1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>2001</year><year>2016</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>sofs</title>
<prepared>Hans Bolinder</prepared>
<responsible>nobody</responsible>
<docno></docno>
<approved>nobody</approved>
<checked>no</checked>
<date>2001-08-25</date>
<rev>PA1</rev>
<file>sofs.sgml</file>
</header>
<module>sofs</module>
<modulesummary>Functions for Manipulating Sets of Sets</modulesummary>
<description>
<p>The <c>sofs</c> module implements operations on finite sets and
relations represented as sets. Intuitively, a set is a
collection of elements; every element belongs to the set, and
the set contains every element.</p>
<p>Given a set A and a sentence S(x), where x is a free variable,
a new set B whose elements are exactly those elements of A for
which S(x) holds can be formed, this is denoted B =
{x in A : S(x)}. Sentences are expressed using
the logical operators "for some" (or "there exists"), "for all",
"and", "or", "not". If the existence of a set containing all the
specified elements is known (as will always be the case in this
module), we write B = {x : S(x)}. </p>
<p>The <em>unordered set</em> containing the elements a, b and c
is denoted {a, b, c}. This notation is not to be
confused with tuples. The <em>ordered pair</em> of a and b, with
first <em>coordinate</em> a and second coordinate b, is denoted
(a, b). An ordered pair is an <em>ordered set</em> of two
elements. In this module ordered sets can contain one, two or
more elements, and parentheses are used to enclose the elements.
Unordered sets and ordered sets are orthogonal, again in this
module; there is no unordered set equal to any ordered set.</p>
<p>The set that contains no elements is called the <em>empty set</em>.
If two sets A and B contain the same elements, then A
is <marker id="equal"></marker><em>equal</em> to B, denoted
A = B. Two ordered sets are equal if they contain the
same number of elements and have equal elements at each
coordinate. If a set A contains all elements that B contains,
then B is a <marker id="subset"></marker><em>subset</em> of A.
The <marker id="union"></marker><em>union</em> of two sets A and B is
the smallest set that contains all elements of A and all elements of
B. The <marker id="intersection"></marker><em>intersection</em> of two
sets A and B is the set that contains all elements of A that
belong to B.
Two sets are <marker id="disjoint"></marker><em>disjoint</em> if their
intersection is the empty set.
The <marker id="difference"></marker><em>difference</em> of
two sets A and B is the set that contains all elements of A that
do not belong to B.
The <marker id="symmetric_difference"></marker><em>symmetric
difference</em> of
two sets is the set that contains those element that belong to
either of the two sets, but not both.
The <marker id="union_n"></marker><em>union</em> of a collection
of sets is the smallest set that contains all the elements that
belong to at least one set of the collection.
The <marker id="intersection_n"></marker><em>intersection</em> of
a non-empty collection of sets is the set that contains all elements
that belong to every set of the collection.</p>
<p>The <marker id="Cartesian_product"></marker><em>Cartesian
product</em> of
two sets X and Y, denoted X × Y, is the set
{a : a = (x, y) for some x in X and for
some y in Y}.
A <marker id="relation"></marker><em>relation</em> is a subset of
X × Y. Let R be a relation. The fact that
(x, y) belongs to R is written as x R y. Since
relations are sets, the definitions of the last paragraph
(subset, union, and so on) apply to relations as well.
The <marker id="domain"></marker><em>domain</em> of R is the
set {x : x R y for some y in Y}.
The <marker id="range"></marker><em>range</em> of R is the
set {y : x R y for some x in X}.
The <marker id="converse"></marker><em>converse</em> of R is the
set {a : a = (y, x) for some
(x, y) in R}. If A is a subset of X, then
the <marker id="image"></marker><em>image</em> of
A under R is the set {y : x R y for some
x in A}, and if B is a subset of Y, then
the <marker id="inverse_image"></marker><em>inverse image</em> of B is
the set {x : x R y for some y in B}. If R is a
relation from X to Y and S is a relation from Y to Z, then
the <marker id="relative_product"></marker><em>relative product</em> of
R and S is the relation T from X to Z defined so that x T z
if and only if there exists an element y in Y such that
x R y and y S z.
The <marker id="restriction"></marker><em>restriction</em> of R to A is
the set S defined so that x S y if and only if there exists an
element x in A such that x R y. If S is a restriction
of R to A, then R is
an <marker id="extension"></marker><em>extension</em> of S to X.
If X = Y then we call R a relation <em>in</em> X.
The <marker id="field"></marker><em>field</em> of a relation R in X
is the union of the domain of R and the range of R.
If R is a relation in X, and
if S is defined so that x S y if x R y and
not x = y, then S is
the <marker id="strict_relation"></marker><em>strict</em> relation
corresponding to
R, and vice versa, if S is a relation in X, and if R is defined
so that x R y if x S y or x = y,
then R is the <marker id="weak_relation"></marker><em>weak</em> relation
corresponding to S. A relation R in X is <em>reflexive</em> if
x R x for every element x of X; it is
<em>symmetric</em> if x R y implies that
y R x; and it is <em>transitive</em> if
x R y and y R z imply that x R z.</p>
<p>A <marker id="function"></marker><em>function</em> F is a relation, a
subset of X × Y, such that the domain of F is
equal to X and such that for every x in X there is a unique
element y in Y with (x, y) in F. The latter condition can
be formulated as follows: if x F y and x F z
then y = z. In this module, it will not be required
that the domain of F be equal to X for a relation to be
considered a function. Instead of writing
(x, y) in F or x F y, we write
F(x) = y when F is a function, and say that F maps x
onto y, or that the value of F at x is y. Since functions are
relations, the definitions of the last paragraph (domain, range,
and so on) apply to functions as well. If the converse of a
function F is a function F', then F' is called
the <marker id="inverse"></marker><em>inverse</em> of F.
The relative product of two functions F1 and F2 is called
the <marker id="composite"></marker><em>composite</em> of F1 and F2
if the range of F1 is a subset of the domain of F2. </p>
<p>Sometimes, when the range of a function is more important than
the function itself, the function is called a <em>family</em>.
The domain of a family is called the <em>index set</em>, and the
range is called the <em>indexed set</em>. If x is a family from
I to X, then x[i] denotes the value of the function at index i.
The notation "a family in X" is used for such a family. When the
indexed set is a set of subsets of a set X, then we call x
a <marker id="family"></marker><em>family of subsets</em> of X. If x
is a family of subsets of X, then the union of the range of x is
called the <em>union of the family</em> x. If x is non-empty
(the index set is non-empty),
the <em>intersection of the family</em> x is the intersection of
the range of x. In this
module, the only families that will be considered are families
of subsets of some set X; in the following the word "family"
will be used for such families of subsets.</p>
<p>A <marker id="partition"></marker><em>partition</em> of a set X is a
collection S of non-empty subsets of X whose union is X and
whose elements are pairwise disjoint. A relation in a set is an
<em>equivalence relation</em> if it is reflexive, symmetric and
transitive. If R is an equivalence relation in X, and x is an
element of X,
the <marker id="equivalence_class"></marker><em>equivalence
class</em> of x with respect to R is the set of all those
elements y of X for which x R y holds. The equivalence
classes constitute a partitioning of X. Conversely, if C is a
partition of X, then the relation that holds for any two
elements of X if they belong to the same equivalence class, is
an equivalence relation induced by the partition C. If R is an
equivalence relation in X, then
the <marker id="canonical_map"></marker><em>canonical map</em> is
the function that maps every element of X onto its equivalence class.
</p>
<p><marker id="binary_relation"></marker>Relations as defined above
(as sets of ordered pairs) will from now on be referred to as
<em>binary relations</em>. We call a set of ordered sets
(x[1], ..., x[n]) an <marker id="n_ary_relation"></marker>
<em>(n-ary) relation</em>, and say that the relation is a subset of
the <marker id="Cartesian_product_tuple"></marker>Cartesian product
X[1] × ... × X[n] where x[i] is
an element of X[i], 1 <= i <= n.
The <marker id="projection"></marker><em>projection</em> of an n-ary
relation R onto coordinate i is the set {x[i] :
(x[1], ..., x[i], ..., x[n]) in R for some
x[j] in X[j], 1 <= j <= n
and not i = j}. The projections of a binary relation R
onto the first and second coordinates are the domain and the
range of R respectively. The relative product of binary
relations can be generalized to n-ary relations as follows. Let
TR be an ordered set (R[1], ..., R[n]) of binary
relations from X to Y[i] and S a binary relation from
(Y[1] × ... × Y[n]) to Z.
The <marker id="tuple_relative_product"></marker><em>relative
product</em> of
TR and S is the binary relation T from X to Z defined so that
x T z if and only if there exists an element y[i] in
Y[i] for each 1 <= i <= n such that
x R[i] y[i] and
(y[1], ..., y[n]) S z. Now let TR be a an
ordered set (R[1], ..., R[n]) of binary relations from
X[i] to Y[i] and S a subset of
X[1] × ... × X[n].
The <marker id="multiple_relative_product"></marker><em>multiple
relative product</em> of TR and S is defined to be the
set {z : z = ((x[1], ..., x[n]), (y[1],...,y[n]))
for some (x[1], ..., x[n]) in S and for some
(x[i], y[i]) in R[i],
1 <= i <= n}.
The <marker id="natural_join"></marker><em>natural join</em> of
an n-ary relation R
and an m-ary relation S on coordinate i and j is defined to be
the set {z : z = (x[1], ..., x[n],
y[1], ..., y[j-1], y[j+1], ..., y[m])
for some (x[1], ..., x[n]) in R and for some
(y[1], ..., y[m]) in S such that
x[i] = y[j]}.</p>
<p><marker id="sets_definition"></marker>The sets recognized by this
module will be represented by elements of the relation Sets, defined as
the smallest set such that:</p>
<list type="bulleted">
<item>for every atom T except '_' and for every term X,
(T, X) belongs to Sets (<em>atomic sets</em>);
</item>
<item>(['_'], []) belongs to Sets (the <em>untyped empty set</em>);
</item>
<item>for every tuple T = {T[1], ..., T[n]} and
for every tuple X = {X[1], ..., X[n]}, if
(T[i], X[i]) belongs to Sets for every
1 <= i <= n then (T, X) belongs
to Sets (<em>ordered sets</em>);
</item>
<item>for every term T, if X is the empty list or a non-empty
sorted list [X[1], ..., X[n]] without duplicates
such that (T, X[i]) belongs to Sets for every
1 <= i <= n, then ([T], X)
belongs to Sets (<em>typed unordered sets</em>).</item>
</list>
<p>An <marker id="external_set"></marker><em>external set</em> is an
element of the range of Sets.
A <marker id="type"></marker><em>type</em>
is an element of the domain of Sets. If S is an element
(T, X) of Sets, then T is
a <marker id="valid_type"></marker><em>valid type</em> of X,
T is the type of S, and X is the external set
of S. <seealso marker="#from_term">from_term/2</seealso> creates a
set from a type and an Erlang term turned into an external set.</p>
<p>The actual sets represented by Sets are the elements of the
range of the function Set from Sets to Erlang terms and sets of
Erlang terms:</p>
<list type="bulleted">
<item>Set(T,Term) = Term, where T is an atom;</item>
<item>Set({T[1], ..., T[n]}, {X[1], ..., X[n]})
= (Set(T[1], X[1]), ..., Set(T[n], X[n]));</item>
<item>Set([T], [X[1], ..., X[n]])
= {Set(T, X[1]), ..., Set(T, X[n])};</item>
<item>Set([T], []) = {}.</item>
</list>
<p>When there is no risk of confusion, elements of Sets will be
identified with the sets they represent. For instance, if U is
the result of calling <c>union/2</c> with S1 and S2 as
arguments, then U is said to be the union of S1 and S2. A more
precise formulation would be that Set(U) is the union of Set(S1)
and Set(S2).</p>
<p>The types are used to implement the various conditions that
sets need to fulfill. As an example, consider the relative
product of two sets R and S, and recall that the relative
product of R and S is defined if R is a binary relation to Y and
S is a binary relation from Y. The function that implements the relative
product, <seealso marker="#relprod_impl">relative_product/2</seealso>, checks
that the arguments represent binary relations by matching [{A,B}]
against the type of the first argument (Arg1 say), and [{C,D}]
against the type of the second argument (Arg2 say). The fact
that [{A,B}] matches the type of Arg1 is to be interpreted as
Arg1 representing a binary relation from X to Y, where X is
defined as all sets Set(x) for some element x in Sets the type
of which is A, and similarly for Y. In the same way Arg2 is
interpreted as representing a binary relation from W to Z.
Finally it is checked that B matches C, which is sufficient to
ensure that W is equal to Y. The untyped empty set is handled
separately: its type, ['_'], matches the type of any unordered
set.</p>
<p>A few functions of this module (<c>drestriction/3</c>,
<c>family_projection/2</c>, <c>partition/2</c>,
<c>partition_family/2</c>, <c>projection/2</c>,
<c>restriction/3</c>, <c>substitution/2</c>) accept an Erlang
function as a means to modify each element of a given unordered
set. <marker id="set_fun"></marker>Such a function, called
SetFun in the following, can be
specified as a functional object (fun), a tuple
<c>{external, Fun}</c>, or an integer. If SetFun is
specified as a fun, the fun is applied to each element of the
given set and the return value is assumed to be a set. If SetFun
is specified as a tuple <c>{external, Fun}</c>, Fun is applied
to the external set of each element of the given set and the
return value is assumed to be an external set. Selecting the
elements of an unordered set as external sets and assembling a
new unordered set from a list of external sets is in the present
implementation more efficient than modifying each element as a
set. However, this optimization can only be utilized when the
elements of the unordered set are atomic or ordered sets. It
must also be the case that the type of the elements matches some
clause of Fun (the type of the created set is the result of
applying Fun to the type of the given set), and that Fun does
nothing but selecting, duplicating or rearranging parts of the
elements. Specifying a SetFun as an integer I is equivalent to
specifying <c>{external, fun(X) -> element(I, X) end}</c>,
but is to be preferred since it makes it possible to handle this
case even more efficiently. Examples of SetFuns:</p>
<pre>
fun sofs:union/1
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({_,{_,C}}) -> C end}
{external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end}
2</pre>
<p>The order in which a SetFun is applied to the elements of an
unordered set is not specified, and may change in future
versions of sofs.</p>
<p>The execution time of the functions of this module is dominated
by the time it takes to sort lists. When no sorting is needed,
the execution time is in the worst case proportional to the sum
of the sizes of the input arguments and the returned value. A
few functions execute in constant time: <c>from_external</c>,
<c>is_empty_set</c>, <c>is_set</c>, <c>is_sofs_set</c>,
<c>to_external</c>, <c>type</c>.</p>
<p>The functions of this module exit the process with a
<c>badarg</c>, <c>bad_function</c>, or <c>type_mismatch</c>
message when given badly formed arguments or sets the types of
which are not compatible.</p>
<p>When comparing external sets the operator <c>==/2</c> is used.</p>
</description>
<datatypes>
<datatype>
<name name="anyset"></name>
<desc><p>Any kind of set (also included are the atomic sets).</p></desc>
</datatype>
<datatype>
<name name="binary_relation"></name>
<desc><p>A <seealso marker="#binary_relation">binary
relation</seealso>.</p></desc>
</datatype>
<datatype>
<name name="external_set"></name>
<desc><p>An <seealso marker="#external_set">external
set</seealso>.</p></desc>
</datatype>
<datatype>
<name name="family"></name>
<desc><p>A <seealso marker="#family">family</seealso> (of subsets).</p>
</desc>
</datatype>
<datatype>
<name name="a_function"></name>
<desc><p>A <seealso marker="#function">function</seealso>.</p></desc>
</datatype>
<datatype>
<name name="ordset"></name>
<desc><p>An <seealso marker="#sets_definition">ordered
set</seealso>.</p></desc>
</datatype>
<datatype>
<name name="relation"></name>
<desc><p>An <seealso marker="#n_ary_relation">n-ary relation</seealso>.
</p></desc>
</datatype>
<datatype>
<name name="a_set"></name>
<desc><p>An <seealso marker="#sets_definition">unordered
set</seealso>.</p></desc>
</datatype>
<datatype>
<name name="set_of_sets"></name>
<desc><p>An <seealso marker="#sets_definition">unordered
set</seealso> of unordered sets.</p></desc>
</datatype>
<datatype>
<name name="set_fun"></name>
<desc><p>A <seealso marker="#set_fun">SetFun</seealso>.</p></desc>
</datatype>
<datatype>
<name name="spec_fun"></name>
</datatype>
<datatype>
<name name="type"></name>
<desc><p>A <seealso marker="#type">type</seealso>.</p></desc>
</datatype>
<datatype>
<!-- Parameterized opaque types are NYI: -->
<name>tuple_of(T)</name>
<desc><p><marker id="type-tuple_of"/>
A tuple where the elements are of type <c>T</c>.</p></desc>
</datatype>
</datatypes>
<funcs>
<func>
<name name="a_function" arity="1"/>
<name name="a_function" arity="2"/>
<fsummary>Create a function.</fsummary>
<desc>
<p>Creates a <seealso marker="#function">function</seealso>.
<c>a_function(F, T)</c> is equivalent to
<c>from_term(F, T)</c>, if the result is a function. If
no <seealso marker="#type">type</seealso> is explicitly
given, <c>[{atom, atom}]</c> is used as type of the
function.</p>
</desc>
</func>
<func>
<name name="canonical_relation" arity="1"/>
<fsummary>Return the canonical map.</fsummary>
<desc>
<p>Returns the binary relation containing the elements
(E, Set) such that Set belongs to <anno>SetOfSets</anno> and E
belongs to Set. If SetOfSets is
a <seealso marker="#partition">partition</seealso> of a set X and
R is the equivalence relation in X induced by SetOfSets, then the
returned relation is
the <seealso marker="#canonical_map">canonical map</seealso> from
X onto the equivalence classes with respect to R.</p>
<pre>
1> <input>Ss = sofs:from_term([[a,b],[b,c]]),</input>
<input>CR = sofs:canonical_relation(Ss),</input>
<input>sofs:to_external(CR).</input>
[{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]</pre>
</desc>
</func>
<func>
<name name="composite" arity="2"/>
<fsummary>Return the composite of two functions.</fsummary>
<desc>
<p>Returns the <seealso marker="#composite">composite</seealso> of
the functions <anno>Function1</anno> and
<anno>Function2</anno>.</p>
<pre>
1> <input>F1 = sofs:a_function([{a,1},{b,2},{c,2}]),</input>
<input>F2 = sofs:a_function([{1,x},{2,y},{3,z}]),</input>
<input>F = sofs:composite(F1, F2),</input>
<input>sofs:to_external(F).</input>
[{a,x},{b,y},{c,y}]</pre>
</desc>
</func>
<func>
<name name="constant_function" arity="2"/>
<fsummary>Create the function that maps each element of a
set onto another set.</fsummary>
<desc>
<p>Creates the <seealso marker="#function">function</seealso>
that maps each element of the set Set onto AnySet.</p>
<pre>
1> <input>S = sofs:set([a,b]),</input>
<input>E = sofs:from_term(1),</input>
<input>R = sofs:constant_function(S, E),</input>
<input>sofs:to_external(R).</input>
[{a,1},{b,1}]</pre>
</desc>
</func>
<func>
<name name="converse" arity="1"/>
<fsummary>Return the converse of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#converse">converse</seealso>
of the binary relation <anno>BinRel1</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,a}]),</input>
<input>R2 = sofs:converse(R1),</input>
<input>sofs:to_external(R2).</input>
[{a,1},{a,3},{b,2}]</pre>
</desc>
</func>
<func>
<name name="difference" arity="2"/>
<fsummary>Return the difference of two sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#difference">difference</seealso> of
the sets <anno>Set1</anno> and <anno>Set2</anno>.</p>
</desc>
</func>
<func>
<name name="digraph_to_family" arity="1"/>
<name name="digraph_to_family" arity="2"/>
<fsummary>Create a family from a directed graph.</fsummary>
<desc>
<p>Creates a <seealso marker="#family">family</seealso> from
the directed graph <anno>Graph</anno>. Each vertex a of
<anno>Graph</anno> is
represented by a pair (a, {b[1], ..., b[n]})
where the b[i]'s are the out-neighbours of a. If no type is
explicitly given, [{atom, [atom]}] is used as type of
the family. It is assumed that <anno>Type</anno> is
a <seealso marker="#valid_type">valid type</seealso> of the
external set of the family.</p>
<p>If G is a directed graph, it holds that the vertices and
edges of G are the same as the vertices and edges of
<c>family_to_digraph(digraph_to_family(G))</c>.</p>
</desc>
</func>
<func>
<name name="domain" arity="1"/>
<fsummary>Return the domain of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#domain">domain</seealso> of
the binary relation <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:domain(R),</input>
<input>sofs:to_external(S).</input>
[1,2]</pre>
</desc>
</func>
<func>
<name name="drestriction" arity="2"/>
<fsummary>Return a restriction of a binary relation.</fsummary>
<desc>
<p>Returns the difference between the binary relation
<anno>BinRel1</anno>
and the <seealso marker="#restriction">restriction</seealso>
of <anno>BinRel1</anno> to <anno>Set</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([2,4,6]),</input>
<input>R2 = sofs:drestriction(R1, S),</input>
<input>sofs:to_external(R2).</input>
[{1,a},{3,c}]</pre>
<p><c>drestriction(R, S)</c> is equivalent to
<c>difference(R, restriction(R, S))</c>.</p>
</desc>
</func>
<func>
<name name="drestriction" arity="3"/>
<fsummary>Return a restriction of a relation.</fsummary>
<desc>
<p>Returns a subset of <anno>Set1</anno> containing those elements
that do
not yield an element in <anno>Set2</anno> as the result of applying
<anno>SetFun</anno>.</p>
<pre>
1> <input>SetFun = {external, fun({_A,B,C}) -> {B,C} end},</input>
<input>R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),</input>
<input>R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),</input>
<input>R3 = sofs:drestriction(SetFun, R1, R2),</input>
<input>sofs:to_external(R3).</input>
[{a,aa,1}]</pre>
<p><c>drestriction(F, S1, S2)</c> is equivalent to
<c>difference(S1, restriction(F, S1, S2))</c>.</p>
</desc>
</func>
<func>
<name name="empty_set" arity="0"/>
<fsummary>Return the untyped empty set.</fsummary>
<desc>
<p>Returns the <seealso marker="#sets_definition">untyped empty
set</seealso>. <c>empty_set()</c> is equivalent to
<c>from_term([], ['_'])</c>.</p>
</desc>
</func>
<func>
<name name="extension" arity="3"/>
<fsummary>Extend the domain of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#extension">extension</seealso> of
<anno>BinRel1</anno> such that
for each element E in <anno>Set</anno> that does not belong to the
<seealso marker="#domain">domain</seealso> of <anno>BinRel1</anno>,
<anno>BinRel2</anno> contains the pair (E, AnySet).</p>
<pre>
1> <input>S = sofs:set([b,c]),</input>
<input>A = sofs:empty_set(),</input>
<input>R = sofs:family([{a,[1,2]},{b,[3]}]),</input>
<input>X = sofs:extension(R, S, A),</input>
<input>sofs:to_external(X).</input>
[{a,[1,2]},{b,[3]},{c,[]}]</pre>
</desc>
</func>
<func>
<name name="family" arity="1"/>
<name name="family" arity="2"/>
<fsummary>Create a family of subsets.</fsummary>
<desc>
<p>Creates a <seealso marker="#family">family of subsets</seealso>.
<c>family(F, T)</c> is equivalent to
<c>from_term(F, T)</c>, if the result is a family. If
no <seealso marker="#type">type</seealso> is explicitly
given, <c>[{atom, [atom]}]</c> is used as type of the
family.</p>
</desc>
</func>
<func>
<name name="family_difference" arity="2"/>
<fsummary>Return the difference of two families.</fsummary>
<desc>
<p>If <anno>Family1</anno> and <anno>Family2</anno>
are <seealso marker="#family">families</seealso>, then
<anno>Family3</anno> is the family
such that the index set is equal to the index set of
<anno>Family1</anno>, and <anno>Family3</anno>[i] is the
difference between <anno>Family1</anno>[i]
and <anno>Family2</anno>[i] if <anno>Family2</anno> maps i,
<anno>Family1</anno>[i] otherwise.</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),</input>
<input>F3 = sofs:family_difference(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{a,[1,2]},{b,[3]}]</pre>
</desc>
</func>
<func>
<name name="family_domain" arity="1"/>
<fsummary>Return a family of domains.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
and <anno>Family1</anno>[i] is a binary relation for every i
in the index set of <anno>Family1</anno>,
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is
the <seealso marker="#domain">domain</seealso> of
<anno>Family1</anno>[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_domain(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[1,2,3]},{b,[]},{c,[4,5]}]</pre>
</desc>
</func>
<func>
<name name="family_field" arity="1"/>
<fsummary>Return a family of fields.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
and <anno>Family1</anno>[i] is a binary relation for every i
in the index set of <anno>Family1</anno>,
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is
the <seealso marker="#field">field</seealso> of
<anno>Family1</anno>[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_field(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]</pre>
<p><c>family_field(Family1)</c> is equivalent to
<c>family_union(family_domain(Family1), family_range(Family1))</c>.</p>
</desc>
</func>
<func>
<name name="family_intersection" arity="1"/>
<fsummary>Return the intersection of a family
of sets of sets.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
and <anno>Family1</anno>[i] is a set of sets for every i in
the index set of <anno>Family1</anno>,
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is
the <seealso marker="#intersection_n">intersection</seealso>
of <anno>Family1</anno>[i].</p>
<p>If <anno>Family1</anno>[i] is an empty set for some i, then
the process exits with a <c>badarg</c> message.</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),</input>
<input>F2 = sofs:family_intersection(F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[2,3]},{b,[x,y]}]</pre>
</desc>
</func>
<func>
<name name="family_intersection" arity="2"/>
<fsummary>Return the intersection of two families.</fsummary>
<desc>
<p>If <anno>Family1</anno> and <anno>Family2</anno>
are <seealso marker="#family">families</seealso>,
then <anno>Family3</anno> is the family such that the index
set is the intersection of <anno>Family1</anno>'s and
<anno>Family2</anno>'s index sets,
and <anno>Family3</anno>[i] is the intersection of
<anno>Family1</anno>[i] and <anno>Family2</anno>[i].</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input>
<input>F3 = sofs:family_intersection(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{b,[4]},{c,[]}]</pre>
</desc>
</func>
<func>
<name name="family_projection" arity="2"/>
<fsummary>Return a family of modified subsets.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is the result of
calling <anno>SetFun</anno> with <anno>Family1</anno>[i] as
argument.</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input>
<input>F2 = sofs:family_projection(fun sofs:union/1, F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[1,2,3]},{b,[]}]</pre>
</desc>
</func>
<func>
<name name="family_range" arity="1"/>
<fsummary>Return a family of ranges.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
and <anno>Family1</anno>[i] is a binary relation for every i
in the index set of <anno>Family1</anno>,
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is
the <seealso marker="#range">range</seealso> of
<anno>Family1</anno>[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_range(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[a,b,c]},{b,[]},{c,[d,e]}]</pre>
</desc>
</func>
<func>
<name name="family_specification" arity="2"/>
<fsummary>Select a subset of a family using a predicate.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>,
then <anno>Family2</anno> is
the <seealso marker="#restriction">restriction</seealso> of
<anno>Family1</anno> to those elements i of the index set
for which <anno>Fun</anno> applied
to <anno>Family1</anno>[i] returns
<c>true</c>. If <anno>Fun</anno> is a
tuple <c>{external, Fun2}</c>, Fun2 is applied to
the <seealso marker="#external_set">external set</seealso>
of <anno>Family1</anno>[i], otherwise <anno>Fun</anno> is
applied to <anno>Family1</anno>[i].</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),</input>
<input>SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,</input>
<input>F2 = sofs:family_specification(SpecFun, F1),</input>
<input>sofs:to_external(F2).</input>
[{b,[1,2]}]</pre>
</desc>
</func>
<func>
<name name="family_to_digraph" arity="1"/>
<name name="family_to_digraph" arity="2"/>
<fsummary>Create a directed graph from a family.</fsummary>
<desc>
<p>Creates a directed graph from
the <seealso marker="#family">family</seealso> <anno>Family</anno>.
For each pair (a, {b[1], ..., b[n]})
of <anno>Family</anno>, the vertex
a as well the edges (a, b[i]) for
1 <= i <= n are added to a newly
created directed graph.</p>
<p>If no graph type is given <seealso marker="digraph#new/0">
digraph:new/0</seealso> is used for
creating the directed graph, otherwise the <anno>GraphType</anno>
argument is passed on as second argument to
<seealso marker="digraph#new/1">digraph:new/1</seealso>.</p>
<p>It F is a family, it holds that F is a subset of
<c>digraph_to_family(family_to_digraph(F), type(F))</c>.
Equality holds if <c>union_of_family(F)</c> is a subset of
<c>domain(F)</c>.</p>
<p>Creating a cycle in an acyclic graph exits the process with
a <c>cyclic</c> message.</p>
</desc>
</func>
<func>
<name name="family_to_relation" arity="1"/>
<fsummary>Create a binary relation from a family.</fsummary>
<desc>
<p>If <anno>Family</anno> is
a <seealso marker="#family">family</seealso>,
then <anno>BinRel</anno> is the binary relation containing
all pairs (i, x) such that i belongs to the index set
of <anno>Family</anno> and x belongs
to <anno>Family</anno>[i].</p>
<pre>
1> <input>F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),</input>
<input>R = sofs:family_to_relation(F),</input>
<input>sofs:to_external(R).</input>
[{b,1},{c,2},{c,3}]</pre>
</desc>
</func>
<func>
<name name="family_union" arity="1"/>
<fsummary>Return the union of a family of sets of sets.</fsummary>
<desc>
<p>If <anno>Family1</anno> is
a <seealso marker="#family">family</seealso>
and <anno>Family1</anno>[i] is a set of sets for each i in
the index set of <anno>Family1</anno>,
then <anno>Family2</anno> is the family with the same index
set as <anno>Family1</anno> such
that <anno>Family2</anno>[i] is
the <seealso marker="#union_n">union</seealso> of
<anno>Family1</anno>[i].</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input>
<input>F2 = sofs:family_union(F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[1,2,3]},{b,[]}]</pre>
<p><c>family_union(F)</c> is equivalent to
<c>family_projection(fun sofs:union/1, F)</c>.</p>
</desc>
</func>
<func>
<name name="family_union" arity="2"/>
<fsummary>Return the union of two families.</fsummary>
<desc>
<p>If <anno>Family1</anno> and <anno>Family2</anno>
are <seealso marker="#family">families</seealso>,
then <anno>Family3</anno> is the family such that the index
set is the union of <anno>Family1</anno>'s
and <anno>Family2</anno>'s index sets,
and <anno>Family3</anno>[i] is the union
of <anno>Family1</anno>[i] and <anno>Family2</anno>[i] if
both maps i, <anno>Family1</anno>[i]
or <anno>Family2</anno>[i] otherwise.</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input>
<input>F3 = sofs:family_union(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]</pre>
</desc>
</func>
<func>
<name name="field" arity="1"/>
<fsummary>Return the field of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#field">field</seealso> of the
binary relation <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:field(R),</input>
<input>sofs:to_external(S).</input>
[1,2,a,b,c]</pre>
<p><c>field(R)</c> is equivalent
to <c>union(domain(R), range(R))</c>.</p>
</desc>
</func>
<func>
<name name="from_external" arity="2"/>
<fsummary>Create a set.</fsummary>
<desc>
<p>Creates a set from the <seealso marker="#external_set">external
set</seealso> <anno>ExternalSet</anno>
and the <seealso marker="#type">type</seealso> <anno>Type</anno>.
It is assumed that <anno>Type</anno> is
a <seealso marker="#valid_type">valid
type</seealso> of <anno>ExternalSet</anno>.</p>
</desc>
</func>
<func>
<name name="from_sets" arity="1" clause_i="1"/>
<fsummary>Create a set out of a list of sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#sets_definition">unordered
set</seealso> containing the sets of the list
<anno>ListOfSets</anno>.</p>
<pre>
1> <input>S1 = sofs:relation([{a,1},{b,2}]),</input>
<input>S2 = sofs:relation([{x,3},{y,4}]),</input>
<input>S = sofs:from_sets([S1,S2]),</input>
<input>sofs:to_external(S).</input>
[[{a,1},{b,2}],[{x,3},{y,4}]]</pre>
</desc>
</func>
<func>
<name name="from_sets" arity="1" clause_i="2"/>
<fsummary>Create an ordered set out of a tuple of sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#sets_definition">ordered
set</seealso> containing the sets of the non-empty tuple
<anno>TupleOfSets</anno>.</p>
</desc>
</func>
<func>
<name name="from_term" arity="1"/>
<name name="from_term" arity="2"/>
<fsummary>Create a set.</fsummary>
<desc>
<p><marker id="from_term"></marker>Creates an element
of <seealso marker="#sets_definition">Sets</seealso> by
traversing the term <anno>Term</anno>, sorting lists,
removing duplicates and
deriving or verifying a <seealso marker="#valid_type">valid
type</seealso> for the so obtained external set. An
explicitly given <seealso marker="#type">type</seealso>
<anno>Type</anno>
can be used to limit the depth of the traversal; an atomic
type stops the traversal, as demonstrated by this example
where "foo" and {"foo"} are left unmodified:</p>
<pre>
1> <input>S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}],
[{atom,[atom]}]),</input>
<input>sofs:to_external(S).</input>
[{{"foo"},[1]},{"foo",[2]}]</pre>
<p><c>from_term</c> can be used for creating atomic or ordered
sets. The only purpose of such a set is that of later
building unordered sets since all functions in this module
that <em>do</em> anything operate on unordered sets.
Creating unordered sets from a collection of ordered sets
may be the way to go if the ordered sets are big and one
does not want to waste heap by rebuilding the elements of
the unordered set. An example showing that a set can be
built "layer by layer":</p>
<pre>
1> <input>A = sofs:from_term(a),</input>
<input>S = sofs:set([1,2,3]),</input>
<input>P1 = sofs:from_sets({A,S}),</input>
<input>P2 = sofs:from_term({b,[6,5,4]}),</input>
<input>Ss = sofs:from_sets([P1,P2]),</input>
<input>sofs:to_external(Ss).</input>
[{a,[1,2,3]},{b,[4,5,6]}]</pre>
<p>Other functions that create sets are <c>from_external/2</c>
and <c>from_sets/1</c>. Special cases of <c>from_term/2</c>
are <c>a_function/1,2</c>, <c>empty_set/0</c>,
<c>family/1,2</c>, <c>relation/1,2</c>, and <c>set/1,2</c>.</p>
</desc>
</func>
<func>
<name name="image" arity="2"/>
<fsummary>Return the image of a set under a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#image">image</seealso> of the
set <anno>Set1</anno> under the binary
relation <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input>
<input>S1 = sofs:set([1,2]),</input>
<input>S2 = sofs:image(R, S1),</input>
<input>sofs:to_external(S2).</input>
[a,b,c]</pre>
</desc>
</func>
<func>
<name name="intersection" arity="1"/>
<fsummary>Return the intersection of a set of sets.</fsummary>
<desc>
<p>Returns
the <seealso marker="#intersection_n">intersection</seealso> of
the set of sets <anno>SetOfSets</anno>.</p>
<p>Intersecting an empty set of sets exits the process with a
<c>badarg</c> message.</p>
</desc>
</func>
<func>
<name name="intersection" arity="2"/>
<fsummary>Return the intersection of two sets.</fsummary>
<desc>
<p>Returns
the <seealso marker="#intersection">intersection</seealso> of
<anno>Set1</anno> and <anno>Set2</anno>.</p>
</desc>
</func>
<func>
<name name="intersection_of_family" arity="1"/>
<fsummary>Return the intersection of a family.</fsummary>
<desc>
<p>Returns the intersection of
the <seealso marker="#family">family</seealso> <anno>Family</anno>.
</p>
<p>Intersecting an empty family exits the process with a
<c>badarg</c> message.</p>
<pre>
1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input>
<input>S = sofs:intersection_of_family(F),</input>
<input>sofs:to_external(S).</input>
[2]</pre>
</desc>
</func>
<func>
<name name="inverse" arity="1"/>
<fsummary>Return the inverse of a function.</fsummary>
<desc>
<p>Returns the <seealso marker="#inverse">inverse</seealso>
of the function <anno>Function1</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>R2 = sofs:inverse(R1),</input>
<input>sofs:to_external(R2).</input>
[{a,1},{b,2},{c,3}]</pre>
</desc>
</func>
<func>
<name name="inverse_image" arity="2"/>
<fsummary>Return the inverse image of a set under
a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#inverse_image">inverse
image</seealso> of <anno>Set1</anno> under the binary
relation <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input>
<input>S1 = sofs:set([c,d,e]),</input>
<input>S2 = sofs:inverse_image(R, S1),</input>
<input>sofs:to_external(S2).</input>
[2,3]</pre>
</desc>
</func>
<func>
<name name="is_a_function" arity="1"/>
<fsummary>Test for a function.</fsummary>
<desc>
<p>Returns <c>true</c> if the binary relation <anno>BinRel</anno>
is a <seealso marker="#function">function</seealso> or the
untyped empty set, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name name="is_disjoint" arity="2"/>
<fsummary>Test for disjoint sets.</fsummary>
<desc>
<p>Returns <c>true</c> if <anno>Set1</anno>
and <anno>Set2</anno>
are <seealso marker="#disjoint">disjoint</seealso>, <c>false</c>
otherwise.</p>
</desc>
</func>
<func>
<name name="is_empty_set" arity="1"/>
<fsummary>Test for an empty set.</fsummary>
<desc>
<p>Returns <c>true</c> if <anno>AnySet</anno> is an empty
unordered set, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name name="is_equal" arity="2"/>
<fsummary>Test two sets for equality.</fsummary>
<desc>
<p>Returns <c>true</c> if the <anno>AnySet1</anno>
and <anno>AnySet2</anno>
are <seealso marker="#equal">equal</seealso>, <c>false</c>
otherwise. This example shows that <c>==/2</c> is used when
comparing sets for equality:</p>
<pre>
1> <input>S1 = sofs:set([1.0]),</input>
<input>S2 = sofs:set([1]),</input>
<input>sofs:is_equal(S1, S2).</input>
true</pre>
</desc>
</func>
<func>
<name name="is_set" arity="1"/>
<fsummary>Test for an unordered set.</fsummary>
<desc>
<p>Returns <c>true</c> if <anno>AnySet</anno> is
an <seealso marker="#sets_definition">unordered set</seealso>, and
<c>false</c> if <anno>AnySet</anno> is an ordered set or an
atomic set.</p>
</desc>
</func>
<func>
<name name="is_sofs_set" arity="1"/>
<fsummary>Test for an unordered set.</fsummary>
<desc>
<p>Returns <c>true</c> if <anno>Term</anno> is
an <seealso marker="#sets_definition">unordered set</seealso>, an
ordered set or an atomic set, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name name="is_subset" arity="2"/>
<fsummary>Test two sets for subset.</fsummary>
<desc>
<p>Returns <c>true</c> if <anno>Set1</anno> is
a <seealso marker="#subset">subset</seealso>
of <anno>Set2</anno>, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name name="is_type" arity="1"/>
<fsummary>Test for a type.</fsummary>
<desc>
<p>Returns <c>true</c> if the term <anno>Term</anno> is
a <seealso marker="#type">type</seealso>.</p>
</desc>
</func>
<func>
<name name="join" arity="4"/>
<fsummary>Return the join of two relations.</fsummary>
<desc>
<p>Returns the <seealso marker="#natural_join">natural
join</seealso> of the relations <anno>Relation1</anno>
and <anno>Relation2</anno> on coordinates <anno>I</anno> and
<anno>J</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{a,x,1},{b,y,2}]),</input>
<input>R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),</input>
<input>J = sofs:join(R1, 3, R2, 1),</input>
<input>sofs:to_external(J).</input>
[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]</pre>
</desc>
</func>
<func>
<name name="multiple_relative_product" arity="2"/>
<fsummary>Return the multiple relative product of a tuple of binary
relations and a relation.</fsummary>
<desc>
<p>If <anno>TupleOfBinRels</anno> is a non-empty tuple
{R[1], ..., R[n]} of binary relations
and <anno>BinRel1</anno> is a binary relation,
then <anno>BinRel2</anno> is
the <seealso marker="#multiple_relative_product">multiple relative
product</seealso> of the ordered set
(R[i], ..., R[n]) and <anno>BinRel1</anno>.</p>
<pre>
1> <input>Ri = sofs:relation([{a,1},{b,2},{c,3}]),</input>
<input>R = sofs:relation([{a,b},{b,c},{c,a}]),</input>
<input>MP = sofs:multiple_relative_product({Ri, Ri}, R),</input>
<input>sofs:to_external(sofs:range(MP)).</input>
[{1,2},{2,3},{3,1}]</pre>
</desc>
</func>
<func>
<name name="no_elements" arity="1"/>
<fsummary>Return the number of elements of a set.</fsummary>
<desc>
<p>Returns the number of elements of the ordered or unordered
set <anno>ASet</anno>.</p>
</desc>
</func>
<func>
<name name="partition" arity="1"/>
<fsummary>Return the coarsest partition given a set of sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#partition">partition</seealso> of
the union of the set of sets <anno>SetOfSets</anno> such that two
elements are considered equal if they belong to the same
elements of <anno>SetOfSets</anno>.</p>
<pre>
1> <input>Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),</input>
<input>Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),</input>
<input>P = sofs:partition(sofs:union(Sets1, Sets2)),</input>
<input>sofs:to_external(P).</input>
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]</pre>
</desc>
</func>
<func>
<name name="partition" arity="2"/>
<fsummary>Return a partition of a set.</fsummary>
<desc>
<p>Returns the <seealso marker="#partition">partition</seealso> of
<anno>Set</anno> such that two elements are considered equal
if the results of applying <anno>SetFun</anno> are equal.</p>
<pre>
1> <input>Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),</input>
<input>SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,</input>
<input>P = sofs:partition(SetFun, Ss),</input>
<input>sofs:to_external(P).</input>
[[[a],[b]],[[c,d],[e,f]]]</pre>
</desc>
</func>
<func>
<name name="partition" arity="3"/>
<fsummary>Return a partition of a set.</fsummary>
<desc>
<p>Returns a pair of sets that, regarded as constituting a
set, forms a <seealso marker="#partition">partition</seealso> of
<anno>Set1</anno>. If the
result of applying <anno>SetFun</anno> to an element
of <anno>Set1</anno> yields an element in <anno>Set2</anno>,
the element belongs to <anno>Set3</anno>, otherwise the
element belongs to <anno>Set4</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([2,4,6]),</input>
<input>{R2,R3} = sofs:partition(1, R1, S),</input>
<input>{sofs:to_external(R2),sofs:to_external(R3)}.</input>
{[{2,b}],[{1,a},{3,c}]}</pre>
<p><c>partition(F, S1, S2)</c> is equivalent to
<c>{restriction(F, S1, S2),
drestriction(F, S1, S2)}</c>.</p>
</desc>
</func>
<func>
<name name="partition_family" arity="2"/>
<fsummary>Return a family indexing a partition.</fsummary>
<desc>
<p>Returns the <seealso marker="#family">family</seealso>
<anno>Family</anno> where the indexed set is
a <seealso marker="#partition">partition</seealso>
of <anno>Set</anno> such that two elements are considered
equal if the results of applying <anno>SetFun</anno> are the
same value i. This i is the index that <anno>Family</anno>
maps onto
the <seealso marker="#equivalence_class">equivalence
class</seealso>.</p>
<pre>
1> <input>S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),</input>
<input>SetFun = {external, fun({A,_,C,_}) -> {A,C} end},</input>
<input>F = sofs:partition_family(SetFun, S),</input>
<input>sofs:to_external(F).</input>
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]</pre>
</desc>
</func>
<func>
<name name="product" arity="1"/>
<fsummary>Return the Cartesian product of a tuple of sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#Cartesian_product_tuple">Cartesian
product</seealso> of the non-empty tuple of sets
<anno>TupleOfSets</anno>. If (x[1], ..., x[n]) is
an element of the n-ary relation <anno>Relation</anno>, then
x[i] is drawn from element i
of <anno>TupleOfSets</anno>.</p>
<pre>
1> <input>S1 = sofs:set([a,b]),</input>
<input>S2 = sofs:set([1,2]),</input>
<input>S3 = sofs:set([x,y]),</input>
<input>P3 = sofs:product({S1,S2,S3}),</input>
<input>sofs:to_external(P3).</input>
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]</pre>
</desc>
</func>
<func>
<name name="product" arity="2"/>
<fsummary>Return the Cartesian product of two sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#Cartesian_product">Cartesian
product</seealso> of <anno>Set1</anno>
and <anno>Set2</anno>.</p>
<pre>
1> <input>S1 = sofs:set([1,2]),</input>
<input>S2 = sofs:set([a,b]),</input>
<input>R = sofs:product(S1, S2),</input>
<input>sofs:to_external(R).</input>
[{1,a},{1,b},{2,a},{2,b}]</pre>
<p><c>product(S1, S2)</c> is equivalent to
<c>product({S1, S2})</c>.</p>
</desc>
</func>
<func>
<name name="projection" arity="2"/>
<fsummary>Return a set of substituted elements.</fsummary>
<desc>
<p>Returns the set created by substituting each element of
<anno>Set1</anno> by the result of
applying <anno>SetFun</anno> to the element.</p>
<p>If <anno>SetFun</anno> is a number i >= 1 and
<anno>Set1</anno> is a relation, then the returned set is
the <seealso marker="#projection">projection</seealso> of
<anno>Set1</anno> onto coordinate i.</p>
<pre>
1> <input>S1 = sofs:from_term([{1,a},{2,b},{3,a}]),</input>
<input>S2 = sofs:projection(2, S1),</input>
<input>sofs:to_external(S2).</input>
[a,b]</pre>
</desc>
</func>
<func>
<name name="range" arity="1"/>
<fsummary>Return the range of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#range">range</seealso> of the
binary relation <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:range(R),</input>
<input>sofs:to_external(S).</input>
[a,b,c]</pre>
</desc>
</func>
<func>
<name name="relation" arity="1"/>
<name name="relation" arity="2"/>
<fsummary>Create a relation.</fsummary>
<desc>
<p>Creates a <seealso marker="#relation">relation</seealso>.
<c>relation(R, T)</c> is equivalent to
<c>from_term(R, T)</c>, if T is
a <seealso marker="#type">type</seealso> and the result is a
relation. If <anno>Type</anno> is an integer N, then
<c>[{atom, ..., atom}])</c>, where the size of the
tuple is N, is used as type of the relation. If no type is
explicitly given, the size of the first tuple of
<anno>Tuples</anno> is
used if there is such a tuple. <c>relation([])</c> is
equivalent to <c>relation([], 2)</c>.</p>
</desc>
</func>
<func>
<name name="relation_to_family" arity="1"/>
<fsummary>Create a family from a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#family">family</seealso>
<anno>Family</anno> such that the index set is equal to
the <seealso marker="#domain">domain</seealso> of the binary
relation <anno>BinRel</anno>, and <anno>Family</anno>[i] is
the <seealso marker="#image">image</seealso> of the set of i
under <anno>BinRel</anno>.</p>
<pre>
1> <input>R = sofs:relation([{b,1},{c,2},{c,3}]),</input>
<input>F = sofs:relation_to_family(R),</input>
<input>sofs:to_external(F).</input>
[{b,[1]},{c,[2,3]}]</pre>
</desc>
</func>
<func>
<name name="relative_product" arity="1"/>
<name name="relative_product" arity="2" clause_i="1"/>
<fsummary>Return the relative product of a list of binary relations
and a binary relation.</fsummary>
<desc>
<p>If <anno>ListOfBinRels</anno> is a non-empty list
[R[1], ..., R[n]] of binary relations and
<anno>BinRel1</anno>
is a binary relation, then <anno>BinRel2</anno> is the <seealso
marker="#tuple_relative_product">relative product</seealso>
of the ordered set (R[i], ..., R[n]) and
<anno>BinRel1</anno>.</p>
<p>If <anno>BinRel1</anno> is omitted, the relation of equality
between the elements of
the <seealso marker="#Cartesian_product_tuple">Cartesian
product</seealso> of the ranges of R[i],
range R[1] × ... × range R[n],
is used instead (intuitively, nothing is "lost").</p>
<pre>
1> <input>TR = sofs:relation([{1,a},{1,aa},{2,b}]),</input>
<input>R1 = sofs:relation([{1,u},{2,v},{3,c}]),</input>
<input>R2 = sofs:relative_product([TR, R1]),</input>
<input>sofs:to_external(R2).</input>
[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]</pre>
<p>Note that <c>relative_product([R1], R2)</c> is
different from <c>relative_product(R1, R2)</c>; the
list of one element is not identified with the element
itself.</p>
</desc>
</func>
<func>
<name name="relative_product" arity="2" clause_i="2"/>
<fsummary>Return the relative product of
two binary relations.</fsummary>
<desc>
<p><marker id="relprod_impl"></marker>Returns
the <seealso marker="#relative_product">relative
product</seealso> of the binary relations <anno>BinRel1</anno>
and <anno>BinRel2</anno>.</p>
</desc>
</func>
<func>
<name name="relative_product1" arity="2"/>
<fsummary>Return the relative_product of
two binary relations.</fsummary>
<desc>
<p>Returns the <seealso marker="#relative_product">relative
product</seealso> of
the <seealso marker="#converse">converse</seealso> of the
binary relation <anno>BinRel1</anno> and the binary
relation <anno>BinRel2</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{1,aa},{2,b}]),</input>
<input>R2 = sofs:relation([{1,u},{2,v},{3,c}]),</input>
<input>R3 = sofs:relative_product1(R1, R2),</input>
<input>sofs:to_external(R3).</input>
[{a,u},{aa,u},{b,v}]</pre>
<p><c>relative_product1(R1, R2)</c> is equivalent to
<c>relative_product(converse(R1), R2)</c>.</p>
</desc>
</func>
<func>
<name name="restriction" arity="2"/>
<fsummary>Return a restriction of a binary relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#restriction">restriction</seealso> of
the binary relation <anno>BinRel1</anno>
to <anno>Set</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([1,2,4]),</input>
<input>R2 = sofs:restriction(R1, S),</input>
<input>sofs:to_external(R2).</input>
[{1,a},{2,b}]</pre>
</desc>
</func>
<func>
<name name="restriction" arity="3"/>
<fsummary>Return a restriction of a set.</fsummary>
<desc>
<p>Returns a subset of <anno>Set1</anno> containing those
elements that yield an element in <anno>Set2</anno> as the
result of applying <anno>SetFun</anno>.</p>
<pre>
1> <input>S1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S2 = sofs:set([b,c,d]),</input>
<input>S3 = sofs:restriction(2, S1, S2),</input>
<input>sofs:to_external(S3).</input>
[{2,b},{3,c}]</pre>
</desc>
</func>
<func>
<name name="set" arity="1"/>
<name name="set" arity="2"/>
<fsummary>Create a set of atoms or any type of sets.</fsummary>
<desc>
<p>Creates an <seealso marker="#sets_definition">unordered
set</seealso>. <c>set(L, T)</c> is equivalent to
<c>from_term(L, T)</c>, if the result is an unordered
set. If no <seealso marker="#type">type</seealso> is
explicitly given, <c>[atom]</c> is used as type of the set.</p>
</desc>
</func>
<func>
<name name="specification" arity="2"/>
<fsummary>Select a subset using a predicate.</fsummary>
<desc>
<p>Returns the set containing every element
of <anno>Set1</anno> for which <anno>Fun</anno>
returns <c>true</c>. If <anno>Fun</anno> is a tuple
<c>{external, Fun2}</c>, Fun2 is applied to the
<seealso marker="#external_set">external set</seealso> of
each element, otherwise <anno>Fun</anno> is applied to each
element.</p>
<pre>
1> <input>R1 = sofs:relation([{a,1},{b,2}]),</input>
<input>R2 = sofs:relation([{x,1},{x,2},{y,3}]),</input>
<input>S1 = sofs:from_sets([R1,R2]),</input>
<input>S2 = sofs:specification(fun sofs:is_a_function/1, S1),</input>
<input>sofs:to_external(S2).</input>
[[{a,1},{b,2}]]</pre>
</desc>
</func>
<func>
<name name="strict_relation" arity="1"/>
<fsummary>Return the strict relation corresponding to
a given relation.</fsummary>
<desc>
<p>Returns the <seealso marker="#strict_relation">strict
relation</seealso> corresponding to the binary
relation <anno>BinRel1</anno>.</p>
<pre>
1> <input>R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),</input>
<input>R2 = sofs:strict_relation(R1),</input>
<input>sofs:to_external(R2).</input>
[{1,2},{2,1}]</pre>
</desc>
</func>
<func>
<name name="substitution" arity="2"/>
<fsummary>Return a function with a given set as domain.</fsummary>
<desc>
<p>Returns a function, the domain of which
is <anno>Set1</anno>. The value of an element of the domain
is the result of applying <anno>SetFun</anno> to the
element.</p>
<pre>
1> <input>L = [{a,1},{b,2}].</input>
[{a,1},{b,2}]
2> <input>sofs:to_external(sofs:projection(1,sofs:relation(L))).</input>
[a,b]
3> <input>sofs:to_external(sofs:substitution(1,sofs:relation(L))).</input>
[{{a,1},a},{{b,2},b}]
4> <input>SetFun = {external, fun({A,_}=E) -> {E,A} end},</input>
<input>sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).</input>
[{{a,1},a},{{b,2},b}]</pre>
<p>The relation of equality between the elements of {a,b,c}:</p>
<pre>
1> <input>I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),</input>
<input>sofs:to_external(I).</input>
[{a,a},{b,b},{c,c}]</pre>
<p>Let SetOfSets be a set of sets and BinRel a binary
relation. The function that maps each element Set of
SetOfSets onto the <seealso marker="#image">image</seealso>
of Set under BinRel is returned by this function:</p>
<pre>
images(SetOfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).</pre>
<p>Here might be the place to reveal something that was more
or less stated before, namely that external unordered sets
are represented as sorted lists. As a consequence, creating
the image of a set under a relation R may traverse all
elements of R (to that comes the sorting of results, the
image). In <c>images/2</c>, BinRel will be traversed once
for each element of SetOfSets, which may take too long. The
following efficient function could be used instead under the
assumption that the image of each element of SetOfSets under
BinRel is non-empty:</p>
<pre>
images2(SetOfSets, BinRel) ->
CR = sofs:canonical_relation(SetOfSets),
R = sofs:relative_product1(CR, BinRel),
sofs:relation_to_family(R).</pre>
</desc>
</func>
<func>
<name name="symdiff" arity="2"/>
<fsummary>Return the symmetric difference of two sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#symmetric_difference">symmetric
difference</seealso> (or the Boolean sum)
of <anno>Set1</anno> and <anno>Set2</anno>.</p>
<pre>
1> <input>S1 = sofs:set([1,2,3]),</input>
<input>S2 = sofs:set([2,3,4]),</input>
<input>P = sofs:symdiff(S1, S2),</input>
<input>sofs:to_external(P).</input>
[1,4]</pre>
</desc>
</func>
<func>
<name name="symmetric_partition" arity="2"/>
<fsummary>Return a partition of two sets.</fsummary>
<desc>
<p>Returns a triple of sets: <anno>Set3</anno> contains the
elements of <anno>Set1</anno> that do not belong
to <anno>Set2</anno>; <anno>Set4</anno> contains the
elements of <anno>Set1</anno> that belong
to <anno>Set2</anno>; <anno>Set5</anno> contains the
elements of <anno>Set2</anno> that do not belong
to <anno>Set1</anno>.</p>
</desc>
</func>
<func>
<name name="to_external" arity="1"/>
<fsummary>Return the elements of a set.</fsummary>
<desc>
<p>Returns the <seealso marker="#external_set">external
set</seealso> of an atomic, ordered or unordered set.</p>
</desc>
</func>
<func>
<name name="to_sets" arity="1"/>
<fsummary>Return a list or a tuple of the elements of set.</fsummary>
<desc>
<p>Returns the elements of the ordered set <anno>ASet</anno>
as a tuple of sets, and the elements of the unordered set
<anno>ASet</anno> as a sorted list of sets without
duplicates.</p>
</desc>
</func>
<func>
<name name="type" arity="1"/>
<fsummary>Return the type of a set.</fsummary>
<desc>
<p>Returns the <seealso marker="#type">type</seealso> of an
atomic, ordered or unordered set.</p>
</desc>
</func>
<func>
<name name="union" arity="1"/>
<fsummary>Return the union of a set of sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#union_n">union</seealso> of the
set of sets <anno>SetOfSets</anno>.</p>
</desc>
</func>
<func>
<name name="union" arity="2"/>
<fsummary>Return the union of two sets.</fsummary>
<desc>
<p>Returns the <seealso marker="#union">union</seealso> of
<anno>Set1</anno> and <anno>Set2</anno>.</p>
</desc>
</func>
<func>
<name name="union_of_family" arity="1"/>
<fsummary>Return the union of a family.</fsummary>
<desc>
<p>Returns the union of
the <seealso marker="#family">family</seealso> <anno>Family</anno>.
</p>
<pre>
1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input>
<input>S = sofs:union_of_family(F),</input>
<input>sofs:to_external(S).</input>
[0,1,2,3,4]</pre>
</desc>
</func>
<func>
<name name="weak_relation" arity="1"/>
<fsummary>Return the weak relation corresponding to
a given relation.</fsummary>
<desc>
<p>Returns a subset S of the <seealso marker="#weak_relation">weak
relation</seealso> W
corresponding to the binary relation <anno>BinRel1</anno>.
Let F be the <seealso marker="#field">field</seealso> of
<anno>BinRel1</anno>. The
subset S is defined so that x S y if x W y for some x in F
and for some y in F.</p>
<pre>
1> <input>R1 = sofs:relation([{1,1},{1,2},{3,1}]),</input>
<input>R2 = sofs:weak_relation(R1),</input>
<input>sofs:to_external(R2).</input>
[{1,1},{1,2},{2,2},{3,1},{3,3}]</pre>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p><seealso marker="dict">dict(3)</seealso>,
<seealso marker="digraph">digraph(3)</seealso>,
<seealso marker="orddict">orddict(3)</seealso>,
<seealso marker="ordsets">ordsets(3)</seealso>,
<seealso marker="sets">sets(3)</seealso></p>
</section>
</erlref>
|