1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1996-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
-module(ordsets).
-export([new/0,is_set/1,size/1,is_empty/1,to_list/1,from_list/1]).
-export([is_element/2,add_element/2,del_element/2]).
-export([union/2,union/1,intersection/2,intersection/1]).
-export([is_disjoint/2]).
-export([subtract/2,is_subset/2]).
-export([fold/3,filter/2]).
-export_type([ordset/1]).
-type ordset(T) :: [T].
%% new() -> Set.
%% Return a new empty ordered set.
-spec new() -> [].
new() -> [].
%% is_set(Term) -> boolean().
%% Return 'true' if Set is an ordered set of elements, else 'false'.
-spec is_set(Ordset) -> boolean() when
Ordset :: term().
is_set([E|Es]) -> is_set(Es, E);
is_set([]) -> true;
is_set(_) -> false.
is_set([E2|Es], E1) when E1 < E2 ->
is_set(Es, E2);
is_set([_|_], _) -> false;
is_set([], _) -> true.
%% size(OrdSet) -> int().
%% Return the number of elements in OrdSet.
-spec size(Ordset) -> non_neg_integer() when
Ordset :: ordset(_).
size(S) -> length(S).
%% is_empty(OrdSet) -> boolean().
%% Return 'true' if OrdSet is an empty set, otherwise 'false'.
-spec is_empty(Ordset) -> boolean() when
Ordset :: ordset(_).
is_empty(S) -> S=:=[].
%% to_list(OrdSet) -> [Elem].
%% Return the elements in OrdSet as a list.
-spec to_list(Ordset) -> List when
Ordset :: ordset(T),
List :: [T].
to_list(S) -> S.
%% from_list([Elem]) -> Set.
%% Build an ordered set from the elements in List.
-spec from_list(List) -> Ordset when
List :: [T],
Ordset :: ordset(T).
from_list(L) ->
lists:usort(L).
%% is_element(Element, OrdSet) -> boolean().
%% Return 'true' if Element is an element of OrdSet, else 'false'.
-spec is_element(Element, Ordset) -> boolean() when
Element :: term(),
Ordset :: ordset(_).
is_element(E, [H|Es]) when E > H -> is_element(E, Es);
is_element(E, [H|_]) when E < H -> false;
is_element(_E, [_H|_]) -> true; %E == H
is_element(_, []) -> false.
%% add_element(Element, OrdSet) -> OrdSet.
%% Return OrdSet with Element inserted in it.
-spec add_element(Element, Ordset1) -> Ordset2 when
Element :: E,
Ordset1 :: ordset(T),
Ordset2 :: ordset(T | E).
%-spec add_element(E, ordset(T)) -> [T | E,...].
add_element(E, [H|Es]) when E > H -> [H|add_element(E, Es)];
add_element(E, [H|_]=Set) when E < H -> [E|Set];
add_element(_E, [_H|_]=Set) -> Set; %E == H
add_element(E, []) -> [E].
%% del_element(Element, OrdSet) -> OrdSet.
%% Return OrdSet but with Element removed.
-spec del_element(Element, Ordset1) -> Ordset2 when
Element :: term(),
Ordset1 :: ordset(T),
Ordset2 :: ordset(T).
del_element(E, [H|Es]) when E > H -> [H|del_element(E, Es)];
del_element(E, [H|_]=Set) when E < H -> Set;
del_element(_E, [_H|Es]) -> Es; %E == H
del_element(_, []) -> [].
%% union(OrdSet1, OrdSet2) -> OrdSet
%% Return the union of OrdSet1 and OrdSet2.
-spec union(Ordset1, Ordset2) -> Ordset3 when
Ordset1 :: ordset(T1),
Ordset2 :: ordset(T2),
Ordset3 :: ordset(T1 | T2).
union([E1|Es1], [E2|_]=Set2) when E1 < E2 ->
[E1|union(Es1, Set2)];
union([E1|_]=Set1, [E2|Es2]) when E1 > E2 ->
[E2|union(Es2, Set1)]; % switch arguments!
union([E1|Es1], [_E2|Es2]) -> %E1 == E2
[E1|union(Es1, Es2)];
union([], Es2) -> Es2;
union(Es1, []) -> Es1.
%% union([OrdSet]) -> OrdSet
%% Return the union of the list of ordered sets.
-spec union(OrdsetList) -> Ordset when
OrdsetList :: [ordset(T)],
Ordset :: ordset(T).
union(OrdsetList) ->
lists:umerge(OrdsetList).
%% intersection(OrdSet1, OrdSet2) -> OrdSet.
%% Return the intersection of OrdSet1 and OrdSet2.
-spec intersection(Ordset1, Ordset2) -> Ordset3 when
Ordset1 :: ordset(_),
Ordset2 :: ordset(_),
Ordset3 :: ordset(_).
intersection([E1|Es1], [E2|_]=Set2) when E1 < E2 ->
intersection(Es1, Set2);
intersection([E1|_]=Set1, [E2|Es2]) when E1 > E2 ->
intersection(Es2, Set1); % switch arguments!
intersection([E1|Es1], [_E2|Es2]) -> %E1 == E2
[E1|intersection(Es1, Es2)];
intersection([], _) ->
[];
intersection(_, []) ->
[].
%% intersection([OrdSet]) -> OrdSet.
%% Return the intersection of the list of ordered sets.
-spec intersection(OrdsetList) -> Ordset when
OrdsetList :: [ordset(_),...],
Ordset :: ordset(_).
intersection([S1,S2|Ss]) ->
intersection1(intersection(S1, S2), Ss);
intersection([S]) -> S.
intersection1(S1, [S2|Ss]) ->
intersection1(intersection(S1, S2), Ss);
intersection1(S1, []) -> S1.
%% is_disjoint(OrdSet1, OrdSet2) -> boolean().
%% Check whether OrdSet1 and OrdSet2 are disjoint.
-spec is_disjoint(Ordset1, Ordset2) -> boolean() when
Ordset1 :: ordset(_),
Ordset2 :: ordset(_).
is_disjoint([E1|Es1], [E2|_]=Set2) when E1 < E2 ->
is_disjoint(Es1, Set2);
is_disjoint([E1|_]=Set1, [E2|Es2]) when E1 > E2 ->
is_disjoint(Es2, Set1); % switch arguments!
is_disjoint([_E1|_Es1], [_E2|_Es2]) -> %E1 == E2
false;
is_disjoint([], _) ->
true;
is_disjoint(_, []) ->
true.
%% subtract(OrdSet1, OrdSet2) -> OrdSet.
%% Return all and only the elements of OrdSet1 which are not also in
%% OrdSet2.
-spec subtract(Ordset1, Ordset2) -> Ordset3 when
Ordset1 :: ordset(_),
Ordset2 :: ordset(_),
Ordset3 :: ordset(_).
subtract([E1|Es1], [E2|_]=Set2) when E1 < E2 ->
[E1|subtract(Es1, Set2)];
subtract([E1|_]=Set1, [E2|Es2]) when E1 > E2 ->
subtract(Set1, Es2);
subtract([_E1|Es1], [_E2|Es2]) -> %E1 == E2
subtract(Es1, Es2);
subtract([], _) -> [];
subtract(Es1, []) -> Es1.
%% is_subset(OrdSet1, OrdSet2) -> boolean().
%% Return 'true' when every element of OrdSet1 is also a member of
%% OrdSet2, else 'false'.
-spec is_subset(Ordset1, Ordset2) -> boolean() when
Ordset1 :: ordset(_),
Ordset2 :: ordset(_).
is_subset([E1|_], [E2|_]) when E1 < E2 -> %E1 not in Set2
false;
is_subset([E1|_]=Set1, [E2|Es2]) when E1 > E2 ->
is_subset(Set1, Es2);
is_subset([_E1|Es1], [_E2|Es2]) -> %E1 == E2
is_subset(Es1, Es2);
is_subset([], _) -> true;
is_subset(_, []) -> false.
%% fold(Fun, Accumulator, OrdSet) -> Accumulator.
%% Fold function Fun over all elements in OrdSet and return Accumulator.
-spec fold(Function, Acc0, Ordset) -> Acc1 when
Function :: fun((Element :: T, AccIn :: term()) -> AccOut :: term()),
Ordset :: ordset(T),
Acc0 :: term(),
Acc1 :: term().
fold(F, Acc, Set) ->
lists:foldl(F, Acc, Set).
%% filter(Fun, OrdSet) -> OrdSet.
%% Filter OrdSet with Fun.
-spec filter(Pred, Ordset1) -> Ordset2 when
Pred :: fun((Element :: T) -> boolean()),
Ordset1 :: ordset(T),
Ordset2 :: ordset(T).
filter(F, Set) ->
lists:filter(F, Set).
|