs,
supported_groups = ServerGroups0},
session = #session{own_certificate = Cert}} = State0) ->
ClientGroups0 = maps:get(elliptic_curves, Extensions, undefined),
ClientGroups = get_supported_groups(ClientGroups0),
ServerGroups = get_supported_groups(ServerGroups0),
ClientShares0 = maps:get(key_share, Extensions, undefined),
ClientShares = get_key_shares(ClientShares0),
ClientSignAlgs = get_signature_scheme_list(
maps:get(signature_algs, Extensions, undefined)),
ClientSignAlgsCert = get_signature_scheme_list(
maps:get(signature_algs_cert, Extensions, undefined)),
%% TODO: use library function if it exists
%% Init the maybe "monad"
{Ref,Maybe} = maybe(),
try
%% If the server does not select a PSK, then the server independently selects a
%% cipher suite, an (EC)DHE group and key share for key establishment,
%% and a signature algorithm/certificate pair to authenticate itself to
%% the client.
Cipher = Maybe(select_cipher_suite(ClientCiphers, ServerCiphers)),
Groups = Maybe(select_common_groups(ServerGroups, ClientGroups)),
Maybe(validate_key_share(ClientGroups, ClientShares)),
{PublicKeyAlgo, SignAlgo, SignHash} = get_certificate_params(Cert),
%% Check if client supports signature algorithm of server certificate
Maybe(check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs, ClientSignAlgsCert)),
%% Select signature algorithm (used in CertificateVerify message).
SelectedSignAlg = Maybe(select_sign_algo(PublicKeyAlgo, ClientSignAlgs, ServerSignAlgs)),
%% Select client public key. If no public key found in ClientShares or
%% ClientShares is empty, trigger HelloRetryRequest as we were able
%% to find an acceptable set of parameters but the ClientHello does not
%% contain sufficient information.
{Group, ClientPubKey} = get_client_public_key(Groups, ClientShares),
%% Generate server_share
KeyShare = ssl_cipher:generate_server_share(Group),
State1 = update_start_state(State0, Cipher, KeyShare, SessionId,
Group, SelectedSignAlg, ClientPubKey),
%% 4.1.4. Hello Retry Request
%%
%% The server will send this message in response to a ClientHello
%% message if it is able to find an acceptable set of parameters but the
%% ClientHello does not contain sufficient information to proceed with
%% the handshake.
Maybe(send_hello_retry_request(State1, ClientPubKey, KeyShare, SessionId))
%% TODO:
%% - session handling
%% - handle extensions: ALPN
%% (do not handle: NPN, srp, renegotiation_info, ec_point_formats)
catch
{Ref, {insufficient_security, no_suitable_groups}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_groups);
{Ref, illegal_parameter} ->
?ALERT_REC(?FATAL, ?ILLEGAL_PARAMETER);
{Ref, no_suitable_cipher} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_cipher);
{Ref, {insufficient_security, no_suitable_signature_algorithm}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_signature_algorithm);
{Ref, {insufficient_security, no_suitable_public_key}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_public_key)
end.
do_negotiated(start_handshake,
#state{connection_states = ConnectionStates0,
session = #session{session_id = SessionId,
own_certificate = OwnCert,
ecc = SelectedGroup,
sign_alg = SignatureScheme,
dh_public_value = ClientKey},
ssl_options = #ssl_options{} = SslOpts,
key_share = KeyShare,
handshake_env = #handshake_env{tls_handshake_history = _HHistory0},
connection_env = #connection_env{private_key = CertPrivateKey},
static_env = #static_env{
cert_db = CertDbHandle,
cert_db_ref = CertDbRef,
socket = _Socket,
transport_cb = _Transport}
} = State0) ->
{Ref,Maybe} = maybe(),
try
%% Create server_hello
%% Extensions: supported_versions, key_share, (pre_shared_key)
ServerHello = server_hello(server_hello, SessionId, KeyShare, ConnectionStates0),
{State1, _} = tls_connection:send_handshake(ServerHello, State0),
State2 =
calculate_handshake_secrets(ClientKey, SelectedGroup, KeyShare, State1),
State3 = ssl_record:step_encryption_state(State2),
%% Create EncryptedExtensions
EncryptedExtensions = encrypted_extensions(),
%% Encode EncryptedExtensions
State4 = tls_connection:queue_handshake(EncryptedExtensions, State3),
%% Create and send CertificateRequest ({verify, verify_peer})
{State5, NextState} = maybe_send_certificate_request(State4, SslOpts),
%% Create Certificate
Certificate = certificate(OwnCert, CertDbHandle, CertDbRef, <<>>, server),
%% Encode Certificate
State6 = tls_connection:queue_handshake(Certificate, State5),
%% Create CertificateVerify
CertificateVerify = Maybe(certificate_verify(CertPrivateKey, SignatureScheme,
State6, server)),
%% Encode CertificateVerify
State7 = tls_connection:queue_handshake(CertificateVerify, State6),
%% Create Finished
Finished = finished(State7),
%% Encode Finished
State8 = tls_connection:queue_handshake(Finished, State7),
%% Send first flight
{State9, _} = tls_connection:send_handshake_flight(State8),
{State9, NextState}
catch
{Ref, badarg} ->
?ALERT_REC(?FATAL, ?INTERNAL_ERROR, {digitally_sign, badarg})
end.
do_wait_cert(#certificate_1_3{} = Certificate, State0) ->
{Ref,Maybe} = maybe(),
try
Maybe(process_client_certificate(Certificate, State0))
catch
{Ref, {certificate_required, State}} ->
{?ALERT_REC(?FATAL, ?CERTIFICATE_REQUIRED, certificate_required), State};
{Ref, {{certificate_unknown, Reason}, State}} ->
{?ALERT_REC(?FATAL, ?CERTIFICATE_UNKNOWN, Reason), State};
{Ref, {{internal_error, Reason}, State}} ->
{?ALERT_REC(?FATAL, ?INTERNAL_ERROR, Reason), State};
{#alert{} = Alert, State} ->
{Alert, State}
end.
do_wait_cv(#certificate_verify_1_3{} = CertificateVerify, State0) ->
{Ref,Maybe} = maybe(),
try
Maybe(verify_signature_algorithm(State0, CertificateVerify)),
Maybe(verify_certificate_verify(State0, CertificateVerify))
catch
{Ref, {{bad_certificate, Reason}, State}} ->
{?ALERT_REC(?FATAL, ?BAD_CERTIFICATE, {bad_certificate, Reason}), State};
{Ref, {badarg, State}} ->
{?ALERT_REC(?FATAL, ?INTERNAL_ERROR, {verify, badarg}), State};
{Ref, {{handshake_failure, Reason}, State}} ->
{?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE, {handshake_failure, Reason}), State}
end.
do_wait_finished(#finished{verify_data = VerifyData},
#state{connection_states = _ConnectionStates0,
session = #session{session_id = _SessionId,
own_certificate = _OwnCert},
ssl_options = #ssl_options{} = _SslOpts,
key_share = _KeyShare,
handshake_env = #handshake_env{tls_handshake_history = _HHistory0},
static_env = #static_env{
cert_db = _CertDbHandle,
cert_db_ref = _CertDbRef,
socket = _Socket,
transport_cb = _Transport}
} = State0) ->
{Ref,Maybe} = maybe(),
try
Maybe(validate_client_finished(State0, VerifyData)),
State1 = calculate_traffic_secrets(State0),
%% Configure traffic keys
ssl_record:step_encryption_state(State1)
catch
{Ref, decrypt_error} ->
?ALERT_REC(?FATAL, ?DECRYPT_ERROR, decrypt_error)
end.
%% TODO: Remove this function!
%% not_implemented(State, Reason) ->
%% {error, {not_implemented, State, Reason}}.
%%
%% not_implemented(update_secrets, State0, Reason) ->
%% State1 = calculate_traffic_secrets(State0),
%% State = ssl_record:step_encryption_state(State1),
%% {error, {not_implemented, State, Reason}}.
%% Recipients of Finished messages MUST verify that the contents are
%% correct and if incorrect MUST terminate the connection with a
%% "decrypt_error" alert.
validate_client_finished(#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = {Messages0, _}}}, VerifyData) ->
#{security_parameters := SecParamsR,
cipher_state := #cipher_state{finished_key = FinishedKey}} =
ssl_record:current_connection_state(ConnectionStates, read),
#security_parameters{prf_algorithm = HKDFAlgo} = SecParamsR,
%% Drop the client's finished message, it is not part of the handshake context
%% when the client calculates its finished message.
[_|Messages] = Messages0,
ControlData = tls_v1:finished_verify_data(FinishedKey, HKDFAlgo, Messages),
compare_verify_data(ControlData, VerifyData).
compare_verify_data(Data, Data) ->
ok;
compare_verify_data(_, _) ->
{error, decrypt_error}.
send_hello_retry_request(#state{connection_states = ConnectionStates0} = State0,
no_suitable_key, KeyShare, SessionId) ->
ServerHello = server_hello(hello_retry_request, SessionId, KeyShare, ConnectionStates0),
{State1, _} = tls_connection:send_handshake(ServerHello, State0),
%% TODO: Fix handshake history!
State2 = replace_ch1_with_message_hash(State1),
{ok, {State2, start}};
send_hello_retry_request(State0, _, _, _) ->
%% Suitable key found.
{ok, {State0, negotiated}}.
maybe_send_certificate_request(State, #ssl_options{verify = verify_none}) ->
{State, wait_finished};
maybe_send_certificate_request(State, #ssl_options{
verify = verify_peer,
signature_algs = SignAlgs,
signature_algs_cert = SignAlgsCert}) ->
CertificateRequest = certificate_request(SignAlgs, SignAlgsCert),
{tls_connection:queue_handshake(CertificateRequest, State), wait_cert}.
process_client_certificate(#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = []},
#state{ssl_options =
#ssl_options{
fail_if_no_peer_cert = false}} = State) ->
{ok, {State, wait_finished}};
process_client_certificate(#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = []},
#state{ssl_options =
#ssl_options{
fail_if_no_peer_cert = true}} = State0) ->
%% At this point the client believes that the connection is up and starts using
%% its traffic secrets. In order to be able send an proper Alert to the client
%% the server should also change its connection state and use the traffic
%% secrets.
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{error, {certificate_required, State}};
process_client_certificate(#certificate_1_3{certificate_list = Certs0},
#state{ssl_options = SslOptions,
static_env =
#static_env{
role = Role,
host = Host,
cert_db = CertDbHandle,
cert_db_ref = CertDbRef,
crl_db = CRLDbHandle}} = State0) ->
%% TODO: handle extensions!
%% Remove extensions from list of certificates!
Certs = convert_certificate_chain(Certs0),
case validate_certificate_chain(Certs, CertDbHandle, CertDbRef,
SslOptions, CRLDbHandle, Role, Host) of
{ok, {PeerCert, PublicKeyInfo}} ->
State = store_peer_cert(State0, PeerCert, PublicKeyInfo),
{ok, {State, wait_cv}};
{error, Reason} ->
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{error, {Reason, State}};
#alert{} = Alert ->
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{Alert, State}
end.
validate_certificate_chain(Certs, CertDbHandle, CertDbRef, SslOptions, CRLDbHandle, Role, Host) ->
ServerName = ssl_handshake:server_name(SslOptions#ssl_options.server_name_indication, Host, Role),
[PeerCert | ChainCerts ] = Certs,
try
{TrustedCert, CertPath} =
ssl_certificate:trusted_cert_and_path(Certs, CertDbHandle, CertDbRef,
SslOptions#ssl_options.partial_chain),
ValidationFunAndState =
ssl_handshake:validation_fun_and_state(SslOptions#ssl_options.verify_fun, Role,
CertDbHandle, CertDbRef, ServerName,
SslOptions#ssl_options.customize_hostname_check,
SslOptions#ssl_options.crl_check, CRLDbHandle, CertPath),
Options = [{max_path_length, SslOptions#ssl_options.depth},
{verify_fun, ValidationFunAndState}],
%% TODO: Validate if Certificate is using a supported signature algorithm
%% (signature_algs_cert)!
case public_key:pkix_path_validation(TrustedCert, CertPath, Options) of
{ok, {PublicKeyInfo,_}} ->
{ok, {PeerCert, PublicKeyInfo}};
{error, Reason} ->
ssl_handshake:handle_path_validation_error(Reason, PeerCert, ChainCerts,
SslOptions, Options,
CertDbHandle, CertDbRef)
end
catch
error:{badmatch,{asn1, Asn1Reason}} ->
%% ASN-1 decode of certificate somehow failed
{error, {certificate_unknown, {failed_to_decode_certificate, Asn1Reason}}};
error:OtherReason ->
{error, {internal_error, {unexpected_error, OtherReason}}}
end.
store_peer_cert(#state{session = Session,
handshake_env = HsEnv} = State, PeerCert, PublicKeyInfo) ->
State#state{session = Session#session{peer_certificate = PeerCert},
handshake_env = HsEnv#handshake_env{public_key_info = PublicKeyInfo}}.
convert_certificate_chain(Certs) ->
Fun = fun(#certificate_entry{data = Data}) ->
{true, Data};
(_) ->
false
end,
lists:filtermap(Fun, Certs).
%% 4.4.1. The Transcript Hash
%%
%% As an exception to this general rule, when the server responds to a
%% ClientHello with a HelloRetryRequest, the value of ClientHello1 is
%% replaced with a special synthetic handshake message of handshake type
%% "message_hash" containing Hash(ClientHello1). I.e.,
%%
%% Transcript-Hash(ClientHello1, HelloRetryRequest, ... Mn) =
%% Hash(message_hash || /* Handshake type */
%% 00 00 Hash.length || /* Handshake message length (bytes) */
%% Hash(ClientHello1) || /* Hash of ClientHello1 */
%% HelloRetryRequest || ... || Mn)
%%
%% NOTE: Hash.length is used in practice (openssl) and not message length!
%% It is most probably a fault in the RFC.
replace_ch1_with_message_hash(#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history =
{[HRR,CH1|HHistory], LM}} = HSEnv} = State0) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, read),
#security_parameters{prf_algorithm = HKDFAlgo} = SecParamsR,
MessageHash = message_hash(CH1, HKDFAlgo),
State0#state{handshake_env =
HSEnv#handshake_env{
tls_handshake_history =
{[HRR,MessageHash|HHistory], LM}}}.
message_hash(ClientHello1, HKDFAlgo) ->
[?MESSAGE_HASH,
0,0,ssl_cipher:hash_size(HKDFAlgo),
crypto:hash(HKDFAlgo, ClientHello1)].
calculate_handshake_secrets(ClientKey, SelectedGroup, KeyShare,
#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = HHistory}} = State0) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, read),
#security_parameters{prf_algorithm = HKDFAlgo,
cipher_suite = CipherSuite} = SecParamsR,
%% Calculate handshake_secret
PSK = binary:copy(<<0>>, ssl_cipher:hash_size(HKDFAlgo)),
EarlySecret = tls_v1:key_schedule(early_secret, HKDFAlgo , {psk, PSK}),
PrivateKey = get_server_private_key(KeyShare), %% #'ECPrivateKey'{}
IKM = calculate_shared_secret(ClientKey, PrivateKey, SelectedGroup),
HandshakeSecret = tls_v1:key_schedule(handshake_secret, HKDFAlgo, IKM, EarlySecret),
%% Calculate [sender]_handshake_traffic_secret
{Messages, _} = HHistory,
ClientHSTrafficSecret =
tls_v1:client_handshake_traffic_secret(HKDFAlgo, HandshakeSecret, lists:reverse(Messages)),
ServerHSTrafficSecret =
tls_v1:server_handshake_traffic_secret(HKDFAlgo, HandshakeSecret, lists:reverse(Messages)),
%% Calculate traffic keys
#{cipher := Cipher} = ssl_cipher_format:suite_definition(CipherSuite),
{ReadKey, ReadIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ClientHSTrafficSecret),
{WriteKey, WriteIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ServerHSTrafficSecret),
%% Calculate Finished Keys
ReadFinishedKey = tls_v1:finished_key(ClientHSTrafficSecret, HKDFAlgo),
WriteFinishedKey = tls_v1:finished_key(ServerHSTrafficSecret, HKDFAlgo),
update_pending_connection_states(State0, HandshakeSecret,
ReadKey, ReadIV, ReadFinishedKey,
WriteKey, WriteIV, WriteFinishedKey).
calculate_traffic_secrets(#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = HHistory}} = State0) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, read),
#security_parameters{prf_algorithm = HKDFAlgo,
cipher_suite = CipherSuite,
master_secret = HandshakeSecret} = SecParamsR,
MasterSecret =
tls_v1:key_schedule(master_secret, HKDFAlgo, HandshakeSecret),
%% Get the correct list messages for the handshake context.
Messages = get_handshake_context(HHistory),
%% Calculate [sender]_application_traffic_secret_0
ClientAppTrafficSecret0 =
tls_v1:client_application_traffic_secret_0(HKDFAlgo, MasterSecret, lists:reverse(Messages)),
ServerAppTrafficSecret0 =
tls_v1:server_application_traffic_secret_0(HKDFAlgo, MasterSecret, lists:reverse(Messages)),
%% Calculate traffic keys
#{cipher := Cipher} = ssl_cipher_format:suite_definition(CipherSuite),
{ReadKey, ReadIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ClientAppTrafficSecret0),
{WriteKey, WriteIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ServerAppTrafficSecret0),
update_pending_connection_states(State0, MasterSecret,
ReadKey, ReadIV, undefined,
WriteKey, WriteIV, undefined).
get_server_private_key(#key_share_server_hello{server_share = ServerShare}) ->
get_private_key(ServerShare).
get_private_key(#key_share_entry{
key_exchange = #'ECPrivateKey'{} = PrivateKey}) ->
PrivateKey;
get_private_key(#key_share_entry{
key_exchange =
{_, PrivateKey}}) ->
PrivateKey.
%% TODO: implement EC keys
get_public_key({?'rsaEncryption', PublicKey, _}) ->
PublicKey.
%% X25519, X448
calculate_shared_secret(OthersKey, MyKey, Group)
when is_binary(OthersKey) andalso is_binary(MyKey) andalso
(Group =:= x25519 orelse Group =:= x448)->
crypto:compute_key(ecdh, OthersKey, MyKey, Group);
%% FFDHE
calculate_shared_secret(OthersKey, MyKey, Group)
when is_binary(OthersKey) andalso is_binary(MyKey) ->
Params = #'DHParameter'{prime = P} = ssl_dh_groups:dh_params(Group),
S = public_key:compute_key(OthersKey, MyKey, Params),
Size = byte_size(binary:encode_unsigned(P)),
ssl_cipher:add_zero_padding(S, Size);
%% ECDHE
calculate_shared_secret(OthersKey, MyKey = #'ECPrivateKey'{}, _Group)
when is_binary(OthersKey) ->
Point = #'ECPoint'{point = OthersKey},
public_key:compute_key(Point, MyKey).
update_pending_connection_states(#state{connection_states =
CS = #{pending_read := PendingRead0,
pending_write := PendingWrite0}} = State,
HandshakeSecret,
ReadKey, ReadIV, ReadFinishedKey,
WriteKey, WriteIV, WriteFinishedKey) ->
PendingRead = update_connection_state(PendingRead0, HandshakeSecret,
ReadKey, ReadIV, ReadFinishedKey),
PendingWrite = update_connection_state(PendingWrite0, HandshakeSecret,
WriteKey, WriteIV, WriteFinishedKey),
State#state{connection_states = CS#{pending_read => PendingRead,
pending_write => PendingWrite}}.
update_connection_state(ConnectionState = #{security_parameters := SecurityParameters0},
HandshakeSecret, Key, IV, FinishedKey) ->
%% Store secret
SecurityParameters = SecurityParameters0#security_parameters{
master_secret = HandshakeSecret},
ConnectionState#{security_parameters => SecurityParameters,
cipher_state => cipher_init(Key, IV, FinishedKey)}.
update_start_state(#state{connection_states = ConnectionStates0,
connection_env = CEnv,
session = Session} = State,
Cipher, KeyShare, SessionId,
Group, SelectedSignAlg, ClientPubKey) ->
#{security_parameters := SecParamsR0} = PendingRead =
maps:get(pending_read, ConnectionStates0),
#{security_parameters := SecParamsW0} = PendingWrite =
maps:get(pending_write, ConnectionStates0),
SecParamsR = ssl_cipher:security_parameters_1_3(SecParamsR0, Cipher),
SecParamsW = ssl_cipher:security_parameters_1_3(SecParamsW0, Cipher),
ConnectionStates =
ConnectionStates0#{pending_read => PendingRead#{security_parameters => SecParamsR},
pending_write => PendingWrite#{security_parameters => SecParamsW}},
State#state{connection_states = ConnectionStates,
key_share = KeyShare,
session = Session#session{session_id = SessionId,
ecc = Group,
sign_alg = SelectedSignAlg,
dh_public_value = ClientPubKey},
connection_env = CEnv#connection_env{negotiated_version = {3,4}}}.
cipher_init(Key, IV, FinishedKey) ->
#cipher_state{key = Key,
iv = IV,
finished_key = FinishedKey,
tag_len = 16}.
%% Verify CertificateVerify:
%% ClientHello (client) (1)
%% ServerHello (server) (2)
%% EncryptedExtensions (server) (8)
%% CertificateRequest (server) (13)
%% Certificate (server) (11)
%% CertificateVerify (server) (15)
%% Finished (server) (20)
%% Certificate (client) (11)
%% CertificateVerify (client) (15) - Drop! Not included in calculations!
get_handshake_context({[<<15,_/binary>>|Messages], _}) ->
Messages;
%% Client is authenticated with certificate:
%% ClientHello (client) (1)
%% ServerHello (server) (2)
%% EncryptedExtensions (server) (8)
%% CertificateRequest (server) (13)
%% Certificate (server) (11)
%% CertificateVerify (server) (15)
%% Finished (server) (20)
%% Certificate (client) (11) - Drop! Not included in calculations!
%% CertificateVerify (client) (15) - Drop! Not included in calculations!
%% Finished (client) (20) - Drop! Not included in calculations!
%%
%% Client is authenticated but sends empty certificate:
%% ClientHello (client) (1)
%% ServerHello (server) (2)
%% EncryptedExtensions (server) (8)
%% CertificateRequest (server) (13)
%% Certificate (server) (11)
%% CertificateVerify (server) (15)
%% Finished (server) (20)
%% Certificate (client) (11) - Drop! Not included in calculations!
%% Finished (client) (20) - Drop! Not included in calculations!
%%
%% Client is not authenticated:
%% ClientHello (client) (1)
%% ServerHello (server) (2)
%% EncryptedExtensions (server) (8)
%% Certificate (server) (11)
%% CertificateVerify (server) (15)
%% Finished (server) (20)
%% Finished (client) (20) - Drop! Not included in calculations!
%%
%% Drop all client messages from the front of the iolist using the property that
%% incoming messages are binaries.
get_handshake_context({Messages, _}) ->
get_handshake_context(Messages);
get_handshake_context([H|T]) when is_binary(H) ->
get_handshake_context(T);
get_handshake_context(L) ->
L.
%% If sent by a client, the signature algorithm used in the signature
%% MUST be one of those present in the supported_signature_algorithms
%% field of the "signature_algorithms" extension in the
%% CertificateRequest message.
verify_signature_algorithm(#state{ssl_options =
#ssl_options{
signature_algs = ServerSignAlgs}} = State0,
#certificate_verify_1_3{algorithm = ClientSignAlg}) ->
case lists:member(ClientSignAlg, ServerSignAlgs) of
true ->
ok;
false ->
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{error, {{handshake_failure,
"CertificateVerify has a not supported signature algorithm"}, State}}
end.
verify_certificate_verify(#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
public_key_info = PublicKeyInfo,
tls_handshake_history = HHistory}} = State0,
#certificate_verify_1_3{
algorithm = SignatureScheme,
signature = Signature}) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, write),
#security_parameters{prf_algorithm = HKDFAlgo} = SecParamsR,
{HashAlgo, _, _} =
ssl_cipher:scheme_to_components(SignatureScheme),
Messages = get_handshake_context(HHistory),
Context = lists:reverse(Messages),
%% Transcript-Hash uses the HKDF hash function defined by the cipher suite.
THash = tls_v1:transcript_hash(Context, HKDFAlgo),
PublicKey = get_public_key(PublicKeyInfo),
%% Digital signatures use the hash function defined by the selected signature
%% scheme.
case verify(THash, <<"TLS 1.3, client CertificateVerify">>,
HashAlgo, Signature, PublicKey) of
{ok, true} ->
{ok, {State0, wait_finished}};
{ok, false} ->
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{error, {{handshake_failure, "Failed to verify CertificateVerify"}, State}};
{error, badarg} ->
State1 = calculate_traffic_secrets(State0),
State = ssl_record:step_encryption_state(State1),
{error, {badarg, State}}
end.
%% If there is no overlap between the received
%% "supported_groups" and the groups supported by the server, then the
%% server MUST abort the handshake with a "handshake_failure" or an
%% "insufficient_security" alert.
select_common_groups(_, []) ->
{error, {insufficient_security, no_suitable_groups}};
select_common_groups(ServerGroups, ClientGroups) ->
Fun = fun(E) -> lists:member(E, ClientGroups) end,
case lists:filter(Fun, ServerGroups) of
[] ->
{error, {insufficient_security, no_suitable_groups}};
L ->
{ok, L}
end.
%% RFC 8446 - 4.2.8. Key Share
%% This vector MAY be empty if the client is requesting a
%% HelloRetryRequest. Each KeyShareEntry value MUST correspond to a
%% group offered in the "supported_groups" extension and MUST appear in
%% the same order. However, the values MAY be a non-contiguous subset
%% of the "supported_groups" extension and MAY omit the most preferred
%% groups.
%%
%% Clients can offer as many KeyShareEntry values as the number of
%% supported groups it is offering, each representing a single set of
%% key exchange parameters.
%%
%% Clients MUST NOT offer multiple KeyShareEntry values
%% for the same group. Clients MUST NOT offer any KeyShareEntry values
%% for groups not listed in the client's "supported_groups" extension.
%% Servers MAY check for violations of these rules and abort the
%% handshake with an "illegal_parameter" alert if one is violated.
validate_key_share(_ ,[]) ->
ok;
validate_key_share([], _) ->
{error, illegal_parameter};
validate_key_share([G|ClientGroups], [{_, G, _}|ClientShares]) ->
validate_key_share(ClientGroups, ClientShares);
validate_key_share([_|ClientGroups], [_|_] = ClientShares) ->
validate_key_share(ClientGroups, ClientShares).
get_client_public_key([Group|_] = Groups, ClientShares) ->
get_client_public_key(Groups, ClientShares, Group).
%%
get_client_public_key(_, [], PreferredGroup) ->
{PreferredGroup, no_suitable_key};
get_client_public_key([], _, PreferredGroup) ->
{PreferredGroup, no_suitable_key};
get_client_public_key([Group|Groups], ClientShares, PreferredGroup) ->
case lists:keysearch(Group, 2, ClientShares) of
{value, {_, _, ClientPublicKey}} ->
{Group, ClientPublicKey};
false ->
get_client_public_key(Groups, ClientShares, PreferredGroup)
end.
%% get_client_public_key(Group, ClientShares) ->
%% case lists:keysearch(Group, 2, ClientShares) of
%% {value, {_, _, ClientPublicKey}} ->
%% ClientPublicKey;
%% false ->
%% %% 4.1.4. Hello Retry Request
%% %%
%% %% The server will send this message in response to a ClientHello
%% %% message if it is able to find an acceptable set of parameters but the
%% %% ClientHello does not contain sufficient information to proceed with
%% %% the handshake.
%% no_suitable_key
%% end.
select_cipher_suite([], _) ->
{error, no_suitable_cipher};
select_cipher_suite([Cipher|ClientCiphers], ServerCiphers) ->
case lists:member(Cipher, tls_v1:suites('TLS_v1.3')) andalso
lists:member(Cipher, ServerCiphers) of
true ->
{ok, Cipher};
false ->
select_cipher_suite(ClientCiphers, ServerCiphers)
end.
%% RFC 8446 (TLS 1.3)
%% TLS 1.3 provides two extensions for indicating which signature
%% algorithms may be used in digital signatures. The
%% "signature_algorithms_cert" extension applies to signatures in
%% certificates and the "signature_algorithms" extension, which
%% originally appeared in TLS 1.2, applies to signatures in
%% CertificateVerify messages.
%%
%% If no "signature_algorithms_cert" extension is
%% present, then the "signature_algorithms" extension also applies to
%% signatures appearing in certificates.
%% Check if the signature algorithm of the server certificate is supported
%% by the client.
check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs, undefined) ->
do_check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs);
check_cert_sign_algo(SignAlgo, SignHash, _, ClientSignAlgsCert) ->
do_check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgsCert).
%% DSA keys are not supported by TLS 1.3
select_sign_algo(dsa, _ClientSignAlgs, _ServerSignAlgs) ->
{error, {insufficient_security, no_suitable_public_key}};
%% TODO: Implement support for ECDSA keys!
select_sign_algo(_, [], _) ->
{error, {insufficient_security, no_suitable_signature_algorithm}};
select_sign_algo(PublicKeyAlgo, [C|ClientSignAlgs], ServerSignAlgs) ->
{_, S, _} = ssl_cipher:scheme_to_components(C),
%% RSASSA-PKCS1-v1_5 and Legacy algorithms are not defined for use in signed
%% TLS handshake messages: filter sha-1 and rsa_pkcs1.
case ((PublicKeyAlgo =:= rsa andalso S =:= rsa_pss_rsae)
orelse (PublicKeyAlgo =:= rsa_pss andalso S =:= rsa_pss_rsae))
andalso
lists:member(C, ServerSignAlgs) of
true ->
{ok, C};
false ->
select_sign_algo(PublicKeyAlgo, ClientSignAlgs, ServerSignAlgs)
end.
do_check_cert_sign_algo(_, _, []) ->
{error, {insufficient_security, no_suitable_signature_algorithm}};
do_check_cert_sign_algo(SignAlgo, SignHash, [Scheme|T]) ->
{Hash, Sign, _Curve} = ssl_cipher:scheme_to_components(Scheme),
case compare_sign_algos(SignAlgo, SignHash, Sign, Hash) of
true ->
ok;
_Else ->
do_check_cert_sign_algo(SignAlgo, SignHash, T)
end.
%% id-RSASSA-PSS (rsa_pss) indicates that the key may only be used for PSS signatures.
%% TODO: Uncomment when rsa_pss signatures are supported in certificates
%% compare_sign_algos(rsa_pss, Hash, Algo, Hash)
%% when Algo =:= rsa_pss_pss ->
%% true;
%% rsaEncryption (rsa) allows the key to be used for any of the standard encryption or
%% signature schemes.
compare_sign_algos(rsa, Hash, Algo, Hash)
when Algo =:= rsa_pss_rsae orelse
Algo =:= rsa_pkcs1 ->
true;
compare_sign_algos(Algo, Hash, Algo, Hash) ->
true;
compare_sign_algos(_, _, _, _) ->
false.
get_certificate_params(Cert) ->
{SignAlgo0, _Param, PublicKeyAlgo0} = ssl_handshake:get_cert_params(Cert),
{SignHash0, SignAlgo} = public_key:pkix_sign_types(SignAlgo0),
%% Convert hash to new format
SignHash = case SignHash0 of
sha ->
sha1;
H -> H
end,
PublicKeyAlgo = public_key_algo(PublicKeyAlgo0),
{PublicKeyAlgo, SignAlgo, SignHash}.
%% Note: copied from ssl_handshake
public_key_algo(?'id-RSASSA-PSS') ->
rsa_pss;
public_key_algo(?rsaEncryption) ->
rsa;
public_key_algo(?'id-ecPublicKey') ->
ecdsa;
public_key_algo(?'id-dsa') ->
dsa.
get_signature_scheme_list(undefined) ->
undefined;
get_signature_scheme_list(#signature_algorithms_cert{
signature_scheme_list = ClientSignatureSchemes}) ->
ClientSignatureSchemes;
get_signature_scheme_list(#signature_algorithms{
signature_scheme_list = ClientSignatureSchemes}) ->
ClientSignatureSchemes.
get_supported_groups(#supported_groups{supported_groups = Groups}) ->
Groups.
get_key_shares(#key_share_client_hello{client_shares = ClientShares}) ->
ClientShares.
maybe() ->
Ref = erlang:make_ref(),
Ok = fun(ok) -> ok;
({ok,R}) -> R;
({error,Reason}) ->
throw({Ref,Reason})
end,
{Ref,Ok}.
|