1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% =====================================================================
%% Support functions for property lists
%%
%% Copyright (C) 2000-2003 Richard Carlsson
%% ---------------------------------------------------------------------
%%
%% @doc Support functions for property lists.
%%
%% <p>Property lists are ordinary lists containing entries in the form
%% of either tuples, whose first elements are keys used for lookup and
%% insertion, or atoms, which work as shorthand for tuples <code>{Atom,
%% true}</code>. (Other terms are allowed in the lists, but are ignored
%% by this module.) If there is more than one entry in a list for a
%% certain key, the first occurrence normally overrides any later
%% (irrespective of the arity of the tuples).</p>
%%
%% <p>Property lists are useful for representing inherited properties,
%% such as options passed to a function where a user may specify options
%% overriding the default settings, object properties, annotations,
%% etc.</p>
%%
%% @type property() = atom() | tuple()
-module(proplists).
-export([property/1, property/2, unfold/1, compact/1, lookup/2,
lookup_all/2, is_defined/2, get_value/2, get_value/3,
get_all_values/2, append_values/2, get_bool/2, get_keys/1,
delete/2, substitute_aliases/2, substitute_negations/2,
expand/2, normalize/2, split/2]).
%% ---------------------------------------------------------------------
-export_type([property/0]).
-type property() :: atom() | tuple().
-type aliases() :: [{any(), any()}].
-type negations() :: [{any(), any()}].
-type expansions() :: [{property(), [any()]}].
%% ---------------------------------------------------------------------
%% @spec property(P::property()) -> property()
%%
%% @doc Creates a normal form (minimal) representation of a property. If
%% <code>P</code> is <code>{Key, true}</code> where <code>Key</code> is
%% an atom, this returns <code>Key</code>, otherwise the whole term
%% <code>P</code> is returned.
%%
%% @see property/2
-spec property(property()) -> property().
property({Key, true}) when is_atom(Key) ->
Key;
property(Property) ->
Property.
%% @spec property(Key::term(), Value::term()) -> property()
%%
%% @doc Creates a normal form (minimal) representation of a simple
%% key/value property. Returns <code>Key</code> if <code>Value</code> is
%% <code>true</code> and <code>Key</code> is an atom, otherwise a tuple
%% <code>{Key, Value}</code> is returned.
%%
%% @see property/1
-spec property(Key::term(), Value::term()) -> atom() | {term(), term()}.
property(Key, true) when is_atom(Key) ->
Key;
property(Key, Value) ->
{Key, Value}.
%% ---------------------------------------------------------------------
%% @spec unfold(List::[term()]) -> [term()]
%%
%% @doc Unfolds all occurences of atoms in <code>List</code> to tuples
%% <code>{Atom, true}</code>.
%%
%% @see compact/1
-spec unfold(List::[term()]) -> [term()].
unfold([P | Ps]) ->
if is_atom(P) ->
[{P, true} | unfold(Ps)];
true ->
[P | unfold(Ps)]
end;
unfold([]) ->
[].
%% @spec compact(List::[term()]) -> [term()]
%%
%% @doc Minimizes the representation of all entries in the list. This is
%% equivalent to <code>[property(P) || P <- List]</code>.
%%
%% @see unfold/1
%% @see property/1
-spec compact(List::[property()]) -> [property()].
compact(List) ->
[property(P) || P <- List].
%% ---------------------------------------------------------------------
%% @spec lookup(Key::term(), List::[term()]) -> none | tuple()
%%
%% @doc Returns the first entry associated with <code>Key</code> in
%% <code>List</code>, if one exists, otherwise returns
%% <code>none</code>. For an atom <code>A</code> in the list, the tuple
%% <code>{A, true}</code> is the entry associated with <code>A</code>.
%%
%% @see lookup_all/2
%% @see get_value/2
%% @see get_bool/2
-spec lookup(Key::term(), List::[term()]) -> 'none' | tuple().
lookup(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
{Key, true};
tuple_size(P) >= 1, element(1, P) =:= Key ->
%% Note that <code>Key</code> does not have to be an atom in this case.
P;
true ->
lookup(Key, Ps)
end;
lookup(_Key, []) ->
none.
%% @spec lookup_all(Key::term(), List::[term()]) -> [tuple()]
%%
%% @doc Returns the list of all entries associated with <code>Key</code>
%% in <code>List</code>. If no such entry exists, the result is the
%% empty list.
%%
%% @see lookup/2
-spec lookup_all(Key::term(), List::[term()]) -> [tuple()].
lookup_all(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
[{Key, true} | lookup_all(Key, Ps)];
tuple_size(P) >= 1, element(1, P) =:= Key ->
[P | lookup_all(Key, Ps)];
true ->
lookup_all(Key, Ps)
end;
lookup_all(_Key, []) ->
[].
%% ---------------------------------------------------------------------
%% @spec is_defined(Key::term(), List::[term()]) -> boolean()
%%
%% @doc Returns <code>true</code> if <code>List</code> contains at least
%% one entry associated with <code>Key</code>, otherwise
%% <code>false</code> is returned.
-spec is_defined(Key::term(), List::[term()]) -> boolean().
is_defined(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
true;
tuple_size(P) >= 1, element(1, P) =:= Key ->
true;
true ->
is_defined(Key, Ps)
end;
is_defined(_Key, []) ->
false.
%% ---------------------------------------------------------------------
%% @spec get_value(Key::term(), List::[term()]) -> term()
%% @equiv get_value(Key, List, undefined)
-spec get_value(Key::term(), List::[term()]) -> term().
get_value(Key, List) ->
get_value(Key, List, undefined).
%% @spec get_value(Key::term(), List::[term()], Default::term()) ->
%% term()
%%
%% @doc Returns the value of a simple key/value property in
%% <code>List</code>. If <code>lookup(Key, List)</code> would yield
%% <code>{Key, Value}</code>, this function returns the corresponding
%% <code>Value</code>, otherwise <code>Default</code> is returned.
%%
%% @see lookup/2
%% @see get_value/2
%% @see get_all_values/2
%% @see get_bool/2
-spec get_value(Key::term(), List::[term()], Default::term()) -> term().
get_value(Key, [P | Ps], Default) ->
if is_atom(P), P =:= Key ->
true;
tuple_size(P) >= 1, element(1, P) =:= Key ->
case P of
{_, Value} ->
Value;
_ ->
%% Don</code>t continue the search!
Default
end;
true ->
get_value(Key, Ps, Default)
end;
get_value(_Key, [], Default) ->
Default.
%% @spec get_all_values(Key, List) -> [term()]
%%
%% @doc Similar to <code>get_value/2</code>, but returns the list of
%% values for <em>all</em> entries <code>{Key, Value}</code> in
%% <code>List</code>. If no such entry exists, the result is the empty
%% list.
%%
%% @see get_value/2
-spec get_all_values(Key::term(), List::[term()]) -> [term()].
get_all_values(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
[true | get_all_values(Key, Ps)];
tuple_size(P) >= 1, element(1, P) =:= Key ->
case P of
{_, Value} ->
[Value | get_all_values(Key, Ps)];
_ ->
get_all_values(Key, Ps)
end;
true ->
get_all_values(Key, Ps)
end;
get_all_values(_Key, []) ->
[].
%% @spec append_values(Key::term(), List::[term()]) -> [term()]
%%
%% @doc Similar to <code>get_all_values/2</code>, but each value is
%% wrapped in a list unless it is already itself a list, and the
%% resulting list of lists is concatenated. This is often useful for
%% "incremental" options; e.g., <code>append_values(a, [{a, [1,2]}, {b,
%% 0}, {a, 3}, {c, -1}, {a, [4]}])</code> will return the list
%% <code>[1,2,3,4]</code>.
%%
%% @see get_all_values/2
-spec append_values(Key::term(), List::[term()]) -> [term()].
append_values(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
[true | append_values(Key, Ps)];
tuple_size(P) >= 1, element(1, P) =:= Key ->
case P of
{_, Value} when is_list(Value) ->
Value ++ append_values(Key, Ps);
{_, Value} ->
[Value | append_values(Key, Ps)];
_ ->
append_values(Key, Ps)
end;
true ->
append_values(Key, Ps)
end;
append_values(_Key, []) ->
[].
%% ---------------------------------------------------------------------
%% @spec get_bool(Key::term(), List::[term()]) -> boolean()
%%
%% @doc Returns the value of a boolean key/value option. If
%% <code>lookup(Key, List)</code> would yield <code>{Key, true}</code>,
%% this function returns <code>true</code>; otherwise <code>false</code>
%% is returned.
%%
%% @see lookup/2
%% @see get_value/2
-spec get_bool(Key::term(), List::[term()]) -> boolean().
get_bool(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
true;
tuple_size(P) >= 1, element(1, P) =:= Key ->
case P of
{_, true} ->
true;
_ ->
%% Don't continue the search!
false
end;
true ->
get_bool(Key, Ps)
end;
get_bool(_Key, []) ->
false.
%% ---------------------------------------------------------------------
%% @spec get_keys(List::[term()]) -> [term()]
%%
%% @doc Returns an unordered list of the keys used in <code>List</code>,
%% not containing duplicates.
-spec get_keys(List::[term()]) -> [term()].
get_keys(Ps) ->
sets:to_list(get_keys(Ps, sets:new())).
get_keys([P | Ps], Keys) ->
if is_atom(P) ->
get_keys(Ps, sets:add_element(P, Keys));
tuple_size(P) >= 1 ->
get_keys(Ps, sets:add_element(element(1, P), Keys));
true ->
get_keys(Ps, Keys)
end;
get_keys([], Keys) ->
Keys.
%% ---------------------------------------------------------------------
%% @spec delete(Key::term(), List::[term()]) -> [term()]
%%
%% @doc Deletes all entries associated with <code>Key</code> from
%% <code>List</code>.
-spec delete(Key::term(), List::[term()]) -> [term()].
delete(Key, [P | Ps]) ->
if is_atom(P), P =:= Key ->
delete(Key, Ps);
tuple_size(P) >= 1, element(1, P) =:= Key ->
delete(Key, Ps);
true ->
[P | delete(Key, Ps)]
end;
delete(_, []) ->
[].
%% ---------------------------------------------------------------------
%% @spec substitute_aliases(Aliases, List::[term()]) -> [term()]
%%
%% Aliases = [{Key, Key}]
%% Key = term()
%%
%% @doc Substitutes keys of properties. For each entry in
%% <code>List</code>, if it is associated with some key <code>K1</code>
%% such that <code>{K1, K2}</code> occurs in <code>Aliases</code>, the
%% key of the entry is changed to <code>Key2</code>. If the same
%% <code>K1</code> occurs more than once in <code>Aliases</code>, only
%% the first occurrence is used.
%%
%% <p>Example: <code>substitute_aliases([{color, colour}], L)</code>
%% will replace all tuples <code>{color, ...}</code> in <code>L</code>
%% with <code>{colour, ...}</code>, and all atoms <code>color</code>
%% with <code>colour</code>.</p>
%%
%% @see substitute_negations/2
%% @see normalize/2
-spec substitute_aliases(aliases(), List::[term()]) -> [term()].
substitute_aliases(As, Props) ->
[substitute_aliases_1(As, P) || P <- Props].
substitute_aliases_1([{Key, Key1} | As], P) ->
if is_atom(P), P =:= Key ->
property(Key1, true);
tuple_size(P) >= 1, element(1, P) =:= Key ->
property(setelement(1, P, Key1));
true ->
substitute_aliases_1(As, P)
end;
substitute_aliases_1([], P) ->
P.
%% ---------------------------------------------------------------------
%% @spec substitute_negations(Negations, List::[term()]) -> [term()]
%%
%% Negations = [{Key, Key}]
%% Key = term()
%%
%% @doc Substitutes keys of boolean-valued properties and simultaneously
%% negates their values. For each entry in <code>List</code>, if it is
%% associated with some key <code>K1</code> such that <code>{K1,
%% K2}</code> occurs in <code>Negations</code>, then if the entry was
%% <code>{K1, true}</code> it will be replaced with <code>{K2,
%% false}</code>, otherwise it will be replaced with <code>{K2,
%% true}</code>, thus changing the name of the option and simultaneously
%% negating the value given by <code>get_bool(List)</code>. If the same
%% <code>K1</code> occurs more than once in <code>Negations</code>, only
%% the first occurrence is used.
%%
%% <p>Example: <code>substitute_negations([{no_foo, foo}], L)</code>
%% will replace any atom <code>no_foo</code> or tuple <code>{no_foo,
%% true}</code> in <code>L</code> with <code>{foo, false}</code>, and
%% any other tuple <code>{no_foo, ...}</code> with <code>{foo,
%% true}</code>.</p>
%%
%% @see get_bool/2
%% @see substitute_aliases/2
%% @see normalize/2
-spec substitute_negations(negations(), List::[term()]) -> [term()].
substitute_negations(As, Props) ->
[substitute_negations_1(As, P) || P <- Props].
substitute_negations_1([{Key, Key1} | As], P) ->
if is_atom(P), P =:= Key ->
property(Key1, false);
tuple_size(P) >= 1, element(1, P) =:= Key ->
case P of
{_, true} ->
property(Key1, false);
{_, false} ->
property(Key1, true);
_ ->
%% The property is supposed to be a boolean, so any
%% other tuple is interpreted as `false', as done in
%% `get_bool'.
property(Key1, true)
end;
true ->
substitute_negations_1(As, P)
end;
substitute_negations_1([], P) ->
P.
%% ---------------------------------------------------------------------
%% @spec expand(Expansions, List::[term()]) -> [term()]
%%
%% Expansions = [{property(), [term()]}]
%%
%% @doc Expands particular properties to corresponding sets of
%% properties (or other terms). For each pair <code>{Property,
%% Expansion}</code> in <code>Expansions</code>, if <code>E</code> is
%% the first entry in <code>List</code> with the same key as
%% <code>Property</code>, and <code>E</code> and <code>Property</code>
%% have equivalent normal forms, then <code>E</code> is replaced with
%% the terms in <code>Expansion</code>, and any following entries with
%% the same key are deleted from <code>List</code>.
%%
%% <p>For example, the following expressions all return <code>[fie, bar,
%% baz, fum]</code>:
%% <ul>
%% <li><code>expand([{foo, [bar, baz]}],
%% [fie, foo, fum])</code></li>
%% <li><code>expand([{{foo, true}, [bar, baz]}],
%% [fie, foo, fum])</code></li>
%% <li><code>expand([{{foo, false}, [bar, baz]}],
%% [fie, {foo, false}, fum])</code></li>
%% </ul>
%% However, no expansion is done in the following call:
%% <ul>
%% <li><code>expand([{{foo, true}, [bar, baz]}],
%% [{foo, false}, fie, foo, fum])</code></li>
%% </ul>
%% because <code>{foo, false}</code> shadows <code>foo</code>.</p>
%%
%% <p>Note that if the original property term is to be preserved in the
%% result when expanded, it must be included in the expansion list. The
%% inserted terms are not expanded recursively. If
%% <code>Expansions</code> contains more than one property with the same
%% key, only the first occurrance is used.</p>
%%
%% @see normalize/2
-spec expand(Expansions::expansions(), [term()]) -> [term()].
expand(Es, Ps) when is_list(Ps) ->
Es1 = [{property(P), V} || {P, V} <- Es],
flatten(expand_0(key_uniq(Es1), Ps)).
%% Here, all key properties are normalized and there are no multiple
%% entries in the list of expansions for any specific key property. We
%% insert the expansions one at a time - this is quadratic, but gives
%% the desired behaviour in a simple way.
expand_0([{P, L} | Es], Ps) ->
expand_0(Es, expand_1(P, L, Ps));
expand_0([], Ps) ->
Ps.
expand_1(P, L, Ps) ->
%% First, we must find out what key to look for.
%% P has a minimal representation here.
if is_atom(P) ->
expand_2(P, P, L, Ps);
tuple_size(P) >= 1 ->
expand_2(element(1, P), P, L, Ps);
true ->
Ps % refuse to expand non-property
end.
expand_2(Key, P1, L, [P | Ps]) ->
if is_atom(P), P =:= Key ->
expand_3(Key, P1, P, L, Ps);
tuple_size(P) >= 1, element(1, P) =:= Key ->
expand_3(Key, P1, property(P), L, Ps);
true ->
%% This case handles non-property entries, and thus
%% any already inserted expansions (lists), by simply
%% ignoring them.
[P | expand_2(Key, P1, L, Ps)]
end;
expand_2(_, _, _, []) ->
[].
expand_3(Key, P1, P, L, Ps) ->
%% Here, we have found the first entry with a matching key. Both P
%% and P1 have minimal representations here. The inserted list will
%% be flattened afterwards. If the expansion is done, we drop the
%% found entry and alao delete any later entries with the same key.
if P1 =:= P ->
[L | delete(Key, Ps)];
true ->
%% The existing entry does not match - keep it.
[P | Ps]
end.
key_uniq([{K, V} | Ps]) ->
[{K, V} | key_uniq_1(K, Ps)];
key_uniq([]) ->
[].
key_uniq_1(K, [{K1, V} | Ps]) ->
if K =:= K1 ->
key_uniq_1(K, Ps);
true ->
[{K1, V} | key_uniq_1(K1, Ps)]
end;
key_uniq_1(_, []) ->
[].
%% This does top-level flattening only.
flatten([E | Es]) when is_list(E) ->
E ++ flatten(Es);
flatten([E | Es]) ->
[E | flatten(Es)];
flatten([]) ->
[].
%% ---------------------------------------------------------------------
%% @spec normalize(List::[term()], Stages::[Operation]) -> [term()]
%%
%% Operation = {aliases, Aliases} | {negations, Negations}
%% | {expand, Expansions}
%% Aliases = [{Key, Key}]
%% Negations = [{Key, Key}]
%% Key = term()
%% Expansions = [{property(), [term()]}]
%%
%% @doc Passes <code>List</code> through a sequence of
%% substitution/expansion stages. For an <code>aliases</code> operation,
%% the function <code>substitute_aliases/2</code> is applied using the
%% given list of aliases; for a <code>negations</code> operation,
%% <code>substitute_negations/2</code> is applied using the given
%% negation list; for an <code>expand</code> operation, the function
%% <code>expand/2</code> is applied using the given list of expansions.
%% The final result is automatically compacted (cf.
%% <code>compact/1</code>).
%%
%% <p>Typically you want to substitute negations first, then aliases,
%% then perform one or more expansions (sometimes you want to pre-expand
%% particular entries before doing the main expansion). You might want
%% to substitute negations and/or aliases repeatedly, to allow such
%% forms in the right-hand side of aliases and expansion lists.</p>
%%
%% @see substitute_aliases/2
%% @see substitute_negations/2
%% @see expand/2
%% @see compact/1
-type operation() :: {'aliases', aliases()}
| {'negations', negations()}
| {'expand', expansions()}.
-spec normalize(List::[term()], Stages::[operation()]) -> [term()].
normalize(L, [{aliases, As} | Xs]) ->
normalize(substitute_aliases(As, L), Xs);
normalize(L, [{expand, Es} | Xs]) ->
normalize(expand(Es, L), Xs);
normalize(L, [{negations, Ns} | Xs]) ->
normalize(substitute_negations(Ns, L), Xs);
normalize(L, []) ->
compact(L).
%% ---------------------------------------------------------------------
%% @spec split(List::[term()], Keys::[term()]) -> {Lists, Rest}
%% Lists = [[term()]]
%% Rest = [term()]
%%
%% @doc Partitions <code>List</code> into a list of sublists and a
%% remainder. <code>Lists</code> contains one sublist for each key in
%% <code>Keys</code>, in the corresponding order. The relative order of
%% the elements in each sublist is preserved from the original
%% <code>List</code>. <code>Rest</code> contains the elements in
%% <code>List</code> that are not associated with any of the given keys,
%% also with their original relative order preserved.
%%
%% <p>Example:<pre>
%% split([{c, 2}, {e, 1}, a, {c, 3, 4}, d, {b, 5}, b], [a, b, c])</pre>
%% returns<pre>
%% {[[a], [{b, 5}, b],[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}</pre>
%% </p>
-spec split(List::[term()], Keys::[term()]) -> {[[term()]], [term()]}.
split(List, Keys) ->
{Store, Rest} = split(List, dict:from_list([{K, []} || K <- Keys]), []),
{[lists:reverse(dict:fetch(K, Store)) || K <- Keys],
lists:reverse(Rest)}.
split([P | Ps], Store, Rest) ->
if is_atom(P) ->
case dict:is_key(P, Store) of
true ->
split(Ps, dict_prepend(P, P, Store), Rest);
false ->
split(Ps, Store, [P | Rest])
end;
tuple_size(P) >= 1 ->
%% Note that Key does not have to be an atom in this case.
Key = element(1, P),
case dict:is_key(Key, Store) of
true ->
split(Ps, dict_prepend(Key, P, Store), Rest);
false ->
split(Ps, Store, [P | Rest])
end;
true ->
split(Ps, Store, [P | Rest])
end;
split([], Store, Rest) ->
{Store, Rest}.
dict_prepend(Key, Val, Dict) ->
dict:store(Key, [Val | dict:fetch(Key, Dict)], Dict).
|