1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
|
<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1996</year><year>2010</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>ets</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
</header>
<module>ets</module>
<modulesummary>Built-In Term Storage</modulesummary>
<description>
<p>This module is an interface to the Erlang built-in term storage
BIFs. These provide the ability to store very large quantities of
data in an Erlang runtime system, and to have constant access
time to the data. (In the case of <c>ordered_set</c>, see below,
access time is proportional to the logarithm of the number of
objects stored).</p>
<p>Data is organized as a set of dynamic tables, which can store
tuples. Each table is created by a process. When the process
terminates, the table is automatically destroyed. Every table has
access rights set at creation.</p>
<p>Tables are divided into four different types, <c>set</c>,
<c>ordered_set</c>, <c>bag</c> and <c>duplicate_bag</c>.
A <c>set</c> or <c>ordered_set</c> table can only have one object
associated with each key. A <c>bag</c> or <c>duplicate_bag</c> can
have many objects associated with each key.</p>
<p>The number of tables stored at one Erlang node is limited.
The current default limit is approximately 1400 tables. The upper
limit can be increased by setting the environment variable
<c>ERL_MAX_ETS_TABLES</c> before starting the Erlang runtime
system (i.e. with the <c>-env</c> option to
<c>erl</c>/<c>werl</c>). The actual limit may be slightly higher
than the one specified, but never lower.</p>
<p>Note that there is no automatic garbage collection for tables.
Even if there are no references to a table from any process, it
will not automatically be destroyed unless the owner process
terminates. It can be destroyed explicitly by using
<c>delete/1</c>.</p>
<p>Since R13B01, table ownership can be transferred at process termination
by using the <seealso marker="#heir">heir</seealso> option or explicitly
by calling <seealso marker="#give_away/3">give_away/3</seealso>.</p>
<p>Some implementation details:</p>
<list type="bulleted">
<item>In the current implementation, every object insert and
look-up operation results in a copy of the object.</item>
<item><c>'$end_of_table'</c> should not be used as a key since
this atom is used to mark the end of the table when using
<c>first</c>/<c>next</c>.</item>
</list>
<p>Also worth noting is the subtle difference between
<em>matching</em> and <em>comparing equal</em>, which is
demonstrated by the different table types <c>set</c> and
<c>ordered_set</c>. Two Erlang terms <c>match</c> if they are of
the same type and have the same value, so that <c>1</c> matches
<c>1</c>, but not <c>1.0</c> (as <c>1.0</c> is a <c>float()</c>
and not an <c>integer()</c>). Two Erlang terms <em>compare equal</em> if they either are of the same type and value, or if
both are numeric types and extend to the same value, so that
<c>1</c> compares equal to both <c>1</c> and <c>1.0</c>. The
<c>ordered_set</c> works on the <em>Erlang term order</em> and
there is no defined order between an <c>integer()</c> and a
<c>float()</c> that extends to the same value, hence the key
<c>1</c> and the key <c>1.0</c> are regarded as equal in an
<c>ordered_set</c> table.</p>
<p>In general, the functions below will exit with reason
<c>badarg</c> if any argument is of the wrong format, or if the
table identifier is invalid.</p>
</description>
<section><marker id="concurrency"></marker>
<title>Concurrency</title>
<p>This module provides some limited support for concurrent access.
All updates to single objects are guaranteed to be both <em>atomic</em>
and <em>isolated</em>. This means that an updating operation towards
a single object will either succeed or fail completely without any
effect at all (atomicy).
Nor can any intermediate results of the update be seen by other
processes (isolation). Some functions that update several objects
state that they even guarantee atomicy and isolation for the entire
operation. In database terms the isolation level can be seen as
"serializable", as if all isolated operations were carried out serially,
one after the other in a strict order.</p>
<p>No other support is available within ETS that would guarantee
consistency between objects. However, the <c>safe_fixtable/2</c>
function can be used to guarantee that a sequence of
<c>first/1</c> and <c>next/2</c> calls will traverse the table
without errors and that each existing object in the table is visited
exactly once, even if another process (or the same process)
simultaneously deletes or inserts objects into the table.
Nothing more is guaranteed; in particular objects that are inserted
or deleted during such a traversal may be visited once or not at all.
Functions that internally traverse over a table, like <c>select</c>
and <c>match</c>, will give the same guarantee as <c>safe_fixtable</c>.</p>
</section>
<section>
<marker id="match_spec"></marker>
<title>Match Specifications</title>
<p>Some of the functions uses a <em>match specification</em>,
match_spec. A brief explanation is given in
<seealso marker="#select/2">select/2</seealso>. For a detailed
description, see the chapter "Match specifications in Erlang" in
<em>ERTS User's Guide</em>.</p>
</section>
<section>
<title>DATA TYPES</title>
<code type="none">
match_spec()
a match specification, see above
tid()
a table identifier, as returned by new/2</code>
</section>
<funcs>
<func>
<name>all() -> [Tab]</name>
<fsummary>Return a list of all ETS tables.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
</type>
<desc>
<p>Returns a list of all tables at the node. Named tables are
given by their names, unnamed tables are given by their
table identifiers.</p>
</desc>
</func>
<func>
<name>delete(Tab) -> true</name>
<fsummary>Delete an entire ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
</type>
<desc>
<p>Deletes the entire table <c>Tab</c>.</p>
</desc>
</func>
<func>
<name>delete(Tab, Key) -> true</name>
<fsummary>Delete all objects with a given key from an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
</type>
<desc>
<p>Deletes all objects with the key <c>Key</c> from the table
<c>Tab</c>.</p>
</desc>
</func>
<func>
<name>delete_all_objects(Tab) -> true</name>
<fsummary>Delete all objects in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
</type>
<desc>
<p>Delete all objects in the ETS table <c>Tab</c>.
The operation is guaranteed to be
<seealso marker="#concurrency">atomic and isolated</seealso>.</p>
</desc>
</func>
<func>
<name>delete_object(Tab,Object) -> true</name>
<fsummary>Deletes a specific from an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Object = tuple()</v>
</type>
<desc>
<p>Delete the exact object <c>Object</c> from the ETS table,
leaving objects with the same key but other differences
(useful for type <c>bag</c>). In a <c>duplicate_bag</c>, all
instances of the object will be deleted.</p>
</desc>
</func>
<func>
<name>file2tab(Filename) -> {ok,Tab} | {error,Reason}</name>
<fsummary>Read an ETS table from a file.</fsummary>
<type>
<v>Filename = string() | atom()</v>
<v>Tab = tid() | atom()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Reads a file produced by <seealso
marker="#tab2file/2">tab2file/2</seealso> or
<seealso marker="#tab2file/3">tab2file/3</seealso> and creates the
corresponding table <c>Tab</c>.</p>
<p>Equivalent to <c>file2tab(Filename,[])</c>.</p>
</desc>
</func>
<func>
<name>file2tab(Filename,Options) -> {ok,Tab} | {error,Reason}</name>
<fsummary>Read an ETS table from a file.</fsummary>
<type>
<v>Filename = string() | atom()</v>
<v>Tab = tid() | atom()</v>
<v>Options = [Option]</v>
<v>Option = {verify, bool()}</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Reads a file produced by <seealso
marker="#tab2file/2">tab2file/2</seealso> or
<seealso marker="#tab2file/3">tab2file/3</seealso> and creates the
corresponding table <c>Tab</c>.</p>
<p>The currently only supported option is <c>{verify,bool()}</c>. If
verification is turned on (by means of specifying
<c>{verify,true}</c>), the function utilizes whatever
information is present in the file to assert that the
information is not damaged. How this is done depends on which
<c>extended_info</c> was written using
<seealso marker="#tab2file/3">tab2file/3</seealso>.</p>
<p>If no <c>extended_info</c> is present in the file and
<c>{verify,true}</c> is specified, the number of objects
written is compared to the size of the original table when the
dump was started. This might make verification fail if the
table was
<c>public</c> and objects were added or removed while the
table was dumped to file. To avoid this type of problems,
either do not verify files dumped while updated simultaneously
or use the <c>{extended_info, [object_count]}</c> option to
<seealso marker="#tab2file/3">tab2file/3</seealso>, which
extends the information in the file with the number of objects
actually written.</p>
<p>If verification is turned on and the file was written with
the option <c>{extended_info, [md5sum]}</c>, reading the file
is slower and consumes radically more CPU time than
otherwise.</p>
<p><c>{verify,false}</c> is the default.</p>
</desc>
</func>
<func>
<name>first(Tab) -> Key | '$end_of_table'</name>
<fsummary>Return the first key in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
</type>
<desc>
<p>Returns the first key <c>Key</c> in the table <c>Tab</c>.
If the table is of the <c>ordered_set</c> type, the first key
in Erlang term order will be returned. If the table is of any
other type, the first key according to the table's internal
order will be returned. If the table is empty,
<c>'$end_of_table'</c> will be returned.</p>
<p>Use <c>next/2</c> to find subsequent keys in the table.</p>
</desc>
</func>
<func>
<name>foldl(Function, Acc0, Tab) -> Acc1</name>
<fsummary>Fold a function over an ETS table</fsummary>
<type>
<v>Function = fun(A, AccIn) -> AccOut</v>
<v>Tab = tid() | atom()</v>
<v>Acc0 = Acc1 = AccIn = AccOut = term()</v>
</type>
<desc>
<p><c>Acc0</c> is returned if the table is empty.
This function is similar to <c>lists:foldl/3</c>. The order in
which the elements of the table are traversed is unspecified,
except for tables of type <c>ordered_set</c>, for which they
are traversed first to last.</p>
<p>If <c>Function</c> inserts objects into the table, or another
process inserts objects into the table, those objects <em>may</em>
(depending on key ordering) be included in the traversal.</p>
</desc>
</func>
<func>
<name>foldr(Function, Acc0, Tab) -> Acc1</name>
<fsummary>Fold a function over an ETS table</fsummary>
<type>
<v>Function = fun(A, AccIn) -> AccOut</v>
<v>Tab = tid() | atom()</v>
<v>Acc0 = Acc1 = AccIn = AccOut = term()</v>
</type>
<desc>
<p><c>Acc0</c> is returned if the table is empty.
This function is similar to <c>lists:foldr/3</c>. The order in
which the elements of the table are traversed is unspecified,
except for tables of type <c>ordered_set</c>, for which they
are traversed last to first.</p>
<p>If <c>Function</c> inserts objects into the table, or another
process inserts objects into the table, those objects <em>may</em>
(depending on key ordering) be included in the traversal.</p>
</desc>
</func>
<func>
<name>from_dets(Tab, DetsTab) -> true</name>
<fsummary>Fill an ETS table with objects from a Dets table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>DetsTab = atom()</v>
</type>
<desc>
<p>Fills an already created ETS table with the objects in the
already opened Dets table named <c>DetsTab</c>. The existing
objects of the ETS table are kept unless overwritten.</p>
<p>Throws a badarg error if any of the tables does not exist or the
dets table is not open.</p>
</desc>
</func>
<func>
<name>fun2ms(LiteralFun) -> MatchSpec</name>
<fsummary>Pseudo function that transforms fun syntax to a match_spec.</fsummary>
<type>
<v>LiteralFun -- see below</v>
<v>MatchSpec = match_spec()</v>
</type>
<desc>
<p>Pseudo function that by means of a <c>parse_transform</c>
translates <c>LiteralFun</c> typed as parameter in the
function call to a
<seealso marker="#match_spec">match_spec</seealso>. With
"literal" is meant that the fun needs to textually be written
as the parameter of the function, it cannot be held in a
variable which in turn is passed to the function).</p>
<p>The parse transform is implemented in the module
<c>ms_transform</c> and the source <em>must</em> include the
file <c>ms_transform.hrl</c> in <c>stdlib</c> for this
pseudo function to work. Failing to include the hrl file in
the source will result in a runtime error, not a compile
time ditto. The include file is easiest included by adding
the line
<c>-include_lib("stdlib/include/ms_transform.hrl").</c> to
the source file.</p>
<p>The fun is very restricted, it can take only a single
parameter (the object to match): a sole variable or a
tuple. It needs to use the <c>is_</c>XXX guard tests.
Language constructs that have no representation
in a match_spec (like <c>if</c>, <c>case</c>, <c>receive</c>
etc) are not allowed.</p>
<p>The return value is the resulting match_spec.</p>
<p>Example:</p>
<pre>
1> <input>ets:fun2ms(fun({M,N}) when N > 3 -> M end).</input>
[{{'$1','$2'},[{'>','$2',3}],['$1']}]</pre>
<p>Variables from the environment can be imported, so that this
works:</p>
<pre>
2> <input>X=3.</input>
3
3> <input>ets:fun2ms(fun({M,N}) when N > X -> M end).</input>
[{{'$1','$2'},[{'>','$2',{const,3}}],['$1']}]</pre>
<p>The imported variables will be replaced by match_spec
<c>const</c> expressions, which is consistent with the
static scoping for Erlang funs. Local or global function
calls can not be in the guard or body of the fun however.
Calls to builtin match_spec functions of course is allowed:</p>
<pre>
4> <input>ets:fun2ms(fun({M,N}) when N > X, is_atomm(M) -> M end).</input>
Error: fun containing local Erlang function calls
('is_atomm' called in guard) cannot be translated into match_spec
{error,transform_error}
5> <input>ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).</input>
[{{'$1','$2'},[{'>','$2',{const,3}},{is_atom,'$1'}],['$1']}]</pre>
<p>As can be seen by the example, the function can be called
from the shell too. The fun needs to be literally in the call
when used from the shell as well. Other means than the
parse_transform are used in the shell case, but more or less
the same restrictions apply (the exception being records,
as they are not handled by the shell).</p>
<warning>
<p>If the parse_transform is not applied to a module which
calls this pseudo function, the call will fail in runtime
(with a <c>badarg</c>). The module <c>ets</c> actually
exports a function with this name, but it should never
really be called except for when using the function in the
shell. If the <c>parse_transform</c> is properly applied by
including the <c>ms_transform.hrl</c> header file, compiled
code will never call the function, but the function call is
replaced by a literal match_spec.</p>
</warning>
<p>For more information, see
<seealso marker="ms_transform#top">ms_transform(3)</seealso>.</p>
</desc>
</func>
<func>
<name>give_away(Tab, Pid, GiftData) -> true</name>
<fsummary>Change owner of a table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pid = pid()</v>
<v>GiftData = term()</v>
</type>
<desc>
<p>Make process <c>Pid</c> the new owner of table <c>Tab</c>.
If successful, the message
<c>{'ETS-TRANSFER',Tab,FromPid,GiftData}</c> will be sent
to the new owner.</p>
<p>The process <c>Pid</c> must be alive, local and not already the
owner of the table. The calling process must be the table owner.</p>
<p>Note that <c>give_away</c> does not at all affect the
<seealso marker="#heir">heir</seealso> option of the table. A table
owner can for example set the <c>heir</c> to itself, give the table
away and then get it back in case the receiver terminates.</p>
</desc>
</func>
<func>
<name>i() -> ok</name>
<fsummary>Display information about all ETS tables on tty.</fsummary>
<desc>
<p>Displays information about all ETS tables on tty.</p>
</desc>
</func>
<func>
<name>i(Tab) -> ok</name>
<fsummary>Browse an ETS table on tty.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
</type>
<desc>
<p>Browses the table <c>Tab</c> on tty.</p>
</desc>
</func>
<func>
<name>info(Tab) -> [{Item, Value}] | undefined</name>
<fsummary>Return information about an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Item = atom(), see below</v>
<v>Value = term(), see below</v>
</type>
<desc>
<p>Returns information about the table <c>Tab</c> as a list of
<c>{Item, Value}</c> tuples. If <c>Tab</c> has the correct type
for a table identifier, but does not refer to an existing ETS
table, <c>undefined</c> is returned. If <c>Tab</c> is not of the
correct type, this function fails with reason <c>badarg</c>.</p>
<list type="bulleted">
<item><c>Item=memory, Value=int()</c> <br></br>
The number of words allocated to the table.</item>
<item><c>Item=owner, Value=pid()</c> <br></br>
The pid of the owner of the table.</item>
<item><c>Item=heir, Value=pid()|none</c> <br></br>
The pid of the heir of the table, or <c>none</c> if no heir is set.</item>
<item><c>Item=name, Value=atom()</c> <br></br>
The name of the table.</item>
<item><c>Item=size, Value=int()</c> <br></br>
The number of objects inserted in the table.</item>
<item><c>Item=node, Value=atom()</c> <br></br>
The node where the table is stored. This field is no longer
meaningful as tables cannot be accessed from other nodes.</item>
<item><c>Item=named_table, Value=true|false</c> <br></br>
Indicates if the table is named or not.</item>
<item><c>Item=type, Value=set|ordered_set|bag|duplicate_bag</c> <br></br>
The table type.</item>
<item><c>Item=keypos, Value=int()</c> <br></br>
The key position.</item>
<item><c>Item=protection, Value=public|protected|private</c> <br></br>
The table access rights.</item>
</list>
</desc>
</func>
<func>
<name>info(Tab, Item) -> Value | undefined</name>
<fsummary>Return the information associated with given item for an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Item, Value - see below</v>
</type>
<desc>
<p>Returns the information associated with <c>Item</c> for
the table <c>Tab</c>, or returns <c>undefined</c> if <c>Tab</c>
does not refer an existing ETS table.
If <c>Tab</c> is not of the correct type, or if <c>Item</c> is not
one of the allowed values, this function fails with reason <c>badarg</c>.</p>
<warning><p>In R11B and earlier, this function would not fail but return
<c>undefined</c> for invalid values for <c>Item</c>.</p>
</warning>
<p>In addition to the <c>{Item,Value}</c>
pairs defined for <c>info/1</c>, the following items are
allowed:</p>
<list type="bulleted">
<item><c>Item=fixed, Value=true|false</c> <br></br>
Indicates if the table is fixed by any process or not.</item>
<item>
<p><c>Item=safe_fixed, Value={FirstFixed,Info}|false</c> <br></br>
</p>
<p>If the table has been fixed using <c>safe_fixtable/2</c>,
the call returns a tuple where <c>FirstFixed</c> is the
time when the table was first fixed by a process, which
may or may not be one of the processes it is fixed by
right now.</p>
<p><c>Info</c> is a possibly empty lists of tuples
<c>{Pid,RefCount}</c>, one tuple for every process the
table is fixed by right now. <c>RefCount</c> is the value
of the reference counter, keeping track of how many times
the table has been fixed by the process.</p>
<p>If the table never has been fixed, the call returns
<c>false</c>.</p>
</item>
</list>
</desc>
</func>
<func>
<name>init_table(Name, InitFun) -> true</name>
<fsummary>Replace all objects of an ETS table.</fsummary>
<type>
<v>Name = atom()</v>
<v>InitFun = fun(Arg) -> Res</v>
<v>Arg = read | close</v>
<v>Res = end_of_input | {[object()], InitFun} | term()</v>
</type>
<desc>
<p>Replaces the existing objects of the table <c>Tab</c> with
objects created by calling the input function <c>InitFun</c>,
see below. This function is provided for compatibility with
the <c>dets</c> module, it is not more efficient than filling
a table by using <c>ets:insert/2</c>.
</p>
<p>When called with the argument <c>read</c> the function
<c>InitFun</c> is assumed to return <c>end_of_input</c> when
there is no more input, or <c>{Objects, Fun}</c>, where
<c>Objects</c> is a list of objects and <c>Fun</c> is a new
input function. Any other value Value is returned as an error
<c>{error, {init_fun, Value}}</c>. Each input function will be
called exactly once, and should an error occur, the last
function is called with the argument <c>close</c>, the reply
of which is ignored.</p>
<p>If the type of the table is <c>set</c> and there is more
than one object with a given key, one of the objects is
chosen. This is not necessarily the last object with the given
key in the sequence of objects returned by the input
functions. This holds also for duplicated
objects stored in tables of type <c>bag</c>.</p>
</desc>
</func>
<func>
<name>insert(Tab, ObjectOrObjects) -> true</name>
<fsummary>Insert an object into an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>ObjectOrObjects = tuple() | [tuple()]</v>
</type>
<desc>
<p>Inserts the object or all of the objects in the list
<c>ObjectOrObjects</c> into the table <c>Tab</c>.
If the table is a <c>set</c> and the key of the inserted
objects <em>matches</em> the key of any object in the table,
the old object will be replaced. If the table is an
<c>ordered_set</c> and the key of the inserted object
<em>compares equal</em> to the key of any object in the
table, the old object is also replaced. If the list contains
more than one object with <em>matching</em> keys and the table is a
<c>set</c>, one will be inserted, which one is
not defined. The same thing holds for <c>ordered_set</c>, but
will also happen if the keys <em>compare equal</em>.</p>
<p>The entire operation is guaranteed to be
<seealso marker="#concurrency">atomic and isolated</seealso>,
even when a list of objects is inserted.</p>
</desc>
</func>
<func>
<name>insert_new(Tab, ObjectOrObjects) -> bool()</name>
<fsummary>Insert an object into an ETS table if the key is not already present.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>ObjectOrObjects = tuple() | [tuple()]</v>
</type>
<desc>
<p>This function works exactly like <c>insert/2</c>, with the
exception that instead of overwriting objects with the same
key (in the case of <c>set</c> or <c>ordered_set</c>) or
adding more objects with keys already existing in the table
(in the case of <c>bag</c> and <c>duplicate_bag</c>), it
simply returns <c>false</c>. If <c>ObjectOrObjects</c> is a
list, the function checks <em>every</em> key prior to
inserting anything. Nothing will be inserted if not
<em>all</em> keys present in the list are absent from the
table. Like <c>insert/2</c>, the entire operation is guaranteed to be
<seealso marker="#concurrency">atomic and isolated</seealso>.</p>
</desc>
</func>
<func>
<name>is_compiled_ms(Term) -> bool()</name>
<fsummary>Checks if an Erlang term is the result of ets:match_spec_compile</fsummary>
<type>
<v>Term = term()</v>
</type>
<desc>
<p>This function is used to check if a term is a valid
compiled <seealso marker="#match_spec">match_spec</seealso>.
The compiled match_spec is an opaque datatype which can
<em>not</em> be sent between Erlang nodes nor be stored on
disk. Any attempt to create an external representation of a
compiled match_spec will result in an empty binary
(<c><![CDATA[<<>>]]></c>). As an example, the following
expression:</p>
<code type="none">
ets:is_compiled_ms(ets:match_spec_compile([{'_',[],[true]}])).</code>
<p>will yield <c>true</c>, while the following expressions:</p>
<code type="none">
MS = ets:match_spec_compile([{'_',[],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).</code>
<p>will yield false, as the variable <c>Broken</c> will contain
a compiled match_spec that has passed through external
representation.</p>
<note>
<p>The fact that compiled match_specs has no external
representation is for performance reasons. It may be subject
to change in future releases, while this interface will
still remain for backward compatibility reasons.</p>
</note>
</desc>
</func>
<func>
<name>last(Tab) -> Key | '$end_of_table'</name>
<fsummary>Return the last key in an ETS table of type<c>ordered_set</c>.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
</type>
<desc>
<p>Returns the last key <c>Key</c> according to Erlang term
order in the table <c>Tab</c> of the <c>ordered_set</c> type.
If the table is of any other type, the function is synonymous
to <c>first/2</c>. If the table is empty,
<c>'$end_of_table'</c> is returned.</p>
<p>Use <c>prev/2</c> to find preceding keys in the table.</p>
</desc>
</func>
<func>
<name>lookup(Tab, Key) -> [Object]</name>
<fsummary>Return all objects with a given key in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
<v>Object = tuple()</v>
</type>
<desc>
<p>Returns a list of all objects with the key <c>Key</c> in
the table <c>Tab</c>.</p>
<p>In the case of <c>set, bag and duplicate_bag</c>, an object
is returned only if the given key <em>matches</em> the key
of the object in the table. If the table is an
<c>ordered_set</c> however, an object is returned if the key
given <em>compares equal</em> to the key of an object in the
table. The difference being the same as between <c>=:=</c>
and <c>==</c>. As an example, one might insert an object
with the
<c>integer()</c><c>1</c> as a key in an <c>ordered_set</c>
and get the object returned as a result of doing a
<c>lookup/2</c> with the <c>float()</c><c>1.0</c> as the
key to search for.</p>
<p>If the table is of type <c>set</c> or <c>ordered_set</c>,
the function returns either the empty list or a list with one
element, as there cannot be more than one object with the same
key. If the table is of type <c>bag</c> or
<c>duplicate_bag</c>, the function returns a list of
arbitrary length.</p>
<p>Note that the time order of object insertions is preserved;
The first object inserted with the given key will be first
in the resulting list, and so on.</p>
<p>Insert and look-up times in tables of type <c>set</c>,
<c>bag</c> and <c>duplicate_bag</c> are constant, regardless
of the size of the table. For the <c>ordered_set</c>
data-type, time is proportional to the (binary) logarithm of
the number of objects.</p>
</desc>
</func>
<func>
<name>lookup_element(Tab, Key, Pos) -> Elem</name>
<fsummary>Return the <c>Pos</c>:th element of all objects with a given key in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
<v>Pos = int()</v>
<v>Elem = term() | [term()]</v>
</type>
<desc>
<p>If the table <c>Tab</c> is of type <c>set</c> or
<c>ordered_set</c>, the function returns the <c>Pos</c>:th
element of the object with the key <c>Key</c>.</p>
<p>If the table is of type <c>bag</c> or <c>duplicate_bag</c>,
the functions returns a list with the <c>Pos</c>:th element of
every object with the key <c>Key</c>.</p>
<p>If no object with the key <c>Key</c> exists, the function
will exit with reason <c>badarg</c>.</p>
<p>The difference between <c>set</c>, <c>bag</c> and
<c>duplicate_bag</c> on one hand, and <c>ordered_set</c> on
the other, regarding the fact that <c>ordered_set</c>'s
view keys as equal when they <em>compare equal</em>
whereas the other table types only regard them equal when
they <em>match</em>, naturally holds for
<c>lookup_element</c> as well as for <c>lookup</c>.</p>
</desc>
</func>
<func>
<name>match(Tab, Pattern) -> [Match]</name>
<fsummary>Match the objects in an ETS table against a pattern.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pattern = tuple()</v>
<v>Match = [term()]</v>
</type>
<desc>
<p>Matches the objects in the table <c>Tab</c> against the
pattern <c>Pattern</c>.</p>
<p>A pattern is a term that may contain:</p>
<list type="bulleted">
<item>bound parts (Erlang terms),</item>
<item><c>'_'</c> which matches any Erlang term, and</item>
<item>pattern variables: <c>'$N'</c> where
<c>N</c>=0,1,...</item>
</list>
<p>The function returns a list with one element for each
matching object, where each element is an ordered list of
pattern variable bindings. An example:</p>
<pre>
6> <input>ets:match(T, '$1').</input> % Matches every object in the table
[[{rufsen,dog,7}],[{brunte,horse,5}],[{ludde,dog,5}]]
7> <input>ets:match(T, {'_',dog,'$1'}).</input>
[[7],[5]]
8> <input>ets:match(T, {'_',cow,'$1'}).</input>
[]</pre>
<p>If the key is specified in the pattern, the match is very
efficient. If the key is not specified, i.e. if it is a
variable or an underscore, the entire table must be searched.
The search time can be substantial if the table is very large.</p>
<p>On tables of the <c>ordered_set</c> type, the result is in
the same order as in a <c>first/next</c> traversal.</p>
</desc>
</func>
<func>
<name>match(Tab, Pattern, Limit) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Match the objects in an ETS table against a pattern and returns part of the answers.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pattern = tuple()</v>
<v>Match = [term()]</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Works like <c>ets:match/2</c> but only returns a limited
(<c>Limit</c>) number of matching objects. The
<c>Continuation</c> term can then be used in subsequent calls
to <c>ets:match/1</c> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <c>ets:first/1</c> and <c>ets:next/1</c>.</p>
<p><c>'$end_of_table'</c> is returned if the table is empty.</p>
</desc>
</func>
<func>
<name>match(Continuation) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Continues matching objects in an ETS table.</fsummary>
<type>
<v>Match = [term()]</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Continues a match started with <c>ets:match/3</c>. The next
chunk of the size given in the initial <c>ets:match/3</c>
call is returned together with a new <c>Continuation</c>
that can be used in subsequent calls to this function.</p>
<p><c>'$end_of_table'</c> is returned when there are no more
objects in the table.</p>
</desc>
</func>
<func>
<name>match_delete(Tab, Pattern) -> true</name>
<fsummary>Delete all objects which match a given pattern from an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pattern = tuple()</v>
</type>
<desc>
<p>Deletes all objects which match the pattern <c>Pattern</c>
from the table <c>Tab</c>. See <c>match/2</c> for a
description of patterns.</p>
</desc>
</func>
<func>
<name>match_object(Tab, Pattern) -> [Object]</name>
<fsummary>Match the objects in an ETS table against a pattern.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pattern = Object = tuple()</v>
</type>
<desc>
<p>Matches the objects in the table <c>Tab</c> against the
pattern <c>Pattern</c>. See <c>match/2</c> for a description
of patterns. The function returns a list of all objects which
match the pattern.</p>
<p>If the key is specified in the pattern, the match is very
efficient. If the key is not specified, i.e. if it is a
variable or an underscore, the entire table must be searched.
The search time can be substantial if the table is very large.</p>
<p>On tables of the <c>ordered_set</c> type, the result is in
the same order as in a <c>first/next</c> traversal.</p>
</desc>
</func>
<func>
<name>match_object(Tab, Pattern, Limit) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Match the objects in an ETS table against a pattern and returns part of the answers.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Pattern = tuple()</v>
<v>Match = [term()]</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Works like <c>ets:match_object/2</c> but only returns a
limited (<c>Limit</c>) number of matching objects. The
<c>Continuation</c> term can then be used in subsequent calls
to <c>ets:match_object/1</c> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <c>ets:first/1</c> and <c>ets:next/1</c>.</p>
<p><c>'$end_of_table'</c> is returned if the table is empty.</p>
</desc>
</func>
<func>
<name>match_object(Continuation) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Continues matching objects in an ETS table.</fsummary>
<type>
<v>Match = [term()]</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Continues a match started with <c>ets:match_object/3</c>.
The next chunk of the size given in the initial
<c>ets:match_object/3</c> call is returned together with a
new <c>Continuation</c> that can be used in subsequent calls
to this function.</p>
<p><c>'$end_of_table'</c> is returned when there are no more
objects in the table.</p>
</desc>
</func>
<func>
<name>match_spec_compile(MatchSpec) -> CompiledMatchSpec</name>
<fsummary>Compiles a match specification into its internal representation</fsummary>
<type>
<v>MatchSpec = match_spec()</v>
<v>CompiledMatchSpec = comp_match_spec()</v>
</type>
<desc>
<p>This function transforms a
<seealso marker="#match_spec">match_spec</seealso> into an
internal representation that can be used in subsequent calls
to <c>ets:match_spec_run/2</c>. The internal representation is
opaque and can not be converted to external term format and
then back again without losing its properties (meaning it can
not be sent to a process on another node and still remain a
valid compiled match_spec, nor can it be stored on disk).
The validity of a compiled match_spec can be checked using
<c>ets:is_compiled_ms/1</c>.</p>
<p>If the term <c>MatchSpec</c> can not be compiled (does not
represent a valid match_spec), a <c>badarg</c> fault is
thrown.</p>
<note>
<p>This function has limited use in normal code, it is used by
Dets to perform the <c>dets:select</c> operations.</p>
</note>
</desc>
</func>
<func>
<name>match_spec_run(List,CompiledMatchSpec) -> list()</name>
<fsummary>Performs matching, using a compiled match_spec, on a list of tuples</fsummary>
<type>
<v>List = [ tuple() ]</v>
<v>CompiledMatchSpec = comp_match_spec()</v>
</type>
<desc>
<p>This function executes the matching specified in a
compiled <seealso marker="#match_spec">match_spec</seealso> on
a list of tuples. The <c>CompiledMatchSpec</c> term should be
the result of a call to <c>ets:match_spec_compile/1</c> and
is hence the internal representation of the match_spec one
wants to use.</p>
<p>The matching will be executed on each element in <c>List</c>
and the function returns a list containing all results. If an
element in <c>List</c> does not match, nothing is returned
for that element. The length of the result list is therefore
equal or less than the the length of the parameter
<c>List</c>. The two calls in the following example will give
the same result (but certainly not the same execution
time...):</p>
<code type="none">
Table = ets:new...
MatchSpec = ....
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),</code>
<note>
<p>This function has limited use in normal code, it is used by
Dets to perform the <c>dets:select</c> operations and by
Mnesia during transactions.</p>
</note>
</desc>
</func>
<func>
<name>member(Tab, Key) -> true | false</name>
<fsummary>Tests for occurrence of a key in an ETS table</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
</type>
<desc>
<p>Works like <c>lookup/2</c>, but does not return the objects.
The function returns <c>true</c> if one or more elements in
the table has the key <c>Key</c>, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name>new(Name, Options) -> tid() | atom()</name>
<fsummary>Create a new ETS table.</fsummary>
<type>
<v>Name = atom()</v>
<v>Options = [Option]</v>
<v> Option = Type | Access | named_table | {keypos,Pos} | {heir,pid(),HeirData} | {heir,none} | {write_concurrency,bool()}</v>
<v> Type = set | ordered_set | bag | duplicate_bag</v>
<v> Access = public | protected | private</v>
<v> Pos = int()</v>
<v> HeirData = term()</v>
</type>
<desc>
<p>Creates a new table and returns a table identifier which can
be used in subsequent operations. The table identifier can be
sent to other processes so that a table can be shared between
different processes within a node.</p>
<p>The parameter <c>Options</c> is a list of atoms which
specifies table type, access rights, key position and if the
table is named or not. If one or more options are left out,
the default values are used. This means that not specifying
any options (<c>[]</c>) is the same as specifying
<c>[set,protected,{keypos,1},{heir,none},{write_concurrency,false}]</c>.</p>
<list type="bulleted">
<item>
<p><c>set</c>
The table is a <c>set</c> table - one key, one object,
no order among objects. This is the default table type.</p>
</item>
<item>
<p><c>ordered_set</c>
The table is a <c>ordered_set</c> table - one key, one
object, ordered in Erlang term order, which is the order
implied by the < and > operators. Tables of this type
have a somewhat different behavior in some situations
than tables of the other types. Most notably the
<c>ordered_set</c> tables regard keys as equal when they
<em>compare equal</em>, not only when they match. This
means that to an <c>ordered_set</c>, the
<c>integer()</c><c>1</c> and the <c>float()</c><c>1.0</c> are regarded as equal. This also means that the
key used to lookup an element not necessarily
<em>matches</em> the key in the elements returned, if
<c>float()</c>'s and <c>integer()</c>'s are mixed in
keys of a table.</p>
</item>
<item>
<p><c>bag</c>
The table is a <c>bag</c> table which can have many
objects, but only one instance of each object, per key.</p>
</item>
<item>
<p><c>duplicate_bag</c>
The table is a <c>duplicate_bag</c> table which can have
many objects, including multiple copies of the same
object, per key.</p>
</item>
<item>
<p><c>public</c>
Any process may read or write to the table.</p>
</item>
<item>
<p><c>protected</c>
The owner process can read and write to the table. Other
processes can only read the table. This is the default
setting for the access rights.</p>
</item>
<item>
<p><c>private</c>
Only the owner process can read or write to the table.</p>
</item>
<item>
<p><c>named_table</c>
If this option is present, the name <c>Name</c> is
associated with the table identifier. The name can then
be used instead of the table identifier in subsequent
operations.</p>
</item>
<item>
<p><c>{keypos,Pos}</c>
Specfies which element in the stored tuples should be
used as key. By default, it is the first element, i.e.
<c>Pos=1</c>. However, this is not always appropriate. In
particular, we do not want the first element to be the
key if we want to store Erlang records in a table.</p>
<p>Note that any tuple stored in the table must have at
least <c>Pos</c> number of elements.</p>
</item>
<item>
<marker id="heir"></marker>
<p><c>{heir,Pid,HeirData} | {heir,none}</c><br></br>
Set a process as heir. The heir will inherit the table if
the owner terminates. The message
<c>{'ETS-TRANSFER',tid(),FromPid,HeirData}</c> will be sent to
the heir when that happens. The heir must be a local process.
Default heir is <c>none</c>, which will destroy the table when
the owner terminates.</p>
</item>
<item>
<p><c>{write_concurrency,bool()}</c>
Performance tuning. Default is <c>false</c>, which means that the table
is optimized towards concurrent read access. An operation that
mutates (writes to) the table will obtain exclusive access,
blocking any concurrent access of the same table until finished.
If set to <c>true</c>, the table is optimized towards concurrent
write access. Different objects of the same table can be mutated
(and read) by concurrent processes. This is achieved to some degree
at the expense of single access and concurrent reader performance.
Note that this option does not change any guarantees about
<seealso marker="#concurrency">atomicy and isolation</seealso>.
Functions that makes such promises over several objects (like
<c>insert/2</c>) will gain less (or nothing) from this option.</p>
<p>Table type <c>ordered_set</c> is not affected by this option in current
implementation.</p>
</item>
</list>
</desc>
</func>
<func>
<name>next(Tab, Key1) -> Key2 | '$end_of_table'</name>
<fsummary>Return the next key in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key1 = Key2 = term()</v>
</type>
<desc>
<p>Returns the next key <c>Key2</c>, following the key
<c>Key1</c> in the table <c>Tab</c>. If the table is of the
<c>ordered_set</c> type, the next key in Erlang term order is
returned. If the table is of any other type, the next key
according to the table's internal order is returned. If there
is no next key, <c>'$end_of_table'</c> is returned.</p>
<p>Use <c>first/1</c> to find the first key in the table.</p>
<p>Unless a table of type <c>set</c>, <c>bag</c> or
<c>duplicate_bag</c> is protected using
<c>safe_fixtable/2</c>, see below, a traversal may fail if
concurrent updates are made to the table. If the table is of
type <c>ordered_set</c>, the function returns the next key in
order, even if the object does no longer exist.</p>
</desc>
</func>
<func>
<name>prev(Tab, Key1) -> Key2 | '$end_of_table'</name>
<fsummary>Return the previous key in an ETS table of type<c>ordered_set</c>.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key1 = Key2 = term()</v>
</type>
<desc>
<p>Returns the previous key <c>Key2</c>, preceding the key
<c>Key1</c> according the Erlang term order in the table
<c>Tab</c> of the <c>ordered_set</c> type. If the table is of
any other type, the function is synonymous to <c>next/2</c>.
If there is no previous key, <c>'$end_of_table'</c> is
returned.</p>
<p>Use <c>last/1</c> to find the last key in the table.</p>
</desc>
</func>
<func>
<name>rename(Tab, Name) -> Name</name>
<fsummary>Rename a named ETS table.</fsummary>
<type>
<v>Tab = Name = atom()</v>
</type>
<desc>
<p>Renames the named table <c>Tab</c> to the new name
<c>Name</c>. Afterwards, the old name can not be used to
access the table. Renaming an unnamed table has no effect.</p>
</desc>
</func>
<func>
<name>repair_continuation(Continuation, MatchSpec) -> Continuation</name>
<fsummary>Repair a continuation from ets:select/1 or ets:select/3 that has passed through external representation</fsummary>
<type>
<v>Continuation = term()</v>
<v>MatchSpec = match_spec()</v>
</type>
<desc>
<p>This function can be used to restore an opaque continuation
returned by <c>ets:select/3</c> or <c>ets:select/1</c> if the
continuation has passed through external term format (been
sent between nodes or stored on disk).</p>
<p>The reason for this function is that continuation terms
contain compiled match_specs and therefore will be
invalidated if converted to external term format. Given that
the original match_spec is kept intact, the continuation can
be restored, meaning it can once again be used in subsequent
<c>ets:select/1</c> calls even though it has been stored on
disk or on another node.</p>
<p>As an example, the following sequence of calls will fail:</p>
<code type="none">
T=ets:new(x,[]),
...
{_,C} = ets:select(T,ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(Broken).</code>
<p>...while the following sequence will work:</p>
<code type="none">
T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),
{_,C} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(Broken,MS)).</code>
<p>...as the call to <c>ets:repair_continuation/2</c> will
reestablish the (deliberately) invalidated continuation
<c>Broken</c>.</p>
<note>
<p>This function is very rarely needed in application code. It
is used by Mnesia to implement distributed <c>select/3</c>
and <c>select/1</c> sequences. A normal application would
either use Mnesia or keep the continuation from being
converted to external format.</p>
<p>The reason for not having an external representation of a
compiled match_spec is performance. It may be subject to
change in future releases, while this interface will remain
for backward compatibility.</p>
</note>
</desc>
</func>
<func>
<name>safe_fixtable(Tab, true|false) -> true</name>
<fsummary>Fix an ETS table for safe traversal.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
</type>
<desc>
<p>Fixes a table of the <c>set</c>, <c>bag</c> or
<c>duplicate_bag</c> table type for safe traversal.</p>
<p>A process fixes a table by calling
<c>safe_fixtable(Tab,true)</c>. The table remains fixed until
the process releases it by calling
<c>safe_fixtable(Tab,false)</c>, or until the process
terminates.</p>
<p>If several processes fix a table, the table will remain fixed
until all processes have released it (or terminated).
A reference counter is kept on a per process basis, and N
consecutive fixes requires N releases to actually release
the table.</p>
<p>When a table is fixed, a sequence of <c>first/1</c> and
<c>next/2</c> calls are guaranteed to succeed and each object in
the table will only be returned once, even if objects
are removed or inserted during the traversal.
The keys for new objects inserted during the traversal <em>may</em>
be returned by <seealso marker="#next/2">next/2</seealso>
(it depends on the internal ordering of the keys). An example:</p>
<code type="none">
clean_all_with_value(Tab,X) ->
safe_fixtable(Tab,true),
clean_all_with_value(Tab,X,ets:first(Tab)),
safe_fixtable(Tab,false).
clean_all_with_value(Tab,X,'$end_of_table') ->
true;
clean_all_with_value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
_ ->
true
end,
clean_all_with_value(Tab,X,ets:next(Tab,Key)).</code>
<p>Note that no deleted objects are actually removed from a
fixed table until it has been released. If a process fixes a
table but never releases it, the memory used by the deleted
objects will never be freed. The performance of operations on
the table will also degrade significantly.</p>
<p>Use <c>info/2</c> to retrieve information about which
processes have fixed which tables. A system with a lot of
processes fixing tables may need a monitor which sends alarms
when tables have been fixed for too long.</p>
<p>Note that for tables of the <c>ordered_set</c> type,
<c>safe_fixtable/2</c> is not necessary as calls to
<c>first/1</c> and <c>next/2</c> will always succeed.</p>
</desc>
</func>
<func>
<name>select(Tab, MatchSpec) -> [Match]</name>
<fsummary>Match the objects in an ETS table against a match_spec.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Match = term()</v>
<v>MatchSpec = match_spec()</v>
</type>
<desc>
<p>Matches the objects in the table <c>Tab</c> using a
<seealso marker="#match_spec">match_spec</seealso>. This is a
more general call than the <c>ets:match/2</c> and
<c>ets:match_object/2</c> calls. In its simplest forms the
match_specs look like this:</p>
<list type="bulleted">
<item>MatchSpec = [MatchFunction]</item>
<item>MatchFunction = {MatchHead, [Guard], [Result]}</item>
<item>MatchHead = "Pattern as in ets:match"</item>
<item>Guard = {"Guardtest name", ...}</item>
<item>Result = "Term construct"</item>
</list>
<p>This means that the match_spec is always a list of one or
more tuples (of arity 3). The tuples first element should be
a pattern as described in the documentation of
<c>ets:match/2</c>. The second element of the tuple should
be a list of 0 or more guard tests (described below). The
third element of the tuple should be a list containing a
description of the value to actually return. In almost all
normal cases the list contains exactly one term which fully
describes the value to return for each object.</p>
<p>The return value is constructed using the "match variables"
bound in the MatchHead or using the special match variables
<c>'$_'</c> (the whole matching object) and <c>'$$'</c> (all
match variables in a list), so that the following
<c>ets:match/2</c> expression:</p>
<code type="none">
ets:match(Tab,{'$1','$2','$3'})</code>
<p>is exactly equivalent to:</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])</code>
<p>- and the following <c>ets:match_object/2</c> call:</p>
<code type="none">
ets:match_object(Tab,{'$1','$2','$1'})</code>
<p>is exactly equivalent to</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])</code>
<p>Composite terms can be constructed in the <c>Result</c> part
either by simply writing a list, so that this code:</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])</code>
<p>gives the same output as:</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$3'},[],[['$1','$2','$3']]}])</code>
<p>i.e. all the bound variables in the match head as a list. If
tuples are to be constructed, one has to write a tuple of
arity 1 with the single element in the tuple being the tuple
one wants to construct (as an ordinary tuple could be mistaken
for a <c>Guard</c>). Therefore the following call:</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])</code>
<p>gives the same output as:</p>
<code type="none">
ets:select(Tab,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])</code>
<p>- this syntax is equivalent to the syntax used in the trace
patterns (see
<seealso marker="runtime_tools:dbg">dbg(3)</seealso>).</p>
<p>The <c>Guard</c>s are constructed as tuples where the first
element is the name of the test and the rest of the elements
are the parameters of the test. To check for a specific type
(say a list) of the element bound to the match variable
<c>'$1'</c>, one would write the test as
<c>{is_list, '$1'}</c>. If the test fails, the object in the
table will not match and the next <c>MatchFunction</c> (if
any) will be tried. Most guard tests present in Erlang can be
used, but only the new versions prefixed <c>is_</c> are
allowed (like <c>is_float</c>, <c>is_atom</c> etc).</p>
<p>The <c>Guard</c> section can also contain logic and
arithmetic operations, which are written with the same syntax
as the guard tests (prefix notation), so that a guard test
written in Erlang looking like this:</p>
<code type="none"><![CDATA[
is_integer(X), is_integer(Y), X + Y < 4711]]></code>
<p>is expressed like this (X replaced with '$1' and Y with
'$2'):</p>
<code type="none"><![CDATA[
[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]]]></code>
<p>On tables of the <c>ordered_set</c> type, objects are visited
in the same order as in a <c>first/next</c>
traversal. This means that the match specification will be
executed against objects with keys in the <c>first/next</c>
order and the corresponding result list will be in the order of that
execution.</p>
</desc>
</func>
<func>
<name>select(Tab, MatchSpec, Limit) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Match the objects in an ETS table against a match_spec and returns part of the answers.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Match = term()</v>
<v>MatchSpec = match_spec()</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Works like <c>ets:select/2</c> but only returns a limited
(<c>Limit</c>) number of matching objects. The
<c>Continuation</c> term can then be used in subsequent calls
to <c>ets:select/1</c> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <c>ets:first/1</c> and <c>ets:next/1</c>.</p>
<p><c>'$end_of_table'</c> is returned if the table is empty.</p>
</desc>
</func>
<func>
<name>select(Continuation) -> {[Match],Continuation} | '$end_of_table'</name>
<fsummary>Continue matching objects in an ETS table.</fsummary>
<type>
<v>Match = term()</v>
<v>Continuation = term()</v>
</type>
<desc>
<p>Continues a match started with
<c>ets:select/3</c>. The next
chunk of the size given in the initial <c>ets:select/3</c>
call is returned together with a new <c>Continuation</c>
that can be used in subsequent calls to this function.</p>
<p><c>'$end_of_table'</c> is returned when there are no more
objects in the table.</p>
</desc>
</func>
<func>
<name>select_delete(Tab, MatchSpec) -> NumDeleted</name>
<fsummary>Match the objects in an ETS table against a match_spec and deletes objects where the match_spec returns 'true'</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Object = tuple()</v>
<v>MatchSpec = match_spec()</v>
<v>NumDeleted = integer()</v>
</type>
<desc>
<p>Matches the objects in the table <c>Tab</c> using a
<seealso marker="#match_spec">match_spec</seealso>. If the
match_spec returns <c>true</c> for an object, that object is
removed from the table. For any other result from the
match_spec the object is retained. This is a more general
call than the <c>ets:match_delete/2</c> call.</p>
<p>The function returns the number of objects actually
deleted from the table.</p>
<note>
<p>The <c>match_spec</c> has to return the atom <c>true</c> if
the object is to be deleted. No other return value will get the
object deleted, why one can not use the same match specification for
looking up elements as for deleting them.</p>
</note>
</desc>
</func>
<func>
<name>select_count(Tab, MatchSpec) -> NumMatched</name>
<fsummary>Match the objects in an ETS table against a match_spec and returns the number of objects for which the match_spec returned 'true'</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Object = tuple()</v>
<v>MatchSpec = match_spec()</v>
<v>NumMatched = integer()</v>
</type>
<desc>
<p>Matches the objects in the table <c>Tab</c> using a
<seealso marker="#match_spec">match_spec</seealso>. If the
match_spec returns <c>true</c> for an object, that object
considered a match and is counted. For any other result from
the match_spec the object is not considered a match and is
therefore not counted.</p>
<p>The function could be described as a <c>match_delete/2</c>
that does not actually delete any elements, but only counts
them.</p>
<p>The function returns the number of objects matched.</p>
</desc>
</func>
<func>
<name>setopts(Tab, Opts) -> true</name>
<fsummary>Set table options.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Opts = Opt | [Opt]</v>
<v>Opt = {heir,pid(),HeirData} | {heir,none}</v>
<v>HeirData = term()</v>
</type>
<desc>
<p>Set table options. The only option that currently is allowed to be
set after the table has been created is
<seealso marker="#heir">heir</seealso>. The calling process must be
the table owner.</p>
</desc>
</func>
<func>
<name>slot(Tab, I) -> [Object] | '$end_of_table'</name>
<fsummary>Return all objects in a given slot of an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>I = int()</v>
<v>Object = tuple()</v>
</type>
<desc>
<p>This function is mostly for debugging purposes, Normally
one should use <c>first/next</c> or <c>last/prev</c> instead.</p>
<p>Returns all objects in the <c>I</c>:th slot of the table
<c>Tab</c>. A table can be traversed by repeatedly calling
the function, starting with the first slot <c>I=0</c> and
ending when <c>'$end_of_table'</c> is returned.
The function will fail with reason <c>badarg</c> if the
<c>I</c> argument is out of range.</p>
<p>Unless a table of type <c>set</c>, <c>bag</c> or
<c>duplicate_bag</c> is protected using
<c>safe_fixtable/2</c>, see above, a traversal may fail if
concurrent updates are made to the table. If the table is of
type <c>ordered_set</c>, the function returns a list
containing the <c>I</c>:th object in Erlang term order.</p>
</desc>
</func>
<func>
<name>tab2file(Tab, Filename) -> ok | {error,Reason}</name>
<fsummary>Dump an ETS table to a file.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Filename = string() | atom()</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Dumps the table <c>Tab</c> to the file <c>Filename</c>.</p>
<p>Equivalent to <c>tab2file(Tab, Filename,[])</c></p>
</desc>
</func>
<func>
<name>tab2file(Tab, Filename, Options) -> ok | {error,Reason}</name>
<fsummary>Dump an ETS table to a file.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Filename = string() | atom()</v>
<v>Options = [Option]</v>
<v>Option = {extended_info, [ExtInfo]}</v>
<v>ExtInfo = object_count | md5sum</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Dumps the table <c>Tab</c> to the file <c>Filename</c>.</p>
<p>When dumping the table, certain information about the table
is dumped to a header at the beginning of the dump. This
information contains data about the table type,
name, protection, size, version and if it's a named table. It
also contains notes about what extended information is added
to the file, which can be a count of the objects in the file
or a MD5 sum of the header and records in the file.</p>
<p>The size field in the header might not correspond to the
actual number of records in the file if the table is public
and records are added or removed from the table during
dumping. Public tables updated during dump, and that one wants
to verify when reading, needs at least one field of extended
information for the read verification process to be reliable
later.</p>
<p>The <c>extended_info</c> option specifies what extra
information is written to the table dump:</p>
<taglist>
<tag><c>object_count</c></tag>
<item><p>The number of objects actually written to the file is
noted in the file footer, why verification of file truncation
is possible even if the file was updated during
dump.</p></item>
<tag><c>md5sum</c></tag>
<item><p>The header and objects in the file are checksummed using
the built in MD5 functions. The MD5 sum of all objects is
written in the file footer, so that verification while reading
will detect the slightest bitflip in the file data. Using this
costs a fair amount of CPU time.</p></item>
</taglist>
<p>Whenever the <c>extended_info</c> option is used, it
results in a file not readable by versions of ets prior to
that in stdlib-1.15.1</p>
</desc>
</func>
<func>
<name>tab2list(Tab) -> [Object]</name>
<fsummary>Return a list of all objects in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Object = tuple()</v>
</type>
<desc>
<p>Returns a list of all objects in the table <c>Tab</c>.</p>
</desc>
</func>
<func>
<name>tabfile_info(Filename) -> {ok, TableInfo} | {error, Reason}</name>
<fsummary>Return a list of all objects in an ETS table.</fsummary>
<type>
<v>Filename = string() | atom()</v>
<v>TableInfo = [InfoItem]</v>
<v>InfoItem = {InfoTag, term()}</v>
<v>InfoTag = name | type | protection | named_table | keypos | size | extended_info | version</v>
<v>Reason = term()</v>
</type>
<desc>
<p>Returns information about the table dumped to file by
<seealso marker="#tab2file/2">tab2file/2</seealso> or
<seealso marker="#tab2file/3">tab2file/3</seealso></p>
<p>The following items are returned:</p>
<taglist>
<tag>name</tag>
<item><p>The name of the dumped table. If the table was a
named table, a table with the same name cannot exist when the
table is loaded from file with
<seealso marker="#file2tab/2">file2tab/2</seealso>. If the table is
not saved as a named table, this field has no significance
at all when loading the table from file.</p></item>
<tag>type</tag>
<item>The ets type of the dumped table (i.e. <c>set</c>, <c>bag</c>,
<c>duplicate_bag</c> or <c>ordered_set</c>). This type will be used
when loading the table again.</item>
<tag>protection</tag>
<item>The protection of the dumped table (i.e. <c>private</c>,
<c>protected</c> or <c>public</c>). A table loaded from the file
will get the same protection.</item>
<tag>named_table</tag>
<item><c>true</c> if the table was a named table when dumped
to file, otherwise <c>false</c>. Note that when a named table
is loaded from a file, there cannot exist a table in the
system with the same name.</item>
<tag>keypos</tag>
<item>The <c>keypos</c> of the table dumped to file, which
will be used when loading the table again.</item>
<tag>size</tag>
<item>The number of objects in the table when the table dump
to file started, which in case of a <c>public</c> table need
not correspond to the number of objects actually saved to the
file, as objects might have been added or deleted by another
process during table dump.</item>
<tag>extended_info</tag>
<item>The extended information written in the file footer to
allow stronger verification during table loading from file, as
specified to <seealso
marker="#tab2file/3">tab2file/3</seealso>. Note that this
function only tells <em>which</em> information is present, not
the values in the file footer. The value is a list containing
one or more of the atoms <c>object_count</c> and
<c>md5sum</c>.</item>
<tag>version</tag>
<item>A tuple <c>{Major,Minor}</c> containing the major and
minor version of the file format for ets table dumps. This
version field was added beginning with stdlib-1.5.1, files
dumped with older versions will return <c>{0,0}</c> in this
field.</item>
</taglist>
<p>An error is returned if the file is inaccessible,
badly damaged or not an file produced with <seealso
marker="#tab2file/2">tab2file/2</seealso> or <seealso
marker="#tab2file/3">tab2file/3</seealso>.</p>
</desc>
</func>
<func>
<name>table(Tab [, Options]) -> QueryHandle</name>
<fsummary>Return a QLC query handle.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>QueryHandle = - a query handle, see qlc(3) -</v>
<v>Options = [Option] | Option</v>
<v>Option = {n_objects, NObjects} | {traverse, TraverseMethod}</v>
<v>NObjects = default | integer() > 0</v>
<v>TraverseMethod = first_next | last_prev | select | {select, MatchSpec}</v>
<v>MatchSpec = match_spec()</v>
</type>
<desc>
<p> <marker id="qlc_table"></marker>
Returns a QLC (Query List
Comprehension) query handle. The module <c>qlc</c> implements
a query language aimed mainly at Mnesia but ETS tables, Dets
tables, and lists are also recognized by QLC as sources of
data. Calling <c>ets:table/1,2</c> is the means to make the
ETS table <c>Tab</c> usable to QLC.</p>
<p>When there are only simple restrictions on the key position
QLC uses <c>ets:lookup/2</c> to look up the keys, but when
that is not possible the whole table is traversed. The
option <c>traverse</c> determines how this is done:</p>
<list type="bulleted">
<item>
<p><c>first_next</c>. The table is traversed one key at
a time by calling <c>ets:first/1</c> and
<c>ets:next/2</c>.</p>
</item>
<item>
<p><c>last_prev</c>. The table is traversed one key at
a time by calling <c>ets:last/1</c> and
<c>ets:prev/2</c>.</p>
</item>
<item>
<p><c>select</c>. The table is traversed by calling
<c>ets:select/3</c> and <c>ets:select/1</c>. The option
<c>n_objects</c> determines the number of objects
returned (the third argument of <c>select/3</c>); the
default is to return <c>100</c> objects at a time. The
<seealso marker="#match_spec">match_spec</seealso> (the
second argument of <c>select/3</c>) is assembled by QLC:
simple filters are translated into equivalent match_specs
while more complicated filters have to be applied to all
objects returned by <c>select/3</c> given a match_spec
that matches all objects.</p>
</item>
<item>
<p><c>{select, MatchSpec}</c>. As for <c>select</c>
the table is traversed by calling <c>ets:select/3</c> and
<c>ets:select/1</c>. The difference is that the
match_spec is explicitly given. This is how to state
match_specs that cannot easily be expressed within the
syntax provided by QLC.</p>
</item>
</list>
<p>The following example uses an explicit match_spec to
traverse the table:</p>
<pre>
9> <input>true = ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),</input>
<input>MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),</input>
<input>QH1 = ets:table(Tab, [{traverse, {select, MS}}]).</input></pre>
<p>An example with implicit match_spec:</p>
<pre>
10> <input>QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)]).</input></pre>
<p>The latter example is in fact equivalent to the former which
can be verified using the function <c>qlc:info/1</c>:</p>
<pre>
11> <input>qlc:info(QH1) =:= qlc:info(QH2).</input>
true</pre>
<p><c>qlc:info/1</c> returns information about a query handle,
and in this case identical information is returned for the
two query handles.</p>
</desc>
</func>
<func>
<name>test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}</name>
<fsummary>Test a match_spec for use in ets:select/2.</fsummary>
<type>
<v>Tuple = tuple()</v>
<v>MatchSpec = match_spec()</v>
<v>Result = term()</v>
<v>Errors = [{warning|error, string()}]</v>
</type>
<desc>
<p>This function is a utility to test a
<seealso marker="#match_spec">match_spec</seealso> used in
calls to <c>ets:select/2</c>. The function both tests
<c>MatchSpec</c> for "syntactic" correctness and runs the
match_spec against the object <c>Tuple</c>. If the match_spec
contains errors, the tuple <c>{error, Errors}</c> is returned
where <c>Errors</c> is a list of natural language
descriptions of what was wrong with the match_spec. If the
match_spec is syntactically OK, the function returns
<c>{ok,Term}</c> where <c>Term</c> is what would have been
the result in a real <c>ets:select/2</c> call or <c>false</c>
if the match_spec does not match the object <c>Tuple</c>.</p>
<p>This is a useful debugging and test tool, especially when
writing complicated <c>ets:select/2</c> calls.</p>
</desc>
</func>
<func>
<name>to_dets(Tab, DetsTab) -> DetsTab</name>
<fsummary>Fill a Dets table with objects from an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>DetsTab = atom()</v>
</type>
<desc>
<p>Fills an already created/opened Dets table with the objects
in the already opened ETS table named <c>Tab</c>. The Dets
table is emptied before the objects are inserted.</p>
</desc>
</func>
<func>
<name>update_counter(Tab, Key, UpdateOp) -> Result</name>
<name>update_counter(Tab, Key, [UpdateOp]) -> [Result]</name>
<name>update_counter(Tab, Key, Incr) -> Result</name>
<fsummary>Update a counter object in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = term()</v>
<v>UpdateOp = {Pos,Incr} | {Pos,Incr,Threshold,SetValue}</v>
<v>Pos = Incr = Threshold = SetValue = Result = int()</v>
</type>
<desc>
<p>This function provides an efficient way to update one or more
counters, without the hassle of having to look up an object, update
the object by incrementing an element and insert the resulting object
into the table again. (The update is done atomically; i.e. no process
can access the ets table in the middle of the operation.)
</p>
<p>It will destructively update the object with key <c>Key</c>
in the table <c>Tab</c> by adding <c>Incr</c> to the element
at the <c>Pos</c>:th position. The new counter value is
returned. If no position is specified, the element directly
following the key (<c><![CDATA[<keypos>+1]]></c>) is updated.</p>
<p>If a <c>Threshold</c> is specified, the counter will be
reset to the value <c>SetValue</c> if the following
conditions occur:</p>
<list type="bulleted">
<item>The <c>Incr</c> is not negative (<c>>= 0</c>) and the
result would be greater than (<c>></c>) <c>Threshold</c></item>
<item>The <c>Incr</c> is negative (<c><![CDATA[< 0]]></c>) and the
result would be less than (<c><![CDATA[<]]></c>)
<c>Threshold</c></item>
</list>
<p>A list of <c>UpdateOp</c> can be supplied to do several update
operations within the object. The operations are carried out in the
order specified in the list. If the same counter position occurs
more than one time in the list, the corresponding counter will thus
be updated several times, each time based on the previous result.
The return value is a list of the new counter values from each
update operation in the same order as in the operation list. If an
empty list is specified, nothing is updated and an empty list is
returned. If the function should fail, no updates will be done at
all.
</p>
<p>The given Key is used to identify the object by either
<em>matching</em> the key of an object in a <c>set</c> table,
or <em>compare equal</em> to the key of an object in an
<c>ordered_set</c> table (see
<seealso marker="#lookup/2">lookup/2</seealso> and
<seealso marker="#new/2">new/2</seealso>
for details on the difference).</p>
<p>The function will fail with reason <c>badarg</c> if:</p>
<list type="bulleted">
<item>the table is not of type <c>set</c> or
<c>ordered_set</c>,</item>
<item>no object with the right key exists,</item>
<item>the object has the wrong arity,</item>
<item>the element to update is not an integer,</item>
<item>the element to update is also the key, or,</item>
<item>any of <c>Pos</c>, <c>Incr</c>, <c>Threshold</c> or
<c>SetValue</c> is not an integer</item>
</list>
</desc>
</func>
<func>
<name>update_element(Tab, Key, {Pos,Value}) -> true | false</name>
<name>update_element(Tab, Key, [{Pos,Value}]) -> true | false</name>
<fsummary>Updates the <c>Pos</c>:th element of the object with a given key in an ETS table.</fsummary>
<type>
<v>Tab = tid() | atom()</v>
<v>Key = Value = term()</v>
<v>Pos = int()</v>
</type>
<desc>
<p>This function provides an efficient way to update one or more
elements within an object, without the hassle of having to look up,
update and write back the entire object.
</p>
<p>It will destructively update the object with key <c>Key</c>
in the table <c>Tab</c>. The element at the <c>Pos</c>:th position
will be given the value <c>Value</c>. </p>
<p>A list of <c>{Pos,Value}</c> can be supplied to update several
elements within the same object. If the same position occurs more
than one in the list, the last value in the list will be written. If
the list is empty or the function fails, no updates will be done at
all. The function is also atomic in the sense that other processes
can never see any intermediate results.
</p>
<p>The function returns <c>true</c> if an object with the key
<c>Key</c> was found, <c>false</c> otherwise.
</p>
<p>The given Key is used to identify the object by either
<em>matching</em> the key of an object in a <c>set</c> table,
or <em>compare equal</em> to the key of an object in an
<c>ordered_set</c> table (see
<seealso marker="#lookup/2">lookup/2</seealso> and
<seealso marker="#new/2">new/2</seealso>
for details on the difference).</p>
<p>The function will fail with reason <c>badarg</c> if:</p>
<list type="bulleted">
<item>the table is not of type <c>set</c> or
<c>ordered_set</c>,</item>
<item><c>Pos</c> is less than 1 or greater than the object
arity, or,</item>
<item>the element to update is also the key</item>
</list>
</desc>
</func>
</funcs>
</erlref>
|