aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ssl/src/tls_v1.erl
blob: d1a62696cc100b004a241f869d0202d17ed0e7ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%

%%
%%----------------------------------------------------------------------
%% Purpose: Handles tls1 encryption.
%%----------------------------------------------------------------------

-module(tls_v1).

-include("ssl_cipher.hrl").
-include("ssl_internal.hrl").
-include("ssl_record.hrl").

-export([master_secret/4, finished/5, certificate_verify/3, mac_hash/7, hmac_hash/3,
	 setup_keys/8, suites/1, prf/5,
	 ecc_curves/1, ecc_curves/2, oid_to_enum/1, enum_to_oid/1, 
	 default_signature_algs/1, signature_algs/2,
         default_signature_schemes/1, signature_schemes/2,
         groups/1, groups/2, group_to_enum/1, enum_to_group/1, default_groups/1]).

-export([derive_secret/4, hkdf_expand_label/5, hkdf_extract/3, hkdf_expand/4,
         key_schedule/3, key_schedule/4, create_info/3,
         external_binder_key/2, resumption_binder_key/2,
         client_early_traffic_secret/3, early_exporter_master_secret/3,
         client_handshake_traffic_secret/3, server_handshake_traffic_secret/3,
         client_application_traffic_secret_0/3, server_application_traffic_secret_0/3,
         exporter_master_secret/3, resumption_master_secret/3,
         update_traffic_secret/2, calculate_traffic_keys/3,
         transcript_hash/2]).

-type named_curve() :: sect571r1 | sect571k1 | secp521r1 | brainpoolP512r1 |
                       sect409k1 | sect409r1 | brainpoolP384r1 | secp384r1 |
                       sect283k1 | sect283r1 | brainpoolP256r1 | secp256k1 | secp256r1 |
                       sect239k1 | sect233k1 | sect233r1 | secp224k1 | secp224r1 |
                       sect193r1 | sect193r2 | secp192k1 | secp192r1 | sect163k1 |
                       sect163r1 | sect163r2 | secp160k1 | secp160r1 | secp160r2.
-type curves() :: [named_curve()].
-type group() :: secp256r1 | secp384r1 | secp521r1 | ffdhe2048 |
                 ffdhe3072 | ffdhe4096 | ffdhe6144 | ffdhe8192.
-type supported_groups() :: [group()].
-export_type([curves/0, named_curve/0, group/0, supported_groups/0]).

%%====================================================================
%% Internal application API
%%====================================================================

%% TLS 1.3 ---------------------------------------------------
-spec derive_secret(Secret::binary(), Label::binary(),
                    Messages::iodata(), Algo::ssl_cipher_format:hash()) -> Key::binary().
derive_secret(Secret, Label, Messages, Algo) ->
    Hash = crypto:hash(mac_algo(Algo), Messages),
    hkdf_expand_label(Secret, Label,
                      Hash, ssl_cipher:hash_size(Algo), Algo).

-spec hkdf_expand_label(Secret::binary(), Label0::binary(),
                        Context::binary(), Length::integer(),  
                        Algo::ssl_cipher_format:hash()) -> KeyingMaterial::binary().
hkdf_expand_label(Secret, Label0, Context, Length, Algo) ->
    HkdfLabel = create_info(Label0, Context, Length),
    hkdf_expand(Secret, HkdfLabel, Length, Algo).

%% Create info parameter for HKDF-Expand:
%% HKDF-Expand(PRK, info, L) -> OKM
create_info(Label0, Context0, Length) ->
    %% struct {
    %%     uint16 length = Length;
    %%     opaque label<7..255> = "tls13 " + Label;
    %%     opaque context<0..255> = Context;
    %% } HkdfLabel;
    Label1 = << <<"tls13 ">>/binary, Label0/binary>>,
    LabelLen = size(Label1),
    Label = <<?BYTE(LabelLen), Label1/binary>>,
    ContextLen = size(Context0),
    Context = <<?BYTE(ContextLen),Context0/binary>>,
    Content = <<Label/binary, Context/binary>>,
    <<?UINT16(Length), Content/binary>>.

-spec hkdf_extract(MacAlg::ssl_cipher_format:hash(), Salt::binary(), 
                   KeyingMaterial::binary()) -> PseudoRandKey::binary().

hkdf_extract(MacAlg, Salt, KeyingMaterial) -> 
    hmac_hash(MacAlg, Salt, KeyingMaterial).


-spec hkdf_expand(PseudoRandKey::binary(), ContextInfo::binary(),
                  Length::integer(), Algo::ssl_cipher_format:hash()) -> KeyingMaterial::binary().
                     
hkdf_expand(PseudoRandKey, ContextInfo, Length, Algo) -> 
    Iterations = erlang:ceil(Length / ssl_cipher:hash_size(Algo)),
    hkdf_expand(Algo, PseudoRandKey, ContextInfo, Length, 1, Iterations, <<>>, <<>>).


-spec transcript_hash(Messages::iodata(),  Algo::ssl_cipher_format:hash()) -> Hash::binary().

transcript_hash(Messages, Algo) ->
     crypto:hash(mac_algo(Algo), Messages).
%% TLS 1.3 ---------------------------------------------------

%% TLS 1.0 -1.2  ---------------------------------------------------
-spec master_secret(integer(), binary(), binary(), binary()) -> binary().

master_secret(PrfAlgo, PreMasterSecret, ClientRandom, ServerRandom) ->
    %% RFC 2246 & 4346 && RFC 5246 - 8.1 %% master_secret = PRF(pre_master_secret,
    %%                                      "master secret", ClientHello.random +
    %%                                      ServerHello.random)[0..47];

    prf(PrfAlgo, PreMasterSecret, <<"master secret">>,
	[ClientRandom, ServerRandom], 48).
%% TLS 1.0 -1.2  ---------------------------------------------------

-spec finished(client | server, integer(), integer(), binary(), [binary()]) -> binary().
%% TLS 1.0 -1.1  ---------------------------------------------------
finished(Role, Version, PrfAlgo, MasterSecret, Handshake)
  when Version == 1; Version == 2; PrfAlgo == ?MD5SHA ->
    %% RFC 2246 & 4346 - 7.4.9. Finished
    %% struct {
    %%          opaque verify_data[12];
    %%      } Finished;
    %%
    %%      verify_data
    %%          PRF(master_secret, finished_label, MD5(handshake_messages) +
    %%          SHA-1(handshake_messages)) [0..11];
    MD5 = crypto:hash(md5, Handshake),
    SHA = crypto:hash(sha, Handshake),
    prf(?MD5SHA, MasterSecret, finished_label(Role), [MD5, SHA], 12);
%% TLS 1.0 -1.1  ---------------------------------------------------

%% TLS 1.2 ---------------------------------------------------
finished(Role, Version, PrfAlgo, MasterSecret, Handshake)
  when Version == 3 ->
    %% RFC 5246 - 7.4.9. Finished
    %% struct {
    %%          opaque verify_data[12];
    %%      } Finished;
    %%
    %%      verify_data
    %%          PRF(master_secret, finished_label, Hash(handshake_messages)) [0..11];
    Hash = crypto:hash(mac_algo(PrfAlgo), Handshake),
    prf(PrfAlgo, MasterSecret, finished_label(Role), Hash, 12).
%% TLS 1.2 ---------------------------------------------------

%% TODO 1.3 finished

-spec certificate_verify(md5sha | sha, integer(), [binary()]) -> binary().

%% TLS 1.0 -1.1  ---------------------------------------------------
certificate_verify(md5sha, _Version, Handshake) ->
    MD5 = crypto:hash(md5, Handshake),
    SHA = crypto:hash(sha, Handshake),
    <<MD5/binary, SHA/binary>>;
%% TLS 1.0 -1.1  ---------------------------------------------------

%% TLS 1.2 ---------------------------------------------------
certificate_verify(HashAlgo, _Version, Handshake) ->
    crypto:hash(HashAlgo, Handshake).
%% TLS 1.2 ---------------------------------------------------

-spec setup_keys(integer(), integer(), binary(), binary(), binary(), integer(),
		 integer(), integer()) -> {binary(), binary(), binary(),
					  binary(), binary(), binary()}.
%% TLS v1.0  ---------------------------------------------------
setup_keys(Version, _PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
	   KeyMatLen, IVSize)
  when Version == 1 ->
    %% RFC 2246 - 6.3. Key calculation
    %% key_block = PRF(SecurityParameters.master_secret,
    %%                      "key expansion",
    %%                      SecurityParameters.server_random +
    %%                      SecurityParameters.client_random);
    %% Then the key_block is partitioned as follows:
    %%  client_write_MAC_secret[SecurityParameters.hash_size]
    %%  server_write_MAC_secret[SecurityParameters.hash_size]
    %%  client_write_key[SecurityParameters.key_material_length]
    %%  server_write_key[SecurityParameters.key_material_length]
    %%  client_write_IV[SecurityParameters.IV_size]
    %%  server_write_IV[SecurityParameters.IV_size]
    WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
    KeyBlock = prf(?MD5SHA, MasterSecret, "key expansion",
		   [ServerRandom, ClientRandom], WantedLength),
    <<ClientWriteMacSecret:HashSize/binary,
     ServerWriteMacSecret:HashSize/binary,
     ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
     ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
    {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
     ServerWriteKey, ClientIV, ServerIV};
%% TLS v1.0  ---------------------------------------------------

%% TLS v1.1 ---------------------------------------------------
setup_keys(Version, _PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
	   KeyMatLen, IVSize)
  when Version == 2 ->
    %% RFC 4346 - 6.3. Key calculation
    %% key_block = PRF(SecurityParameters.master_secret,
    %%                      "key expansion",
    %%                      SecurityParameters.server_random +
    %%                      SecurityParameters.client_random);
    %% Then the key_block is partitioned as follows:
    %%  client_write_MAC_secret[SecurityParameters.hash_size]
    %%  server_write_MAC_secret[SecurityParameters.hash_size]
    %%  client_write_key[SecurityParameters.key_material_length]
    %%  server_write_key[SecurityParameters.key_material_length]
    %%
    %% RFC 4346 is incomplete, the client and server IVs have to
    %% be generated just like for TLS 1.0
    WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
    KeyBlock = prf(?MD5SHA, MasterSecret, "key expansion",
		   [ServerRandom, ClientRandom], WantedLength),
    <<ClientWriteMacSecret:HashSize/binary,
     ServerWriteMacSecret:HashSize/binary,
     ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
     ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
    {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
     ServerWriteKey, ClientIV, ServerIV};
%% TLS v1.1 ---------------------------------------------------

%% TLS v1.2  ---------------------------------------------------
setup_keys(Version, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
	   KeyMatLen, IVSize)
  when Version == 3; Version == 4 ->
    %% RFC 5246 - 6.3. Key calculation
    %% key_block = PRF(SecurityParameters.master_secret,
    %%                      "key expansion",
    %%                      SecurityParameters.server_random +
    %%                      SecurityParameters.client_random);
    %% Then the key_block is partitioned as follows:
    %%  client_write_MAC_secret[SecurityParameters.hash_size]
    %%  server_write_MAC_secret[SecurityParameters.hash_size]
    %%  client_write_key[SecurityParameters.key_material_length]
    %%  server_write_key[SecurityParameters.key_material_length]
    %%  client_write_IV[SecurityParameters.fixed_iv_length]
    %%  server_write_IV[SecurityParameters.fixed_iv_length]
    WantedLength = 2 * (HashSize + KeyMatLen + IVSize),
    KeyBlock = prf(PrfAlgo, MasterSecret, "key expansion",
		   [ServerRandom, ClientRandom], WantedLength),
    <<ClientWriteMacSecret:HashSize/binary,
     ServerWriteMacSecret:HashSize/binary,
     ClientWriteKey:KeyMatLen/binary, ServerWriteKey:KeyMatLen/binary,
     ClientIV:IVSize/binary, ServerIV:IVSize/binary>> = KeyBlock,
    {ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
     ServerWriteKey, ClientIV, ServerIV}.
%% TLS v1.2  ---------------------------------------------------

%% TLS v1.3  ---------------------------------------------------
%% RFC 8446  -  7.1.  Key Schedule
%%
%%             0
%%             |
%%             v
%%   PSK ->  HKDF-Extract = Early Secret
%%             |
%%             +-----> Derive-Secret(., "ext binder" | "res binder", "")
%%             |                     = binder_key
%%             |
%%             +-----> Derive-Secret(., "c e traffic", ClientHello)
%%             |                     = client_early_traffic_secret
%%             |
%%             +-----> Derive-Secret(., "e exp master", ClientHello)
%%             |                     = early_exporter_master_secret
%%             v
%%       Derive-Secret(., "derived", "")
%%             |
%%             v
%%   (EC)DHE -> HKDF-Extract = Handshake Secret
%%             |
%%             +-----> Derive-Secret(., "c hs traffic",
%%             |                     ClientHello...ServerHello)
%%             |                     = client_handshake_traffic_secret
%%             |
%%             +-----> Derive-Secret(., "s hs traffic",
%%             |                     ClientHello...ServerHello)
%%             |                     = server_handshake_traffic_secret
%%             v
%%       Derive-Secret(., "derived", "")
%%             |
%%             v
%%   0 -> HKDF-Extract = Master Secret
%%             |
%%             +-----> Derive-Secret(., "c ap traffic",
%%             |                     ClientHello...server Finished)
%%             |                     = client_application_traffic_secret_0
%%             |
%%             +-----> Derive-Secret(., "s ap traffic",
%%             |                     ClientHello...server Finished)
%%             |                     = server_application_traffic_secret_0
%%             |
%%             +-----> Derive-Secret(., "exp master",
%%             |                     ClientHello...server Finished)
%%             |                     = exporter_master_secret
%%             |
%%             +-----> Derive-Secret(., "res master",
%%                                   ClientHello...client Finished)
%%                                   = resumption_master_secret
-spec key_schedule(early_secret | handshake_secret | master_secret,
                   atom(), {psk | early_secret | handshake_secret, binary()}) ->
                          {early_secret | handshake_secret | master_secret, binary()}.

key_schedule(early_secret, Algo, {psk, PSK}) ->
    Len = ssl_cipher:hash_size(Algo),
    Salt = binary:copy(<<?BYTE(0)>>, Len),
    {early_secret, hkdf_extract(Algo, Salt, PSK)};
key_schedule(master_secret, Algo, {handshake_secret, Secret}) ->
    Len = ssl_cipher:hash_size(Algo),
    IKM = binary:copy(<<?BYTE(0)>>, Len),
    Salt = derive_secret(Secret, <<"derived">>, <<>>, Algo),
    {master_secret, hkdf_extract(Algo, Salt, IKM)}.
%%
key_schedule(handshake_secret, Algo, IKM, {early_secret, Secret}) ->
    Salt = derive_secret(Secret, <<"derived">>, <<>>, Algo),
    {handshake_secret, hkdf_extract(Algo, Salt, IKM)}.

-spec external_binder_key(atom(), {early_secret, binary()}) -> binary().
external_binder_key(Algo, {early_secret, Secret}) ->
    derive_secret(Secret, <<"ext binder">>, <<>>, Algo).

-spec resumption_binder_key(atom(), {early_secret, binary()}) -> binary().
resumption_binder_key(Algo, {early_secret, Secret}) ->
    derive_secret(Secret, <<"res binder">>, <<>>, Algo).

-spec client_early_traffic_secret(atom(), {early_secret, binary()}, iodata()) -> binary().
%% M = ClientHello
client_early_traffic_secret(Algo, {early_secret, Secret}, M) ->
    derive_secret(Secret, <<"c e traffic">>, M, Algo).

-spec early_exporter_master_secret(atom(), {early_secret, binary()}, iodata()) -> binary().
%% M = ClientHello
early_exporter_master_secret(Algo, {early_secret, Secret}, M) ->
    derive_secret(Secret, <<"e exp master">>, M, Algo).

-spec client_handshake_traffic_secret(atom(), {handshake_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...ServerHello
client_handshake_traffic_secret(Algo, {handshake_secret, Secret}, M) ->
    derive_secret(Secret, <<"c hs traffic">>, M, Algo).

-spec server_handshake_traffic_secret(atom(), {handshake_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...ServerHello
server_handshake_traffic_secret(Algo, {handshake_secret, Secret}, M) ->
    derive_secret(Secret, <<"s hs traffic">>, M, Algo).

-spec client_application_traffic_secret_0(atom(), {master_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...server Finished
client_application_traffic_secret_0(Algo, {master_secret, Secret}, M) ->
    derive_secret(Secret, <<"c ap traffic">>, M, Algo).

-spec server_application_traffic_secret_0(atom(), {master_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...server Finished
server_application_traffic_secret_0(Algo, {master_secret, Secret}, M) ->
    derive_secret(Secret, <<"s ap traffic">>, M, Algo).

-spec exporter_master_secret(atom(), {master_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...server Finished
exporter_master_secret(Algo, {master_secret, Secret}, M) ->
    derive_secret(Secret, <<"exp master">>, M, Algo).

-spec resumption_master_secret(atom(), {master_secret, binary()}, iodata()) -> binary().
%% M = ClientHello...client Finished
resumption_master_secret(Algo, {master_secret, Secret}, M) ->
    derive_secret(Secret, <<"res master">>, M, Algo).

%% The next-generation application_traffic_secret is computed as:
%%
%%        application_traffic_secret_N+1 =
%%            HKDF-Expand-Label(application_traffic_secret_N,
%%                              "traffic upd", "", Hash.length)
-spec update_traffic_secret(atom(), binary()) -> binary().
update_traffic_secret(Algo, Secret) ->
    hkdf_expand_label(Secret, <<"traffic upd">>, <<>>, ssl_cipher:hash_size(Algo), Algo).

%% The traffic keying material is generated from the following input
%%    values:
%%
%%    -  A secret value
%%
%%    -  A purpose value indicating the specific value being generated
%%
%%    -  The length of the key being generated
%%
%%    The traffic keying material is generated from an input traffic secret
%%    value using:
%%
%%    [sender]_write_key = HKDF-Expand-Label(Secret, "key", "", key_length)
%%    [sender]_write_iv  = HKDF-Expand-Label(Secret, "iv", "", iv_length)
-spec calculate_traffic_keys(atom(), atom(), binary()) -> {binary(), binary()}.
calculate_traffic_keys(HKDFAlgo, Cipher, Secret) ->
    Key = hkdf_expand_label(Secret, <<"key">>, <<>>, ssl_cipher:key_material(Cipher), HKDFAlgo),
    %% TODO: remove hard coded IV size
    IV = hkdf_expand_label(Secret, <<"iv">>, <<>>, 12, HKDFAlgo),
    {Key, IV}.

%% TLS v1.3  ---------------------------------------------------

%% TLS 1.0 -1.2  ---------------------------------------------------
-spec mac_hash(integer() | atom(), binary(), integer(), integer(), tls_record:tls_version(),
	       integer(), binary()) -> binary().

mac_hash(Method, Mac_write_secret, Seq_num, Type, {Major, Minor},
	 Length, Fragment) ->
    %% RFC 2246 & 4346 - 6.2.3.1.
    %% HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type +
    %%              TLSCompressed.version + TLSCompressed.length +
    %%              TLSCompressed.fragment));
    Mac = hmac_hash(Method, Mac_write_secret,
		    [<<?UINT64(Seq_num), ?BYTE(Type),
		      ?BYTE(Major), ?BYTE(Minor), ?UINT16(Length)>>,
		     Fragment]),
    Mac.
%% TLS 1.0 -1.2  ---------------------------------------------------

%% TODO 1.3 same as above?

-spec suites(1|2|3|4|'TLS_v1.3') -> [ssl_cipher_format:cipher_suite()].

suites(Minor) when Minor == 1; Minor == 2 ->
    [
      ?TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
      ?TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
      ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
      ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
      ?TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
      ?TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,

      ?TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
      ?TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
      ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
      ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
      ?TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
      ?TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
    ];
suites(3) ->
    [?TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
     ?TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
     ?TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
     ?TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
     ?TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
     ?TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,
     ?TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,
     ?TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,

     ?TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
     ?TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,
     ?TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
     ?TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,

     ?TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
     ?TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
     ?TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
     ?TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
     ?TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
     ?TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,
     ?TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,
     ?TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,

     ?TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
     ?TLS_DHE_DSS_WITH_AES_128_GCM_SHA256,
     ?TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
     ?TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

     %% not supported
     %% ?TLS_DH_RSA_WITH_AES_256_GCM_SHA384,
     %% ?TLS_DH_DSS_WITH_AES_256_GCM_SHA384,
     %% ?TLS_DH_RSA_WITH_AES_128_GCM_SHA256,
     %% ?TLS_DH_DSS_WITH_AES_128_GCM_SHA256
    ] ++ suites(2);

suites(4) ->
    [?TLS_AES_256_GCM_SHA384,
     ?TLS_AES_128_GCM_SHA256,
     ?TLS_CHACHA20_POLY1305_SHA256
     %% Not supported
     %% ?TLS_AES_128_CCM_SHA256,
     %% ?TLS_AES_128_CCM_8_SHA256
    ] ++ suites(3);

suites('TLS_v1.3') ->
    [?TLS_AES_256_GCM_SHA384,
     ?TLS_AES_128_GCM_SHA256,
     ?TLS_CHACHA20_POLY1305_SHA256
     %% Not supported
     %% ?TLS_AES_128_CCM_SHA256,
     %% ?TLS_AES_128_CCM_8_SHA256
    ].


signature_algs({3, 4}, HashSigns) ->
    signature_algs({3, 3}, HashSigns);
signature_algs({3, 3}, HashSigns) ->
    CryptoSupports =  crypto:supports(),
    Hashes = proplists:get_value(hashs, CryptoSupports),
    PubKeys = proplists:get_value(public_keys, CryptoSupports),
    Supported = lists:foldl(fun({Hash, dsa = Sign} = Alg, Acc) ->
				    case proplists:get_bool(dss, PubKeys) 
					andalso proplists:get_bool(Hash, Hashes)
					andalso is_pair(Hash, Sign, Hashes)
				    of
					true ->
					    [Alg | Acc];
					false ->
					    Acc
				    end;
			       ({Hash, Sign} = Alg, Acc) -> 
				    case proplists:get_bool(Sign, PubKeys) 
					andalso proplists:get_bool(Hash, Hashes) 
					andalso is_pair(Hash, Sign, Hashes)
				    of
					true ->
					    [Alg | Acc];
					false ->
					    Acc
				    end
			    end, [], HashSigns),
    lists:reverse(Supported).

default_signature_algs({3, 4} = Version) ->
    %% TLS 1.3 servers shall be prepared to process TLS 1.2 ClientHellos
    %% containing legacy hash-sign tuples.
    default_signature_schemes(Version) ++ default_signature_algs({3,3});
default_signature_algs({3, 3} = Version) ->
    Default = [%% SHA2
	       {sha512, ecdsa},
	       {sha512, rsa},
	       {sha384, ecdsa},
	       {sha384, rsa},
	       {sha256, ecdsa},
	       {sha256, rsa},
	       {sha224, ecdsa},
	       {sha224, rsa},
	       %% SHA
	       {sha, ecdsa},
	       {sha, rsa},
	       {sha, dsa}],
    signature_algs(Version, Default);
default_signature_algs(_) ->
    undefined.


signature_schemes(Version, SignatureSchemes) when is_tuple(Version)
                                                  andalso Version >= {3, 3} ->
    CryptoSupports =  crypto:supports(),
    Hashes = proplists:get_value(hashs, CryptoSupports),
    PubKeys = proplists:get_value(public_keys, CryptoSupports),
    Curves = proplists:get_value(curves, CryptoSupports),
    RSAPSSSupported = lists:member(rsa_pkcs1_pss_padding,
                                   proplists:get_value(rsa_opts, CryptoSupports)),
    Fun = fun (Scheme, Acc) when is_atom(Scheme) ->
                  {Hash0, Sign0, Curve} =
                      ssl_cipher:scheme_to_components(Scheme),
                  Sign = case Sign0 of
                             rsa_pkcs1 ->
                                 rsa;
                             rsa_pss_rsae when RSAPSSSupported ->
                                 rsa;
                             rsa_pss_pss when RSAPSSSupported ->
                                 rsa;
                             S -> S
                         end,
                  Hash = case Hash0 of
                             sha1 ->
                                 sha;
                             H -> H
                         end,
                  case proplists:get_bool(Sign, PubKeys)
                      andalso proplists:get_bool(Hash, Hashes)
                      andalso (Curve =:= undefined orelse
                               proplists:get_bool(Curve, Curves))
                      andalso is_pair(Hash, Sign, Hashes)
                  of
                      true ->
                          [Scheme | Acc];
                      false ->
                          Acc
                  end;
              %% Special clause for filtering out the legacy hash-sign tuples.
              (_ , Acc) ->
                  Acc
          end,
    Supported = lists:foldl(Fun, [], SignatureSchemes),
    lists:reverse(Supported);
signature_schemes(_, _) ->
    [].

default_signature_schemes(Version) ->
    Default = [
               ecdsa_secp521r1_sha512,
               ecdsa_secp384r1_sha384,
               ecdsa_secp256r1_sha256,
               rsa_pss_pss_sha512,
               rsa_pss_pss_sha384,
               rsa_pss_pss_sha256,
               rsa_pss_rsae_sha512,
               rsa_pss_rsae_sha384,
               rsa_pss_rsae_sha256,
               %% ed25519,
               %% ed448,

               %% These values refer solely to signatures
               %% which appear in certificates (see Section 4.4.2.2) and are not
               %% defined for use in signed TLS handshake messages, although they
               %% MAY appear in "signature_algorithms" and
               %% "signature_algorithms_cert" for backward compatibility with
               %% TLS 1.2.
               rsa_pkcs1_sha512,
               rsa_pkcs1_sha384,
               rsa_pkcs1_sha256,
               ecdsa_sha1,
               rsa_pkcs1_sha1
              ],
    signature_schemes(Version, Default).


%%--------------------------------------------------------------------
%%% Internal functions
%%--------------------------------------------------------------------
hkdf_expand(Algo, PseudoRandKey, ContextInfo, Length, N, N, Prev, Acc) ->
    Keyingmaterial = hmac_hash(Algo, PseudoRandKey, <<Prev/binary, ContextInfo/binary, ?BYTE(N)>>),
    binary:part(<<Acc/binary, Keyingmaterial/binary>>, {0, Length});
hkdf_expand(Algo, PseudoRandKey, ContextInfo, Length, M, N, Prev, Acc) ->
    Keyingmaterial = hmac_hash(Algo, PseudoRandKey, <<Prev/binary, ContextInfo/binary, ?BYTE(M)>>),
    hkdf_expand(Algo, PseudoRandKey, ContextInfo, Length, M + 1, N, Keyingmaterial, <<Acc/binary, Keyingmaterial/binary>>).

%%%% HMAC and the Pseudorandom Functions RFC 2246 & 4346 - 5.%%%%
hmac_hash(?NULL, _, _) ->
    <<>>;
hmac_hash(Alg, Key, Value) ->
    crypto:hmac(mac_algo(Alg), Key, Value).

mac_algo(Alg) when is_atom(Alg) -> 
    Alg;
mac_algo(?MD5)    -> md5;
mac_algo(?SHA)    -> sha;
mac_algo(?SHA256) -> sha256;
mac_algo(?SHA384) -> sha384;
mac_algo(?SHA512) -> sha512.

% First, we define a data expansion function, P_hash(secret, data) that
% uses a single hash function to expand a secret and seed into an
% arbitrary quantity of output:
%% P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
%%                        HMAC_hash(secret, A(2) + seed) +
%%                        HMAC_hash(secret, A(3) + seed) + ...

p_hash(Secret, Seed, WantedLength, Method) ->
    p_hash(Secret, Seed, WantedLength, Method, 0, []).

p_hash(_Secret, _Seed, WantedLength, _Method, _N, [])
  when WantedLength =< 0 ->
    [];
p_hash(_Secret, _Seed, WantedLength, _Method, _N, [Last | Acc])
  when WantedLength =< 0 ->
    Keep = byte_size(Last) + WantedLength,
    <<B:Keep/binary, _/binary>> = Last,
    list_to_binary(lists:reverse(Acc, [B]));
p_hash(Secret, Seed, WantedLength, Method, N, Acc) ->
    N1 = N+1,
    Bin = hmac_hash(Method, Secret, [a(N1, Secret, Seed, Method), Seed]),
    p_hash(Secret, Seed, WantedLength - byte_size(Bin), Method, N1, [Bin|Acc]).


%% ... Where  A(0) = seed
%%            A(i) = HMAC_hash(secret, A(i-1))
%% a(0, _Secret, Seed, _Method) ->
%%     Seed.
%% a(N, Secret, Seed, Method) ->
%%     hmac_hash(Method, Secret, a(N-1, Secret, Seed, Method)).
a(0, _Secret, Seed, _Method) ->
    Seed;
a(N, Secret, Seed0, Method) ->
    Seed = hmac_hash(Method, Secret, Seed0),
    a(N-1, Secret, Seed, Method).

split_secret(BinSecret) ->
    %% L_S = length in bytes of secret;
    %% L_S1 = L_S2 = ceil(L_S / 2);
    %% The secret is partitioned into two halves (with the possibility of
    %% one shared byte) as described above, S1 taking the first L_S1 bytes,
    %% and S2 the last L_S2 bytes.
    Length = byte_size(BinSecret),
    Div = Length div 2,
    EvenLength = Length - Div,
    <<Secret1:EvenLength/binary, _/binary>> = BinSecret,
    <<_:Div/binary, Secret2:EvenLength/binary>> = BinSecret,
    {Secret1, Secret2}.

prf(?MD5SHA, Secret, Label, Seed, WantedLength) ->
    %% PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
    %%                            P_SHA-1(S2, label + seed);
    {S1, S2} = split_secret(Secret),
    LS = list_to_binary([Label, Seed]),
    crypto:exor(p_hash(S1, LS, WantedLength, ?MD5),
		p_hash(S2, LS, WantedLength, ?SHA));

prf(MAC, Secret, Label, Seed, WantedLength) ->
    %% PRF(secret, label, seed) = P_SHA256(secret, label + seed);
    LS = list_to_binary([Label, Seed]),
    p_hash(Secret, LS, WantedLength, MAC).

%%%% Misc help functions %%%%

finished_label(client) ->
    <<"client finished">>;
finished_label(server) ->
    <<"server finished">>.

is_pair(sha, dsa, _) ->
    true;
is_pair(_, dsa, _) ->
    false;
is_pair(Hash, ecdsa, Hashs) ->
    AtLeastSha = Hashs -- [md2,md4,md5],
    lists:member(Hash, AtLeastSha);
is_pair(Hash, rsa, Hashs) ->
    AtLeastMd5 = Hashs -- [md2,md4],
    lists:member(Hash, AtLeastMd5).

%% list ECC curves in preferred order
-spec ecc_curves(1..3 | all) -> [named_curve()].
ecc_curves(all) ->
    [sect571r1,sect571k1,secp521r1,brainpoolP512r1,
     sect409k1,sect409r1,brainpoolP384r1,secp384r1,
     sect283k1,sect283r1,brainpoolP256r1,secp256k1,secp256r1,
     sect239k1,sect233k1,sect233r1,secp224k1,secp224r1,
     sect193r1,sect193r2,secp192k1,secp192r1,sect163k1,
     sect163r1,sect163r2,secp160k1,secp160r1,secp160r2];

ecc_curves(Minor) ->
    TLSCurves = ecc_curves(all),
    ecc_curves(Minor, TLSCurves).

-spec ecc_curves(1..3, [named_curve()]) -> [named_curve()].
ecc_curves(_Minor, TLSCurves) ->
    CryptoCurves = crypto:ec_curves(),
    lists:foldr(fun(Curve, Curves) ->
			case proplists:get_bool(Curve, CryptoCurves) of
			    true ->  [pubkey_cert_records:namedCurves(Curve)|Curves];
			    false -> Curves
			end
		end, [], TLSCurves).

-spec groups(4 | all | default) -> [group()].
groups(all) ->
    [x25519,
     x448,
     secp256r1,
     secp384r1,
     secp521r1,
     ffdhe2048,
     ffdhe3072,
     ffdhe4096,
     ffdhe6144,
     ffdhe8192];
groups(default) ->
    [x25519,
     x448,
     secp256r1,
     secp384r1];
groups(Minor) ->
    TLSGroups = groups(all),
    groups(Minor, TLSGroups).
%%
-spec groups(4, [group()]) -> [group()].
groups(_Minor, TLSGroups) ->
    CryptoGroups = supported_groups(),
    lists:filter(fun(Group) -> proplists:get_bool(Group, CryptoGroups) end, TLSGroups).

default_groups(Minor) ->
    TLSGroups = groups(default),
    groups(Minor, TLSGroups).

supported_groups() ->
    %% TODO: Add new function to crypto?
    proplists:get_value(curves,  crypto:supports()) ++
        [ffdhe2048,ffdhe3072,ffdhe4096,ffdhe6144,ffdhe8192].

group_to_enum(secp256r1) -> 23;
group_to_enum(secp384r1) -> 24;
group_to_enum(secp521r1) -> 25;
group_to_enum(x25519)    -> 29;
group_to_enum(x448)      -> 30;
group_to_enum(ffdhe2048) -> 256;
group_to_enum(ffdhe3072) -> 257;
group_to_enum(ffdhe4096) -> 258;
group_to_enum(ffdhe6144) -> 259;
group_to_enum(ffdhe8192) -> 260.

enum_to_group(23) -> secp256r1;
enum_to_group(24) -> secp384r1;
enum_to_group(25) -> secp521r1;
enum_to_group(29) -> x25519;
enum_to_group(30) -> x448;
enum_to_group(256) -> ffdhe2048;
enum_to_group(257) -> ffdhe3072;
enum_to_group(258) -> ffdhe4096;
enum_to_group(259) -> ffdhe6144;
enum_to_group(260) -> ffdhe8192;
enum_to_group(_) -> undefined.

%% ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005)
oid_to_enum(?sect163k1) -> 1;
oid_to_enum(?sect163r1) -> 2;
oid_to_enum(?sect163r2) -> 3;
oid_to_enum(?sect193r1) -> 4;
oid_to_enum(?sect193r2) -> 5;
oid_to_enum(?sect233k1) -> 6;
oid_to_enum(?sect233r1) -> 7;
oid_to_enum(?sect239k1) -> 8;
oid_to_enum(?sect283k1) -> 9;
oid_to_enum(?sect283r1) -> 10;
oid_to_enum(?sect409k1) -> 11;
oid_to_enum(?sect409r1) -> 12;
oid_to_enum(?sect571k1) -> 13;
oid_to_enum(?sect571r1) -> 14;
oid_to_enum(?secp160k1) -> 15;
oid_to_enum(?secp160r1) -> 16;
oid_to_enum(?secp160r2) -> 17;
oid_to_enum(?secp192k1) -> 18;
oid_to_enum(?secp192r1) -> 19;
oid_to_enum(?secp224k1) -> 20;
oid_to_enum(?secp224r1) -> 21;
oid_to_enum(?secp256k1) -> 22;
oid_to_enum(?secp256r1) -> 23;
oid_to_enum(?secp384r1) -> 24;
oid_to_enum(?secp521r1) -> 25;
oid_to_enum(?brainpoolP256r1) -> 26;
oid_to_enum(?brainpoolP384r1) -> 27;
oid_to_enum(?brainpoolP512r1) -> 28.

enum_to_oid(1) -> ?sect163k1;
enum_to_oid(2) -> ?sect163r1;
enum_to_oid(3) -> ?sect163r2;
enum_to_oid(4) -> ?sect193r1;
enum_to_oid(5) -> ?sect193r2;
enum_to_oid(6) -> ?sect233k1;
enum_to_oid(7) -> ?sect233r1;
enum_to_oid(8) -> ?sect239k1;
enum_to_oid(9) -> ?sect283k1;
enum_to_oid(10) -> ?sect283r1;
enum_to_oid(11) -> ?sect409k1;
enum_to_oid(12) -> ?sect409r1;
enum_to_oid(13) -> ?sect571k1;
enum_to_oid(14) -> ?sect571r1;
enum_to_oid(15) -> ?secp160k1;
enum_to_oid(16) -> ?secp160r1;
enum_to_oid(17) -> ?secp160r2;
enum_to_oid(18) -> ?secp192k1;
enum_to_oid(19) -> ?secp192r1;
enum_to_oid(20) -> ?secp224k1;
enum_to_oid(21) -> ?secp224r1;
enum_to_oid(22) -> ?secp256k1;
enum_to_oid(23) -> ?secp256r1;
enum_to_oid(24) -> ?secp384r1;
enum_to_oid(25) -> ?secp521r1;
enum_to_oid(26) -> ?brainpoolP256r1;
enum_to_oid(27) -> ?brainpoolP384r1;
enum_to_oid(28) -> ?brainpoolP512r1;
enum_to_oid(_) ->
    undefined.