1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2015-2017. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% =====================================================================
%% Multiple PRNG module for Erlang/OTP
%% Copyright (c) 2015-2016 Kenji Rikitake
%%
%% exrop (xoroshiro116+) added, statistical distribution
%% improvements and uniform_real added by the Erlang/OTP team 2017
%% =====================================================================
-module(rand).
-export([seed_s/1, seed_s/2, seed/1, seed/2,
export_seed/0, export_seed_s/1,
uniform/0, uniform/1, uniform_s/1, uniform_s/2,
uniform_real/0, uniform_real_s/1,
jump/0, jump/1,
normal/0, normal/2, normal_s/1, normal_s/3
]).
%% Test, dev and internal
-export([exro928_jump_2pow512/1, exro928_jump_2pow20/1,
format_jumpconst58/1, seed58/2]).
%% Debug
-export([make_float/3, float2str/1, bc64/1]).
-compile({inline, [exs64_next/1, exsplus_next/1,
exs1024_next/1, exs1024_calc/2,
exro928_next_state/4,
exrop_next/1, exrop_next_s/2,
get_52/1, normal_kiwi/1]}).
-define(DEFAULT_ALG_HANDLER, exrop).
-define(SEED_DICT, rand_seed).
%% =====================================================================
%% Bit fiddling macros
%% =====================================================================
-define(BIT(Bits), (1 bsl (Bits))).
-define(MASK(Bits), (?BIT(Bits) - 1)).
-define(MASK(Bits, X), ((X) band ?MASK(Bits))).
-define(
BSL(Bits, X, N),
%% N is evaluated 2 times
(?MASK((Bits)-(N), (X)) bsl (N))).
-define(
ROTL(Bits, X, N),
%% Bits is evaluated 2 times
%% X is evaluated 2 times
%% N i evaluated 3 times
(?BSL((Bits), (X), (N)) bor ((X) bsr ((Bits)-(N))))).
-define(
BC(V, N),
bc((V), ?BIT((N) - 1), N)).
%%-define(TWO_POW_MINUS53, (math:pow(2, -53))).
-define(TWO_POW_MINUS53, 1.11022302462515657e-16).
%% =====================================================================
%% Types
%% =====================================================================
-type uint64() :: 0..?MASK(64).
-type uint58() :: 0..?MASK(58).
%% This depends on the algorithm handler function
-type alg_state() ::
exrop_state() | exs1024_state() | exro928_state() | exsplus_state() |
exs64_state() | term().
%% This is the algorithm handling definition within this module,
%% and the type to use for plugins.
%%
%% The 'type' field must be recognized by the module that implements
%% the algorithm, to interpret an exported state.
%%
%% The 'bits' field indicates how many bits the integer
%% returned from 'next' has got, i.e 'next' shall return
%% an random integer in the range 0..(2^Bits - 1).
%% At least 55 bits is required for the floating point
%% producing fallbacks, but 56 bits would be more future proof.
%%
%% The fields 'next', 'uniform' and 'uniform_n'
%% implement the algorithm. If 'uniform' or 'uniform_n'
%% is not present there is a fallback using 'next' and either
%% 'bits' or the deprecated 'max'. The 'next' function
%% must generate a word with at least 56 good random bits.
%%
%% The 'weak_low_bits' field indicate how many bits are of
%% lesser quality and they will not be used by the floating point
%% producing functions, nor by the range producing functions
%% when more bits are needed, to avoid weak bits in the middle
%% of the generated bits. The lowest bits from the range
%% functions still have the generator's quality.
%%
-type alg_handler() ::
#{type := alg(),
bits => non_neg_integer(),
weak_low_bits => non_neg_integer(),
max => non_neg_integer(), % Deprecated
next :=
fun ((alg_state()) -> {non_neg_integer(), alg_state()}),
uniform =>
fun ((state()) -> {float(), state()}),
uniform_n =>
fun ((pos_integer(), state()) -> {pos_integer(), state()}),
jump =>
fun ((state()) -> state())}.
%% Algorithm state
-type state() :: {alg_handler(), alg_state()}.
-type builtin_alg() ::
exrop | exs1024s | exro928ss | exsp | exs64 | exsplus | exs1024.
-type alg() :: builtin_alg() | atom().
-type export_state() :: {alg(), alg_state()}.
-type seed() :: [integer()] | integer() | {integer(), integer(), integer()}.
-export_type(
[builtin_alg/0, alg/0, alg_handler/0, alg_state/0,
state/0, export_state/0, seed/0]).
-export_type(
[exrop_state/0, exs1024_state/0, exro928_state/0, exsplus_state/0,
exs64_state/0]).
%% =====================================================================
%% Range macro and helper
%% =====================================================================
-define(
uniform_range(Range, Alg, R, V, MaxMinusRange, I),
if
0 =< (MaxMinusRange) ->
if
%% Really work saving in odd cases;
%% large ranges in particular
(V) < (Range) ->
{(V) + 1, {(Alg), (R)}};
true ->
(I) = (V) rem (Range),
if
(V) - (I) =< (MaxMinusRange) ->
{(I) + 1, {(Alg), (R)}};
true ->
%% V in the truncated top range
%% - try again
?FUNCTION_NAME((Range), {(Alg), (R)})
end
end;
true ->
uniform_range((Range), (Alg), (R), (V))
end).
%% For ranges larger than the algorithm bit size
uniform_range(Range, #{next:=Next, bits:=Bits} = Alg, R, V) ->
WeakLowBits = maps:get(weak_low_bits, Alg, 0),
%% Maybe waste the lowest bit(s) when shifting in new bits
Shift = Bits - WeakLowBits,
ShiftMask = bnot ?MASK(WeakLowBits),
RangeMinus1 = Range - 1,
if
(Range band RangeMinus1) =:= 0 -> % Power of 2
%% Generate at least the number of bits for the range
{V1, R1, _} =
uniform_range(
Range bsr Bits, Next, R, V, ShiftMask, Shift, Bits),
{(V1 band RangeMinus1) + 1, {Alg, R1}};
true ->
%% Generate a value with at least two bits more than the range
%% and try that for a fit, otherwise recurse
%%
%% Just one bit more should ensure that the generated
%% number range is at least twice the size of the requested
%% range, which would make the probability to draw a good
%% number better than 0.5. And repeating that until
%% success i guess would take 2 times statistically amortized.
%% But since the probability for fairly many attemtpts
%% is not that low, use two bits more than the range which
%% should make the probability to draw a bad number under 0.25,
%% which decreases the bad case probability a lot.
{V1, R1, B} =
uniform_range(
Range bsr (Bits - 2), Next, R, V, ShiftMask, Shift, Bits),
I = V1 rem Range,
if
(V1 - I) =< (1 bsl B) - Range ->
{I + 1, {Alg, R1}};
true ->
%% V1 drawn from the truncated top range
%% - try again
{V2, R2} = Next(R1),
uniform_range(Range, Alg, R2, V2)
end
end.
%%
uniform_range(Range, Next, R, V, ShiftMask, Shift, B) ->
if
Range =< 1 ->
{V, R, B};
true ->
{V1, R1} = Next(R),
%% Waste the lowest bit(s) when shifting in new bits
uniform_range(
Range bsr Shift, Next, R1,
((V band ShiftMask) bsl Shift) bor V1,
ShiftMask, Shift, B + Shift)
end.
%% =====================================================================
%% API
%% =====================================================================
%% Return algorithm and seed so that RNG state can be recreated with seed/1
-spec export_seed() -> undefined | export_state().
export_seed() ->
case get(?SEED_DICT) of
{#{type:=Alg}, Seed} -> {Alg, Seed};
_ -> undefined
end.
-spec export_seed_s(State :: state()) -> export_state().
export_seed_s({#{type:=Alg}, AlgState}) -> {Alg, AlgState}.
%% seed(Alg) seeds RNG with runtime dependent values
%% and return the NEW state
%% seed({Alg,AlgState}) setup RNG with a previously exported seed
%% and return the NEW state
-spec seed(
AlgOrStateOrExpState :: builtin_alg() | state() | export_state()) ->
state().
seed(Alg) ->
seed_put(seed_s(Alg)).
-spec seed_s(
AlgOrStateOrExpState :: builtin_alg() | state() | export_state()) ->
state().
seed_s({AlgHandler, _AlgState} = State) when is_map(AlgHandler) ->
State;
seed_s({Alg, AlgState}) when is_atom(Alg) ->
{AlgHandler,_SeedFun} = mk_alg(Alg),
{AlgHandler,AlgState};
seed_s(Alg) ->
seed_s(Alg, {erlang:phash2([{node(),self()}]),
erlang:system_time(),
erlang:unique_integer()}).
%% seed/2: seeds RNG with the algorithm and given values
%% and returns the NEW state.
-spec seed(Alg :: builtin_alg(), Seed :: seed()) -> state().
seed(Alg, Seed) ->
seed_put(seed_s(Alg, Seed)).
-spec seed_s(Alg :: builtin_alg(), Seed :: seed()) -> state().
seed_s(Alg, Seed) ->
{AlgHandler,SeedFun} = mk_alg(Alg),
AlgState = SeedFun(Seed),
{AlgHandler,AlgState}.
%%% uniform/0, uniform/1, uniform_s/1, uniform_s/2 are all
%%% uniformly distributed random numbers.
%% uniform/0: returns a random float X where 0.0 =< X < 1.0,
%% updating the state in the process dictionary.
-spec uniform() -> X :: float().
uniform() ->
{X, State} = uniform_s(seed_get()),
_ = seed_put(State),
X.
%% uniform/1: given an integer N >= 1,
%% uniform/1 returns a random integer X where 1 =< X =< N,
%% updating the state in the process dictionary.
-spec uniform(N :: pos_integer()) -> X :: pos_integer().
uniform(N) ->
{X, State} = uniform_s(N, seed_get()),
_ = seed_put(State),
X.
%% uniform_s/1: given a state, uniform_s/1
%% returns a random float X where 0.0 =< X < 1.0,
%% and a new state.
-spec uniform_s(State :: state()) -> {X :: float(), NewState :: state()}.
uniform_s(State = {#{uniform:=Uniform}, _}) ->
Uniform(State);
uniform_s({#{bits:=Bits, next:=Next} = Alg, R0}) ->
{V, R1} = Next(R0),
%% Produce floats on the form N * 2^(-53)
{(V bsr (Bits - 53)) * ?TWO_POW_MINUS53, {Alg, R1}};
uniform_s({#{max:=Max, next:=Next} = Alg, R0}) ->
{V, R1} = Next(R0),
%% Old algorithm with non-uniform density
{V / (Max + 1), {Alg, R1}}.
%% uniform_s/2: given an integer N >= 1 and a state, uniform_s/2
%% uniform_s/2 returns a random integer X where 1 =< X =< N,
%% and a new state.
-spec uniform_s(N :: pos_integer(), State :: state()) ->
{X :: pos_integer(), NewState :: state()}.
uniform_s(N, State = {#{uniform_n:=UniformN}, _})
when is_integer(N), 1 =< N ->
UniformN(N, State);
uniform_s(N, {#{bits:=Bits, next:=Next} = Alg, R0})
when is_integer(N), 1 =< N ->
{V, R1} = Next(R0),
MaxMinusN = ?BIT(Bits) - N,
?uniform_range(N, Alg, R1, V, MaxMinusN, I);
uniform_s(N, {#{max:=Max, next:=Next} = Alg, R0})
when is_integer(N), 1 =< N ->
%% Old algorithm with skewed probability
%% and gap in ranges > Max
{V, R1} = Next(R0),
if
N =< Max ->
{(V rem N) + 1, {Alg, R1}};
true ->
F = V / (Max + 1),
{trunc(F * N) + 1, {Alg, R1}}
end.
%% uniform_real/0: returns a random float X where 0.0 < X =< 1.0,
%% updating the state in the process dictionary.
-spec uniform_real() -> X :: float().
uniform_real() ->
{X, Seed} = uniform_real_s(seed_get()),
_ = seed_put(Seed),
X.
%% uniform_real_s/1: given a state, uniform_s/1
%% returns a random float X where 0.0 < X =< 1.0,
%% and a new state.
%%
%% This function does not use the same form of uniformity
%% as the uniform_s/1 function.
%%
%% Instead, this function does not generate numbers with equal
%% distance in the interval, but rather tries to keep all mantissa
%% bits random also for small numbers, meaning that the distance
%% between possible numbers decreases when the numbers
%% approaches 0.0, as does the possibility for a particular
%% number. Hence uniformity is preserved.
%%
%% To generate 56 bits at the time instead of 53 is actually
%% a speed optimization since the probability to have to
%% generate a second word decreases by 1/2 for every extra bit.
%%
%% This function generates normalized numbers, so the smallest number
%% that can be generated is 2^-1022 with the distance 2^-1074
%% to the next to smallest number, compared to 2^-53 for uniform_s/1.
%%
%% This concept of uniformity should work better for applications
%% where you need to calculate 1.0/X or math:log(X) since those
%% operations benefits from larger precision approaching 0.0,
%% and that this function does not return 0.0 nor denormalized
%% numbers very close to 0.0. The log() operation in The Box-Muller
%% transformation for normal distribution is an example of this.
%%
%%-define(TWO_POW_MINUS55, (math:pow(2, -55))).
%%-define(TWO_POW_MINUS110, (math:pow(2, -110))).
%%-define(TWO_POW_MINUS55, 2.7755575615628914e-17).
%%-define(TWO_POW_MINUS110, 7.7037197775489436e-34).
%%
-spec uniform_real_s(State :: state()) -> {X :: float(), NewState :: state()}.
uniform_real_s({#{bits:=Bits, next:=Next} = Alg, R0}) ->
%% Generate a 56 bit number without using the weak low bits.
%%
%% Be sure to use only 53 bits when multiplying with
%% math:pow(2.0, -N) to avoid rounding which would make
%% "even" floats more probable than "odd".
%%
{V1, R1} = Next(R0),
M1 = V1 bsr (Bits - 56),
if
?BIT(55) =< M1 ->
%% We have 56 bits - waste 3
{(M1 bsr 3) * math:pow(2.0, -53), {Alg, R1}};
?BIT(54) =< M1 ->
%% We have 55 bits - waste 2
{(M1 bsr 2) * math:pow(2.0, -54), {Alg, R1}};
?BIT(53) =< M1 ->
%% We have 54 bits - waste 1
{(M1 bsr 1) * math:pow(2.0, -55), {Alg, R1}};
?BIT(52) =< M1 ->
%% We have 53 bits - use all
{M1 * math:pow(2.0, -56), {Alg, R1}};
true ->
%% Need more bits
{V2, R2} = Next(R1),
uniform_real_s(Alg, Next, M1, -56, R2, V2, Bits)
end;
uniform_real_s({#{max:=_, next:=Next} = Alg, R0}) ->
%% Generate a 56 bit number.
%% Ignore the weak low bits for these old algorithms,
%% just produce something reasonable.
%%
%% Be sure to use only 53 bits when multiplying with
%% math:pow(2.0, -N) to avoid rounding which would make
%% "even" floats more probable than "odd".
%%
{V1, R1} = Next(R0),
M1 = ?MASK(56, V1),
if
?BIT(55) =< M1 ->
%% We have 56 bits - waste 3
{(M1 bsr 3) * math:pow(2.0, -53), {Alg, R1}};
?BIT(54) =< M1 ->
%% We have 55 bits - waste 2
{(M1 bsr 2) * math:pow(2.0, -54), {Alg, R1}};
?BIT(53) =< M1 ->
%% We have 54 bits - waste 1
{(M1 bsr 1) * math:pow(2.0, -55), {Alg, R1}};
?BIT(52) =< M1 ->
%% We have 53 bits - use all
{M1 * math:pow(2.0, -56), {Alg, R1}};
true ->
%% Need more bits
{V2, R2} = Next(R1),
uniform_real_s(Alg, Next, M1, -56, R2, V2, 56)
end.
uniform_real_s(Alg, _Next, M0, -1064, R1, V1, Bits) -> % 19*56
%% This is a very theoretical bottom case.
%% The odds of getting here is about 2^-1008,
%% through a white box test case, or thanks to
%% a malfunctioning PRNG producing 18 56-bit zeros in a row.
%%
%% Fill up to 53 bits, we have at most 52
B0 = (53 - ?BC(M0, 52)), % Missing bits
{(((M0 bsl B0) bor (V1 bsr (Bits - B0))) * math:pow(2.0, -1064 - B0)),
{Alg, R1}};
uniform_real_s(Alg, Next, M0, BitNo, R1, V1, Bits) ->
if
%% Optimize the most probable.
%% Fill up to 53 bits.
?BIT(51) =< M0 ->
%% We have 52 bits in M0 - need 1
{(((M0 bsl 1) bor (V1 bsr (Bits - 1)))
* math:pow(2.0, BitNo - 1)),
{Alg, R1}};
?BIT(50) =< M0 ->
%% We have 51 bits in M0 - need 2
{(((M0 bsl 2) bor (V1 bsr (Bits - 2)))
* math:pow(2.0, BitNo - 2)),
{Alg, R1}};
?BIT(49) =< M0 ->
%% We have 50 bits in M0 - need 3
{(((M0 bsl 3) bor (V1 bsr (Bits - 3)))
* math:pow(2.0, BitNo - 3)),
{Alg, R1}};
M0 == 0 ->
M1 = V1 bsr (Bits - 56),
if
?BIT(55) =< M1 ->
%% We have 56 bits - waste 3
{(M1 bsr 3) * math:pow(2.0, BitNo - 53), {Alg, R1}};
?BIT(54) =< M1 ->
%% We have 55 bits - waste 2
{(M1 bsr 2) * math:pow(2.0, BitNo - 54), {Alg, R1}};
?BIT(53) =< M1 ->
%% We have 54 bits - waste 1
{(M1 bsr 1) * math:pow(2.0, BitNo - 55), {Alg, R1}};
?BIT(52) =< M1 ->
%% We have 53 bits - use all
{M1 * math:pow(2.0, BitNo - 56), {Alg, R1}};
BitNo =:= -1008 ->
%% Endgame
%% For the last round we cannot have 14 zeros or more
%% at the top of M1 because then we will underflow,
%% so we need at least 43 bits
if
?BIT(42) =< M1 ->
%% We have 43 bits - get the last bits
uniform_real_s(Alg, Next, M1, BitNo - 56, R1);
true ->
%% Would underflow 2^-1022 - start all over
%%
%% We could just crash here since the odds for
%% the PRNG being broken is much higher than
%% for a good PRNG generating this many zeros
%% in a row. Maybe we should write an error
%% report or call this a system limit...?
uniform_real_s({Alg, R1})
end;
true ->
%% Need more bits
uniform_real_s(Alg, Next, M1, BitNo - 56, R1)
end;
true ->
%% Fill up to 53 bits
B0 = 53 - ?BC(M0, 49), % Number of bits we need to append
{(((M0 bsl B0) bor (V1 bsr (Bits - B0)))
* math:pow(2.0, BitNo - B0)),
{Alg, R1}}
end.
%%
uniform_real_s(#{bits:=Bits} = Alg, Next, M0, BitNo, R0) ->
{V1, R1} = Next(R0),
uniform_real_s(Alg, Next, M0, BitNo, R1, V1, Bits);
uniform_real_s(#{max:=_} = Alg, Next, M0, BitNo, R0) ->
{V1, R1} = Next(R0),
uniform_real_s(Alg, Next, M0, BitNo, R1, ?MASK(56, V1), 56).
%% jump/1: given a state, jump/1
%% returns a new state which is equivalent to that
%% after a large number of call defined for each algorithm.
%% The large number is algorithm dependent.
-spec jump(state()) -> NewState :: state().
jump(State = {#{jump:=Jump}, _}) ->
Jump(State);
jump({#{}, _}) ->
erlang:error(not_implemented).
%% jump/0: read the internal state and
%% apply the jump function for the state as in jump/1
%% and write back the new value to the internal state,
%% then returns the new value.
-spec jump() -> NewState :: state().
jump() ->
seed_put(jump(seed_get())).
%% normal/0: returns a random float with standard normal distribution
%% updating the state in the process dictionary.
-spec normal() -> float().
normal() ->
{X, Seed} = normal_s(seed_get()),
_ = seed_put(Seed),
X.
%% normal/2: returns a random float with N(μ, σ²) normal distribution
%% updating the state in the process dictionary.
-spec normal(Mean :: number(), Variance :: number()) -> float().
normal(Mean, Variance) ->
Mean + (math:sqrt(Variance) * normal()).
%% normal_s/1: returns a random float with standard normal distribution
%% The Ziggurat Method for generating random variables - Marsaglia and Tsang
%% Paper and reference code: http://www.jstatsoft.org/v05/i08/
-spec normal_s(State :: state()) -> {float(), NewState :: state()}.
normal_s(State0) ->
{Sign, R, State} = get_52(State0),
Idx = ?MASK(8, R),
Idx1 = Idx+1,
{Ki, Wi} = normal_kiwi(Idx1),
X = R * Wi,
case R < Ki of
%% Fast path 95% of the time
true when Sign =:= 0 -> {X, State};
true -> {-X, State};
%% Slow path
false when Sign =:= 0 -> normal_s(Idx, Sign, X, State);
false -> normal_s(Idx, Sign, -X, State)
end.
%% normal_s/3: returns a random float with normal N(μ, σ²) distribution
-spec normal_s(Mean :: number(), Variance :: number(), state()) -> {float(), NewS :: state()}.
normal_s(Mean, Variance, State0) when Variance > 0 ->
{X, State} = normal_s(State0),
{Mean + (math:sqrt(Variance) * X), State}.
%% =====================================================================
%% Internal functions
-spec seed_put(state()) -> state().
seed_put(Seed) ->
put(?SEED_DICT, Seed),
Seed.
seed_get() ->
case get(?SEED_DICT) of
undefined -> seed(?DEFAULT_ALG_HANDLER);
Old -> Old % no type checking here
end.
%% Setup alg record
mk_alg(exs64) ->
{#{type=>exs64, max=>?MASK(64), next=>fun exs64_next/1},
fun exs64_seed/1};
mk_alg(exsplus) ->
{#{type=>exsplus, max=>?MASK(58), next=>fun exsplus_next/1,
jump=>fun exsplus_jump/1},
fun exsplus_seed/1};
mk_alg(exsp) ->
{#{type=>exsp, bits=>58, weak_low_bits=>1, next=>fun exsplus_next/1,
uniform=>fun exsp_uniform/1, uniform_n=>fun exsp_uniform/2,
jump=>fun exsplus_jump/1},
fun exsplus_seed/1};
mk_alg(exs1024) ->
{#{type=>exs1024, max=>?MASK(64), next=>fun exs1024_next/1,
jump=>fun exs1024_jump/1},
fun exs1024_seed/1};
mk_alg(exs1024s) ->
{#{type=>exs1024s, bits=>64, weak_low_bits=>3, next=>fun exs1024_next/1,
jump=>fun exs1024_jump/1},
fun exs1024_seed/1};
mk_alg(exrop) ->
{#{type=>exrop, bits=>58, weak_low_bits=>1, next=>fun exrop_next/1,
uniform=>fun exrop_uniform/1, uniform_n=>fun exrop_uniform/2,
jump=>fun exrop_jump/1},
fun exrop_seed/1};
mk_alg(exro928ss) ->
{#{type=>exro928ss, bits=>58, next=>fun exro928ss_next/1,
uniform=>fun exro928ss_uniform/1,
uniform_n=>fun exro928ss_uniform/2,
jump=>fun exro928_jump/1},
fun exro928_seed/1}.
%% =====================================================================
%% exs64 PRNG: Xorshift64*
%% Algorithm by Sebastiano Vigna
%% Reference URL: http://xorshift.di.unimi.it/
%% =====================================================================
-opaque exs64_state() :: uint64().
exs64_seed(L) when is_list(L) ->
[R] = seed64_nz(1, L),
R;
exs64_seed(A) when is_integer(A) ->
[R] = seed64(1, ?MASK(64, A)),
R;
%%
%% Traditional integer triplet seed
exs64_seed({A1, A2, A3}) ->
{V1, _} = exs64_next((?MASK(32, A1) * 4294967197 + 1)),
{V2, _} = exs64_next((?MASK(32, A2) * 4294967231 + 1)),
{V3, _} = exs64_next((?MASK(32, A3) * 4294967279 + 1)),
((V1 * V2 * V3) rem (?MASK(64) - 1)) + 1.
%% Advance xorshift64* state for one step and generate 64bit unsigned integer
-spec exs64_next(exs64_state()) -> {uint64(), exs64_state()}.
exs64_next(R) ->
R1 = R bxor (R bsr 12),
R2 = R1 bxor ?BSL(64, R1, 25),
R3 = R2 bxor (R2 bsr 27),
{?MASK(64, R3 * 2685821657736338717), R3}.
%% =====================================================================
%% exsplus PRNG: Xorshift116+
%% Algorithm by Sebastiano Vigna
%% Reference URL: http://xorshift.di.unimi.it/
%% 58 bits fits into an immediate on 64bits erlang and is thus much faster.
%% Modification of the original Xorshift128+ algorithm to 116
%% by Sebastiano Vigna, a lot of thanks for his help and work.
%% =====================================================================
-opaque exsplus_state() :: nonempty_improper_list(uint58(), uint58()).
-dialyzer({no_improper_lists, exsplus_seed/1}).
exsplus_seed(L) when is_list(L) ->
[S0,S1] = seed58_nz(2, L),
[S0|S1];
exsplus_seed(X) when is_integer(X) ->
[S0,S1] = seed58(2, ?MASK(64, X)),
[S0|S1];
%%
%% Traditional integer triplet seed
exsplus_seed({A1, A2, A3}) ->
{_, R1} = exsplus_next(
[?MASK(58, (A1 * 4294967197) + 1)|
?MASK(58, (A2 * 4294967231) + 1)]),
{_, R2} = exsplus_next(
[?MASK(58, (A3 * 4294967279) + 1)|
tl(R1)]),
R2.
-dialyzer({no_improper_lists, exsplus_next/1}).
%% Advance xorshift116+ state for one step and generate 58bit unsigned integer
-spec exsplus_next(exsplus_state()) -> {uint58(), exsplus_state()}.
exsplus_next([S1|S0]) ->
%% Note: members s0 and s1 are swapped here
S11 = S1 bxor ?BSL(58, S1, 24),
S12 = S11 bxor S0 bxor (S11 bsr 11) bxor (S0 bsr 41),
{?MASK(58, S0 + S12), [S0|S12]}.
exsp_uniform({Alg, R0}) ->
{I, R1} = exsplus_next(R0),
%% Waste the lowest bit since it is of lower
%% randomness quality than the others
{(I bsr (58-53)) * ?TWO_POW_MINUS53, {Alg, R1}}.
exsp_uniform(Range, {Alg, R}) ->
{V, R1} = exsplus_next(R),
MaxMinusRange = ?BIT(58) - Range,
?uniform_range(Range, Alg, R1, V, MaxMinusRange, I).
%% This is the jump function for the exsplus generator, equivalent
%% to 2^64 calls to next/1; it can be used to generate 2^52
%% non-overlapping subsequences for parallel computations.
%% Note: the jump function takes 116 times of the execution time of
%% next/1.
%% -define(JUMPCONST, 16#000d174a83e17de2302f8ea6bc32c797).
%% split into 58-bit chunks
%% and two iterative executions
-define(JUMPCONST1, 16#02f8ea6bc32c797).
-define(JUMPCONST2, 16#345d2a0f85f788c).
-define(JUMPELEMLEN, 58).
-dialyzer({no_improper_lists, exsplus_jump/1}).
-spec exsplus_jump({alg_handler(), exsplus_state()}) ->
{alg_handler(), exsplus_state()}.
exsplus_jump({Alg, S}) ->
{S1, AS1} = exsplus_jump(S, [0|0], ?JUMPCONST1, ?JUMPELEMLEN),
{_, AS2} = exsplus_jump(S1, AS1, ?JUMPCONST2, ?JUMPELEMLEN),
{Alg, AS2}.
-dialyzer({no_improper_lists, exsplus_jump/4}).
exsplus_jump(S, AS, _, 0) ->
{S, AS};
exsplus_jump(S, [AS0|AS1], J, N) ->
{_, NS} = exsplus_next(S),
case ?MASK(1, J) of
1 ->
[S0|S1] = S,
exsplus_jump(NS, [(AS0 bxor S0)|(AS1 bxor S1)], J bsr 1, N-1);
0 ->
exsplus_jump(NS, [AS0|AS1], J bsr 1, N-1)
end.
%% =====================================================================
%% exs1024 PRNG: Xorshift1024*
%% Algorithm by Sebastiano Vigna
%% Reference URL: http://xorshift.di.unimi.it/
%% =====================================================================
-opaque exs1024_state() :: {list(uint64()), list(uint64())}.
exs1024_seed(L) when is_list(L) ->
{seed64_nz(16, L), []};
exs1024_seed(X) when is_integer(X) ->
{seed64(16, ?MASK(64, X)), []};
%%
%% Seed from traditional triple, remain backwards compatible
exs1024_seed({A1, A2, A3}) ->
B1 = ?MASK(21, (?MASK(21, A1) + 1) * 2097131),
B2 = ?MASK(21, (?MASK(21, A2) + 1) * 2097133),
B3 = ?MASK(21, (?MASK(21, A3) + 1) * 2097143),
{exs1024_gen1024((B1 bsl 43) bor (B2 bsl 22) bor (B3 bsl 1) bor 1),
[]}.
%% Generate a list of 16 64-bit element list
%% of the xorshift64* random sequence
%% from a given 64-bit seed.
%% Note: dependent on exs64_next/1
-spec exs1024_gen1024(uint64()) -> list(uint64()).
exs1024_gen1024(R) ->
exs1024_gen1024(16, R, []).
exs1024_gen1024(0, _, L) ->
L;
exs1024_gen1024(N, R, L) ->
{X, R2} = exs64_next(R),
exs1024_gen1024(N - 1, R2, [X|L]).
%% Calculation of xorshift1024*.
%% exs1024_calc(S0, S1) -> {X, NS1}.
%% X: random number output
-spec exs1024_calc(uint64(), uint64()) -> {uint64(), uint64()}.
exs1024_calc(S0, S1) ->
S11 = S1 bxor ?BSL(64, S1, 31),
S12 = S11 bxor (S11 bsr 11),
S01 = S0 bxor (S0 bsr 30),
NS1 = S01 bxor S12,
{?MASK(64, NS1 * 1181783497276652981), NS1}.
%% Advance xorshift1024* state for one step and generate 64bit unsigned integer
-spec exs1024_next(exs1024_state()) -> {uint64(), exs1024_state()}.
exs1024_next({[S0,S1|L3], RL}) ->
{X, NS1} = exs1024_calc(S0, S1),
{X, {[NS1|L3], [S0|RL]}};
exs1024_next({[H], RL}) ->
NL = [H|lists:reverse(RL)],
exs1024_next({NL, []}).
%% This is the jump function for the exs1024 generator, equivalent
%% to 2^512 calls to next(); it can be used to generate 2^512
%% non-overlapping subsequences for parallel computations.
%% Note: the jump function takes ~2000 times of the execution time of
%% next/1.
%% Jump constant here split into 58 bits for speed
-define(JUMPCONSTHEAD, 16#00242f96eca9c41d).
-define(JUMPCONSTTAIL,
[16#0196e1ddbe5a1561,
16#0239f070b5837a3c,
16#03f393cc68796cd2,
16#0248316f404489af,
16#039a30088bffbac2,
16#02fea70dc2d9891f,
16#032ae0d9644caec4,
16#0313aac17d8efa43,
16#02f132e055642626,
16#01ee975283d71c93,
16#00552321b06f5501,
16#00c41d10a1e6a569,
16#019158ecf8aa1e44,
16#004e9fc949d0b5fc,
16#0363da172811fdda,
16#030e38c3b99181f2,
16#0000000a118038fc]).
-define(JUMPTOTALLEN, 1024).
-define(RINGLEN, 16).
-spec exs1024_jump({alg_handler(), exs1024_state()}) ->
{alg_handler(), exs1024_state()}.
exs1024_jump({Alg, {L, RL}}) ->
P = length(RL),
AS = exs1024_jump({L, RL},
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
?JUMPCONSTTAIL, ?JUMPCONSTHEAD, ?JUMPELEMLEN, ?JUMPTOTALLEN),
{ASL, ASR} = lists:split(?RINGLEN - P, AS),
{Alg, {ASL, lists:reverse(ASR)}}.
exs1024_jump(_, AS, _, _, _, 0) ->
AS;
exs1024_jump(S, AS, [H|T], _, 0, TN) ->
exs1024_jump(S, AS, T, H, ?JUMPELEMLEN, TN);
exs1024_jump({L, RL}, AS, JL, J, N, TN) ->
{_, NS} = exs1024_next({L, RL}),
case ?MASK(1, J) of
1 ->
AS2 = lists:zipwith(fun(X, Y) -> X bxor Y end,
AS, L ++ lists:reverse(RL)),
exs1024_jump(NS, AS2, JL, J bsr 1, N-1, TN-1);
0 ->
exs1024_jump(NS, AS, JL, J bsr 1, N-1, TN-1)
end.
%% =====================================================================
%% exro928ss PRNG: Xoroshiro928**
%%
%% Reference URL: http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
%% i.e the Xoroshiro1024 generator with ** scrambler
%% with {S, R, T} = {5, 7, 9} as recommended in the paper.
%%
%% {A, B, C} were tried out and selected as {44, 9, 45}
%% and the jump coefficients calculated.
%%
%% Standard jump function pseudocode:
%%
%% Jump constant j = 0xb10773cb...44085302f77130ca
%% Generator state: s
%% New generator state: t = 0
%% foreach bit in j, low to high:
%% if the bit is one:
%% t ^= s
%% next s
%% s = t
%%
%% Generator used for reference value calculation:
%%
%% #include <stdint.h>
%% #include <stdio.h>
%%
%% int p = 0;
%% uint64_t s[16];
%%
%% #define MASK(x) ((x) & ((UINT64_C(1) << 58) - 1))
%% static __inline uint64_t rotl(uint64_t x, int n) {
%% return MASK(x << n) | (x >> (58 - n));
%% }
%%
%% uint64_t next() {
%% const int q = p;
%% const uint64_t s0 = s[p = (p + 1) & 15];
%% uint64_t s15 = s[q];
%%
%% const uint64_t result_starstar = MASK(rotl(MASK(s0 * 5), 7) * 9);
%%
%% s15 ^= s0;
%% s[q] = rotl(s0, 44) ^ s15 ^ MASK(s15 << 9);
%% s[p] = rotl(s15, 45);
%%
%% return result_starstar;
%% }
%%
%% static const uint64_t jump_2pow512[15] =
%% { 0x44085302f77130ca, 0xba05381fdfd14902, 0x10a1de1d7d6813d2,
%% 0xb83fe51a1eb3be19, 0xa81b0090567fd9f0, 0x5ac26d5d20f9b49f,
%% 0x4ddd98ee4be41e01, 0x0657e19f00d4b358, 0xf02f778573cf0f0a,
%% 0xb45a3a8a3cef3cc0, 0x6e62a33cc2323831, 0xbcb3b7c4cc049c53,
%% 0x83f240c6007e76ce, 0xe19f5fc1a1504acd, 0x00000000b10773cb };
%%
%% static const uint64_t jump_2pow20[15] =
%% { 0xbdb966a3daf905e6, 0x644807a56270cf78, 0xda90f4a806c17e9e,
%% 0x4a426866bfad3c77, 0xaf699c306d8e7566, 0x8ebc73c700b8b091,
%% 0xc081a7bf148531fb, 0xdc4d3af15f8a4dfd, 0x90627c014098f4b6,
%% 0x06df2eb1feaf0fb6, 0x5bdeb1a5a90f2e6b, 0xa480c5878c3549bd,
%% 0xff45ef33c82f3d48, 0xa30bebc15fefcc78, 0x00000000cb3d181c };
%%
%% void jump(const uint64_t *jump) {
%% uint64_t j, t[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
%% int m, n, k;
%% for (m = 0; m < 15; m++, jump++) {
%% for (n = 0, j = *jump; n < 64; n++, j >>= 1) {
%% if ((j & 1) != 0) {
%% for (k = 0; k < 16; k++) {
%% t[k] ^= s[(p + k) & 15];
%% }
%% }
%% next();
%% }
%% }
%% for (k = 0; k < 16; k++) {
%% s[(p + k) & 15] = t[k];
%% }
%% }
%%
%% =====================================================================
-opaque exro928_state() :: {list(uint58()), list(uint58())}.
exro928_seed(L) when is_list(L) ->
{seed58_nz(16, L), []};
exro928_seed(X) when is_integer(X) ->
{seed58(16, ?MASK(64, X)), []};
%%
%% Seed from traditional integer triple - mix into splitmix
exro928_seed({A1, A2, A3}) ->
{S0, X0} = seed58(?MASK(64, A1)),
{S1, X1} = seed58(?MASK(64, A2) bxor X0),
{S2, X2} = seed58(?MASK(64, A3) bxor X1),
{[S0,S1,S2|seed58(13, X2)], []}.
%% Update the state and calculate output word
-spec exro928ss_next(exro928_state()) -> {uint58(), exro928_state()}.
exro928ss_next({[S15,S0|Ss], Rs}) ->
SR = exro928_next_state(Ss, Rs, S15, S0),
%%
%% {S, R, T} = {5, 7, 9}
%% const uint64_t result_starstar = rotl(s0 * S, R) * T;
%%
%% The multiply by add shifted trick avoids creating bignums
%% which improves performance significantly
%%
V0 = ?MASK(58, S0 + ?BSL(58, S0, 2)), % V0 = S0 * 5
V1 = ?ROTL(58, V0, 7),
V = ?MASK(58, V1 + ?BSL(58, V1, 3)), % V = V1 * 9
{V, SR};
exro928ss_next({[S15], Rs}) ->
exro928ss_next({[S15|lists:reverse(Rs)], []}).
%% Just update the state
exro928_next_state({[S15,S0|Ss], Rs}) ->
exro928_next_state(Ss, Rs, S15, S0);
exro928_next_state({[S15], Rs}) ->
[S0|Ss] = lists:reverse(Rs),
exro928_next_state(Ss, [], S15, S0).
exro928_next_state(Ss, Rs, S15, S0) ->
%% {A, B, C} = {44, 9, 45},
%% s15 ^= s0;
%% NewS15: s[q] = rotl(s0, A) ^ s15 ^ (s15 << B);
%% NewS0: s[p] = rotl(s15, C);
%%
Q = S15 bxor S0,
NewS15 = ?ROTL(58, S0, 44) bxor Q bxor ?BSL(58, Q, 9),
NewS0 = ?ROTL(58, Q, 45),
{[NewS0|Ss], [NewS15|Rs]}.
exro928ss_uniform({Alg, SR}) ->
{V, NewSR} = exro928ss_next(SR),
{(V bsr (58-53)) * ?TWO_POW_MINUS53, {Alg, NewSR}}.
exro928ss_uniform(Range, {Alg, SR}) ->
{V, NewSR} = exro928ss_next(SR),
MaxMinusRange = ?BIT(58) - Range,
?uniform_range(Range, Alg, NewSR, V, MaxMinusRange, I).
-spec exro928_jump({alg_handler(), exro928_state()}) ->
{alg_handler(), exro928_state()}.
exro928_jump({Alg, SR}) ->
{Alg,exro928_jump_2pow512(SR)}.
exro928_jump_2pow512(SR) ->
polyjump(
SR, fun exro928_next_state/1,
%% 2^512
[16#4085302F77130CA, 16#54E07F7F4524091,
16#5E1D7D6813D2BA0, 16#4687ACEF8644287,
16#4567FD9F0B83FE5, 16#43E6D27EA06C024,
16#641E015AC26D5D2, 16#6CD61377663B92F,
16#70A0657E19F00D4, 16#43C0BDDE15CF3C3,
16#745A3A8A3CEF3CC, 16#58A8CF308C8E0C6,
16#7B7C4CC049C536E, 16#431801F9DB3AF2C,
16#41A1504ACD83F24, 16#6C41DCF2F867D7F]).
exro928_jump_2pow20(SR) ->
polyjump(
SR, fun exro928_next_state/1,
%% 2^20
[16#5B966A3DAF905E6, 16#601E9589C33DE2F,
16#74A806C17E9E644, 16#59AFEB4F1DF6A43,
16#46D8E75664A4268, 16#42E2C246BDA670C,
16#4531FB8EBC73C70, 16#537F702069EFC52,
16#4B6DC4D3AF15F8A, 16#5A4189F0050263D,
16#46DF2EB1FEAF0FB, 16#77AC696A43CB9AC,
16#4C5878C3549BD5B, 16#7CCF20BCF522920,
16#415FEFCC78FF45E, 16#72CF460728C2FAF]).
%% =====================================================================
%% exrop PRNG: Xoroshiro116+
%%
%% Reference URL: http://xorshift.di.unimi.it/
%%
%% 58 bits fits into an immediate on 64bits Erlang and is thus much faster.
%% In fact, an immediate number is 60 bits signed in Erlang so you can
%% add two positive 58 bit numbers and get a 59 bit number that still is
%% a positive immediate, which is a property we utilize here...
%%
%% Modification of the original Xororhiro128+ algorithm to 116 bits
%% by Sebastiano Vigna. A lot of thanks for his help and work.
%% =====================================================================
%% (a, b, c) = (24, 2, 35)
%% JUMP Polynomial = 0x9863200f83fcd4a11293241fcb12a (116 bit)
%%
%% From http://xoroshiro.di.unimi.it/xoroshiro116plus.c:
%% ---------------------------------------------------------------------
%% /* Written in 2017 by Sebastiano Vigna ([email protected]).
%%
%% To the extent possible under law, the author has dedicated all copyright
%% and related and neighboring rights to this software to the public domain
%% worldwide. This software is distributed without any warranty.
%%
%% See <http://creativecommons.org/publicdomain/zero/1.0/>. */
%%
%% #include <stdint.h>
%%
%% #define UINT58MASK (uint64_t)((UINT64_C(1) << 58) - 1)
%%
%% uint64_t s[2];
%%
%% static inline uint64_t rotl58(const uint64_t x, int k) {
%% return (x << k) & UINT58MASK | (x >> (58 - k));
%% }
%%
%% uint64_t next(void) {
%% uint64_t s1 = s[1];
%% const uint64_t s0 = s[0];
%% const uint64_t result = (s0 + s1) & UINT58MASK;
%%
%% s1 ^= s0;
%% s[0] = rotl58(s0, 24) ^ s1 ^ ((s1 << 2) & UINT58MASK); // a, b
%% s[1] = rotl58(s1, 35); // c
%% return result;
%% }
%%
%% void jump(void) {
%% static const uint64_t JUMP[] =
%% { 0x4a11293241fcb12a, 0x0009863200f83fcd };
%%
%% uint64_t s0 = 0;
%% uint64_t s1 = 0;
%% for(int i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
%% for(int b = 0; b < 64; b++) {
%% if (JUMP[i] & UINT64_C(1) << b) {
%% s0 ^= s[0];
%% s1 ^= s[1];
%% }
%% next();
%% }
%% s[0] = s0;
%% s[1] = s1;
%% }
-opaque exrop_state() :: nonempty_improper_list(uint58(), uint58()).
-dialyzer({no_improper_lists, exrop_seed/1}).
exrop_seed(L) when is_list(L) ->
[S0,S1] = seed58_nz(2, L),
[S0|S1];
exrop_seed(X) when is_integer(X) ->
[S0,S1] = seed58(2, ?MASK(64, X)),
[S0|S1];
%%
%% Traditional integer triplet seed
exrop_seed({A1, A2, A3}) ->
[_|S1] =
exrop_next_s(
?MASK(58, (A1 * 4294967197) + 1),
?MASK(58, (A2 * 4294967231) + 1)),
exrop_next_s(?MASK(58, (A3 * 4294967279) + 1), S1).
-dialyzer({no_improper_lists, exrop_next_s/2}).
%% Advance xoroshiro116+ state one step
%% [a, b, c] = [24, 2, 35]
-define(
exrop_next_s(S0, S1, S1_a),
begin
S1_a = S1 bxor S0,
[?ROTL(58, S0, 24) bxor S1_a bxor ?BSL(58, S1_a, 2)| % a, b
?ROTL(58, S1_a, 35)] % c
end).
exrop_next_s(S0, S1) ->
?exrop_next_s(S0, S1, S1_a).
-dialyzer({no_improper_lists, exrop_next/1}).
%% Advance xoroshiro116+ state one step, generate 58 bit unsigned integer,
%% and waste the lowest bit since it is of lower randomness quality
exrop_next([S0|S1]) ->
{?MASK(58, S0 + S1), ?exrop_next_s(S0, S1, S1_a)}.
exrop_uniform({Alg, R}) ->
{V, R1} = exrop_next(R),
%% Waste the lowest bit since it is of lower
%% randomness quality than the others
{(V bsr (58-53)) * ?TWO_POW_MINUS53, {Alg, R1}}.
exrop_uniform(Range, {Alg, R}) ->
{V, R1} = exrop_next(R),
MaxMinusRange = ?BIT(58) - Range,
?uniform_range(Range, Alg, R1, V, MaxMinusRange, I).
%% Split a 116 bit constant into two 58 bit words,
%% a top '1' marks the end of the low word.
-define(
JUMP_116(Jump),
[?BIT(58) bor ?MASK(58, (Jump)),(Jump) bsr 58]).
%%
exrop_jump({Alg,S}) ->
[J|Js] = ?JUMP_116(16#9863200f83fcd4a11293241fcb12a),
{Alg, exrop_jump(S, 0, 0, J, Js)}.
%%
-dialyzer({no_improper_lists, exrop_jump/5}).
exrop_jump(_S, S0, S1, 0, []) -> % End of jump constant
[S0|S1];
exrop_jump(S, S0, S1, 1, [J|Js]) -> % End of word
exrop_jump(S, S0, S1, J, Js);
exrop_jump([S__0|S__1] = _S, S0, S1, J, Js) ->
case ?MASK(1, J) of
1 ->
NewS = exrop_next_s(S__0, S__1),
exrop_jump(NewS, S0 bxor S__0, S1 bxor S__1, J bsr 1, Js);
0 ->
NewS = exrop_next_s(S__0, S__1),
exrop_jump(NewS, S0, S1, J bsr 1, Js)
end.
%% =====================================================================
%% Mask and fill state list, ensure not all zeros
%% =====================================================================
seed58_nz(N, Ss) ->
seed_nz(N, Ss, 58, false).
seed64_nz(N, Ss) ->
seed_nz(N, Ss, 64, false).
seed_nz(_N, [], _M, false) ->
erlang:error(zero_seed);
seed_nz(0, [_|_], _M, _NZ) ->
erlang:error(too_many_seed_integers);
seed_nz(0, [], _M, _NZ) ->
[];
seed_nz(N, [], M, true) ->
[0|seed_nz(N - 1, [], M, true)];
seed_nz(N, [S|Ss], M, NZ) ->
if
is_integer(S) ->
R = ?MASK(M, S),
[R|seed_nz(N - 1, Ss, M, NZ orelse R =/= 0)];
true ->
erlang:error(non_integer_seed)
end.
%% =====================================================================
%% Splitmix seeders, lowest bits of SplitMix64, zeros skipped
%% =====================================================================
seed58(0, _X) ->
[];
seed58(N, X) ->
{Z,NewX} = seed58(X),
[Z|seed58(N - 1, NewX)].
%%
seed58(X_0) ->
{Z0,X} = splitmix64_next(X_0),
case ?MASK(58, Z0) of
0 ->
seed58(X);
Z ->
{Z,X}
end.
seed64(0, _X) ->
[];
seed64(N, X) ->
{Z,NewX} = seed64(X),
[Z|seed64(N - 1, NewX)].
%%
seed64(X_0) ->
{Z,X} = ZX = splitmix64_next(X_0),
if
Z =:= 0 ->
seed64(X);
true ->
ZX
end.
%% The SplitMix64 generator:
%%
%% uint64_t splitmix64_next() {
%% uint64_t z = (x += 0x9e3779b97f4a7c15);
%% z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
%% z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
%% return z ^ (z >> 31);
%% }
%%
splitmix64_next(X_0) ->
X = ?MASK(64, X_0 + 16#9e3779b97f4a7c15),
Z_0 = ?MASK(64, (X bxor (X bsr 30)) * 16#bf58476d1ce4e5b9),
Z_1 = ?MASK(64, (Z_0 bxor (Z_0 bsr 27)) * 16#94d049bb133111eb),
{?MASK(64, Z_1 bxor (Z_1 bsr 31)),X}.
%% =====================================================================
%% Polynomial jump with a jump constant word list,
%% high bit in each word marking top of word,
%% SR is a {Forward, Reverse} queue tuple with Forward never empty
%% =====================================================================
polyjump({Ss, Rs} = SR, NextState, JumpConst) ->
%% Create new state accumulator T
Ts = lists:duplicate(length(Ss) + length(Rs), 0),
polyjump(SR, NextState, JumpConst, Ts).
%%
%% Foreach jump word
polyjump(_SR, _NextState, [], Ts) ->
%% Return new calculated state
{Ts, []};
polyjump(SR, NextState, [J|Js], Ts) ->
polyjump(SR, NextState, Js, Ts, J).
%%
%% Foreach bit in jump word until top bit
polyjump(SR, NextState, Js, Ts, 1) ->
polyjump(SR, NextState, Js, Ts);
polyjump({Ss, Rs} = SR, NextState, Js, Ts, J) when J =/= 0 ->
NewSR = NextState(SR),
NewJ = J bsr 1,
case ?MASK(1, J) of
0 ->
polyjump(NewSR, NextState, Js, Ts, NewJ);
1 ->
%% Xor this state onto T
polyjump(NewSR, NextState, Js, xorzip_sr(Ts, Ss, Rs), NewJ)
end.
xorzip_sr([], [], undefined) ->
[];
xorzip_sr(Ts, [], Rs) ->
xorzip_sr(Ts, lists:reverse(Rs), undefined);
xorzip_sr([T|Ts], [S|Ss], Rs) ->
[T bxor S|xorzip_sr(Ts, Ss, Rs)].
%% =====================================================================
format_jumpconst58(String) ->
ReOpts = [{newline,any},{capture,all_but_first,binary},global],
{match,Matches} = re:run(String, "0x([a-zA-Z0-9]+)", ReOpts),
format_jumcons58_matches(lists:reverse(Matches), 0).
format_jumcons58_matches([], J) ->
format_jumpconst58_value(J);
format_jumcons58_matches([[Bin]|Matches], J) ->
NewJ = (J bsl 64) bor binary_to_integer(Bin, 16),
format_jumcons58_matches(Matches, NewJ).
format_jumpconst58_value(0) ->
ok;
format_jumpconst58_value(J) ->
io:format("16#~s,~n", [integer_to_list(?MASK(58, J) bor ?BIT(58), 16)]),
format_jumpconst58_value(J bsr 58).
%% =====================================================================
%% Ziggurat cont
%% =====================================================================
-define(NOR_R, 3.6541528853610087963519472518).
-define(NOR_INV_R, 1/?NOR_R).
%% return a {sign, Random51bits, State}
get_52({Alg=#{bits:=Bits, next:=Next}, S0}) ->
%% Use the high bits
{Int,S1} = Next(S0),
{?BIT(Bits - 51 - 1) band Int, Int bsr (Bits - 51), {Alg, S1}};
get_52({Alg=#{next:=Next}, S0}) ->
{Int,S1} = Next(S0),
{?BIT(51) band Int, ?MASK(51, Int), {Alg, S1}}.
%% Slow path
normal_s(0, Sign, X0, State0) ->
{U0, S1} = uniform_s(State0),
X = -?NOR_INV_R*math:log(U0),
{U1, S2} = uniform_s(S1),
Y = -math:log(U1),
case Y+Y > X*X of
false ->
normal_s(0, Sign, X0, S2);
true when Sign =:= 0 ->
{?NOR_R + X, S2};
true ->
{-?NOR_R - X, S2}
end;
normal_s(Idx, _Sign, X, State0) ->
Fi2 = normal_fi(Idx+1),
{U0, S1} = uniform_s(State0),
case ((normal_fi(Idx) - Fi2)*U0 + Fi2) < math:exp(-0.5*X*X) of
true -> {X, S1};
false -> normal_s(S1)
end.
%% Tables for generating normal_s
%% ki is zipped with wi (slightly faster)
normal_kiwi(Indx) ->
element(Indx,
{{2104047571236786,1.736725412160263e-15}, {0,9.558660351455634e-17},
{1693657211986787,1.2708704834810623e-16},{1919380038271141,1.4909740962495474e-16},
{2015384402196343,1.6658733631586268e-16},{2068365869448128,1.8136120810119029e-16},
{2101878624052573,1.9429720153135588e-16},{2124958784102998,2.0589500628482093e-16},
{2141808670795147,2.1646860576895422e-16},{2154644611568301,2.2622940392218116e-16},
{2164744887587275,2.353271891404589e-16},{2172897953696594,2.438723455742877e-16},
{2179616279372365,2.5194879829274225e-16},{2185247251868649,2.5962199772528103e-16},
{2190034623107822,2.6694407473648285e-16},{2194154434521197,2.7395729685142446e-16},
{2197736978774660,2.8069646002484804e-16},{2200880740891961,2.871905890411393e-16},
{2203661538010620,2.9346417484728883e-16},{2206138681109102,2.9953809336782113e-16},
{2208359231806599,3.054303000719244e-16},{2210361007258210,3.111563633892157e-16},
{2212174742388539,3.1672988018581815e-16},{2213825672704646,3.2216280350549905e-16},
{2215334711002614,3.274657040793975e-16},{2216719334487595,3.326479811684171e-16},
{2217994262139172,3.377180341735323e-16},{2219171977965032,3.4268340353119356e-16},
{2220263139538712,3.475508873172976e-16},{2221276900117330,3.523266384600203e-16},
{2222221164932930,3.5701624633953494e-16},{2223102796829069,3.616248057159834e-16},
{2223927782546658,3.661569752965354e-16},{2224701368170060,3.7061702777236077e-16},
{2225428170204312,3.75008892787478e-16},{2226112267248242,3.7933619401549554e-16},
{2226757276105256,3.836022812967728e-16},{2227366415328399,3.8781025861250247e-16},
{2227942558554684,3.919630085325768e-16},{2228488279492521,3.9606321366256378e-16},
{2229005890047222,4.001133755254669e-16},{2229497472775193,4.041158312414333e-16},
{2229964908627060,4.080727683096045e-16},{2230409900758597,4.119862377480744e-16},
{2230833995044585,4.1585816580828064e-16},{2231238597816133,4.1969036444740733e-16},
{2231624991250191,4.234845407152071e-16},{2231994346765928,4.272423051889976e-16},
{2232347736722750,4.309651795716294e-16},{2232686144665934,4.346546035512876e-16},
{2233010474325959,4.383119410085457e-16},{2233321557544881,4.4193848564470665e-16},
{2233620161276071,4.455354660957914e-16},{2233906993781271,4.491040505882875e-16},
{2234182710130335,4.52645351185714e-16},{2234447917093496,4.561604276690038e-16},
{2234703177503020,4.596502910884941e-16},{2234949014150181,4.631159070208165e-16},
{2235185913274316,4.665581985600875e-16},{2235414327692884,4.699780490694195e-16},
{2235634679614920,4.733763047158324e-16},{2235847363174595,4.767537768090853e-16},
{2236052746716837,4.8011124396270155e-16},{2236251174862869,4.834494540935008e-16},
{2236442970379967,4.867691262742209e-16},{2236628435876762,4.900709524522994e-16},
{2236807855342765,4.933555990465414e-16},{2236981495548562,4.966237084322178e-16},
{2237149607321147,4.998759003240909e-16},{2237312426707209,5.031127730659319e-16},
{2237470176035652,5.0633490483427195e-16},{2237623064889403,5.095428547633892e-16},
{2237771290995388,5.127371639978797e-16},{2237915041040597,5.159183566785736e-16},
{2238054491421305,5.190869408670343e-16},{2238189808931712,5.222434094134042e-16},
{2238321151397660,5.253882407719454e-16},{2238448668260432,5.285218997682382e-16},
{2238572501115169,5.316448383216618e-16},{2238692784207942,5.34757496126473e-16},
{2238809644895133,5.378603012945235e-16},{2238923204068402,5.409536709623993e-16},
{2239033576548190,5.440380118655467e-16},{2239140871448443,5.471137208817361e-16},
{2239245192514958,5.501811855460336e-16},{2239346638439541,5.532407845392784e-16},
{2239445303151952,5.56292888151909e-16},{2239541276091442,5.593378587248462e-16},
{2239634642459498,5.623760510690043e-16},{2239725483455293,5.65407812864896e-16},
{2239813876495186,5.684334850436814e-16},{2239899895417494,5.714534021509204e-16},
{2239983610673676,5.744678926941961e-16},{2240065089506935,5.774772794756965e-16},
{2240144396119183,5.804818799107686e-16},{2240221591827230,5.834820063333892e-16},
{2240296735208969,5.864779662894365e-16},{2240369882240293,5.894700628185872e-16},
{2240441086423386,5.924585947256134e-16},{2240510398907004,5.95443856841806e-16},
{2240577868599305,5.984261402772028e-16},{2240643542273726,6.014057326642664e-16},
{2240707464668391,6.043829183936125e-16},{2240769678579486,6.073579788423606e-16},
{2240830224948980,6.103311925956439e-16},{2240889142947082,6.133028356617911e-16},
{2240946470049769,6.162731816816596e-16},{2241002242111691,6.192425021325847e-16},
{2241056493434746,6.222110665273788e-16},{2241109256832602,6.251791426088e-16},
{2241160563691400,6.281469965398895e-16},{2241210444026879,6.311148930905604e-16},
{2241258926538122,6.34083095820806e-16},{2241306038658137,6.370518672608815e-16},
{2241351806601435,6.400214690888025e-16},{2241396255408788,6.429921623054896e-16},
{2241439408989313,6.459642074078832e-16},{2241481290160038,6.489378645603397e-16},
{2241521920683062,6.519133937646159e-16},{2241561321300462,6.548910550287415e-16},
{2241599511767028,6.578711085350741e-16},{2241636510880960,6.608538148078259e-16},
{2241672336512612,6.638394348803506e-16},{2241707005631362,6.668282304624746e-16},
{2241740534330713,6.698204641081558e-16},{2241772937851689,6.728163993837531e-16},
{2241804230604585,6.758163010371901e-16},{2241834426189161,6.78820435168298e-16},
{2241863537413311,6.818290694006254e-16},{2241891576310281,6.848424730550038e-16},
{2241918554154466,6.878609173251664e-16},{2241944481475843,6.908846754557169e-16},
{2241969368073071,6.939140229227569e-16},{2241993223025298,6.969492376174829e-16},
{2242016054702685,6.999906000330764e-16},{2242037870775710,7.030383934552151e-16},
{2242058678223225,7.060929041565482e-16},{2242078483339331,7.091544215954873e-16},
{2242097291739040,7.122232386196779e-16},{2242115108362774,7.152996516745303e-16},
{2242131937479672,7.183839610172063e-16},{2242147782689725,7.214764709364707e-16},
{2242162646924736,7.245774899788387e-16},{2242176532448092,7.276873311814693e-16},
{2242189440853337,7.308063123122743e-16},{2242201373061537,7.339347561177405e-16},
{2242212329317416,7.370729905789831e-16},{2242222309184237,7.4022134917658e-16},
{2242231311537397,7.433801711647648e-16},{2242239334556717,7.465498018555889e-16},
{2242246375717369,7.497305929136979e-16},{2242252431779415,7.529229026624058e-16},
{2242257498775893,7.561270964017922e-16},{2242261571999416,7.5934354673958895e-16},
{2242264645987196,7.625726339356756e-16},{2242266714504453,7.658147462610487e-16},
{2242267770526109,7.690702803721919e-16},{2242267806216711,7.723396417018299e-16},
{2242266812908462,7.756232448671174e-16},{2242264781077289,7.789215140963852e-16},
{2242261700316818,7.822348836756411e-16},{2242257559310145,7.855637984161084e-16},
{2242252345799276,7.889087141441755e-16},{2242246046552082,7.922700982152271e-16},
{2242238647326615,7.956484300529366e-16},{2242230132832625,7.99044201715713e-16},
{2242220486690076,8.024579184921259e-16},{2242209691384458,8.058900995272657e-16},
{2242197728218684,8.093412784821501e-16},{2242184577261310,8.128120042284501e-16},
{2242170217290819,8.163028415809877e-16},{2242154625735679,8.198143720706533e-16},
{2242137778609839,8.23347194760605e-16},{2242119650443327,8.26901927108847e-16},
{2242100214207556,8.304792058805374e-16},{2242079441234906,8.340796881136629e-16},
{2242057301132135,8.377040521420222e-16},{2242033761687079,8.413529986798028e-16},
{2242008788768107,8.450272519724097e-16},{2241982346215682,8.487275610186155e-16},
{2241954395725356,8.524547008695596e-16},{2241924896721443,8.562094740106233e-16},
{2241893806220517,8.599927118327665e-16},{2241861078683830,8.638052762005259e-16},
{2241826665857598,8.676480611245582e-16},{2241790516600041,8.715219945473698e-16},
{2241752576693881,8.754280402517175e-16},{2241712788642916,8.793671999021043e-16},
{2241671091451078,8.833405152308408e-16},{2241627420382235,8.873490703813135e-16},
{2241581706698773,8.913939944224086e-16},{2241533877376767,8.954764640495068e-16},
{2241483854795281,8.9959770648911e-16},{2241431556397035,9.037590026260118e-16},
{2241376894317345,9.079616903740068e-16},{2241319774977817,9.122071683134846e-16},
{2241260098640860,9.164968996219135e-16},{2241197758920538,9.208324163262308e-16},
{2241132642244704,9.252153239095693e-16},{2241064627262652,9.296473063086417e-16},
{2240993584191742,9.341301313425265e-16},{2240919374095536,9.38665656618666e-16},
{2240841848084890,9.432558359676707e-16},{2240760846432232,9.479027264651738e-16},
{2240676197587784,9.526084961066279e-16},{2240587717084782,9.57375432209745e-16},
{2240495206318753,9.622059506294838e-16},{2240398451183567,9.671026058823054e-16},
{2240297220544165,9.720681022901626e-16},{2240191264522612,9.771053062707209e-16},
{2240080312570155,9.822172599190541e-16},{2239964071293331,9.874071960480671e-16},
{2239842221996530,9.926785548807976e-16},{2239714417896699,9.980350026183645e-16},
{2239580280957725,1.003480452143618e-15},{2239439398282193,1.0090190861637457e-15},
{2239291317986196,1.0146553831467086e-15},{2239135544468203,1.0203941464683124e-15},
{2238971532964979,1.0262405372613567e-15},{2238798683265269,1.0322001115486456e-15},
{2238616332424351,1.03827886235154e-15},{2238423746288095,1.044483267600047e-15},
{2238220109591890,1.0508203448355195e-15},{2238004514345216,1.057297713900989e-15},
{2237775946143212,1.06392366906768e-15},{2237533267957822,1.0707072623632994e-15},
{2237275200846753,1.0776584002668106e-15},{2237000300869952,1.0847879564403425e-15},
{2236706931309099,1.0921079038149563e-15},{2236393229029147,1.0996314701785628e-15},
{2236057063479501,1.1073733224935752e-15},{2235695986373246,1.1153497865853155e-15},
{2235307169458859,1.1235791107110833e-15},{2234887326941578,1.1320817840164846e-15},
{2234432617919447,1.140880924258278e-15},{2233938522519765,1.1500027537839792e-15},
{2233399683022677,1.159477189144919e-15},{2232809697779198,1.169338578691096e-15},
{2232160850599817,1.17962663529558e-15},{2231443750584641,1.190387629928289e-15},
{2230646845562170,1.2016759392543819e-15},{2229755753817986,1.2135560818666897e-15},
{2228752329126533,1.2261054417450561e-15},{2227613325162504,1.2394179789163251e-15},
{2226308442121174,1.2536093926602567e-15},{2224797391720399,1.268824481425501e-15},
{2223025347823832,1.2852479319096109e-15},{2220915633329809,1.3031206634689985e-15},
{2218357446087030,1.3227655770195326e-15},{2215184158448668,1.3446300925011171e-15},
{2211132412537369,1.3693606835128518e-15},{2205758503851065,1.397943667277524e-15},
{2198248265654987,1.4319989869661328e-15},{2186916352102141,1.4744848603597596e-15},
{2167562552481814,1.5317872741611144e-15},{2125549880839716,1.6227698675312968e-15}}).
normal_fi(Indx) ->
element(Indx,
{1.0000000000000000e+00,9.7710170126767082e-01,9.5987909180010600e-01,
9.4519895344229909e-01,9.3206007595922991e-01,9.1999150503934646e-01,
9.0872644005213032e-01,8.9809592189834297e-01,8.8798466075583282e-01,
8.7830965580891684e-01,8.6900868803685649e-01,8.6003362119633109e-01,
8.5134625845867751e-01,8.4291565311220373e-01,8.3471629298688299e-01,
8.2672683394622093e-01,8.1892919160370192e-01,8.1130787431265572e-01,
8.0384948317096383e-01,7.9654233042295841e-01,7.8937614356602404e-01,
7.8234183265480195e-01,7.7543130498118662e-01,7.6863731579848571e-01,
7.6195334683679483e-01,7.5537350650709567e-01,7.4889244721915638e-01,
7.4250529634015061e-01,7.3620759812686210e-01,7.2999526456147568e-01,
7.2386453346862967e-01,7.1781193263072152e-01,7.1183424887824798e-01,
7.0592850133275376e-01,7.0009191813651117e-01,6.9432191612611627e-01,
6.8861608300467136e-01,6.8297216164499430e-01,6.7738803621877308e-01,
6.7186171989708166e-01,6.6639134390874977e-01,6.6097514777666277e-01,
6.5561147057969693e-01,6.5029874311081637e-01,6.4503548082082196e-01,
6.3982027745305614e-01,6.3465179928762327e-01,6.2952877992483625e-01,
6.2445001554702606e-01,6.1941436060583399e-01,6.1442072388891344e-01,
6.0946806492577310e-01,6.0455539069746733e-01,5.9968175261912482e-01,
5.9484624376798689e-01,5.9004799633282545e-01,5.8528617926337090e-01,
5.8055999610079034e-01,5.7586868297235316e-01,5.7121150673525267e-01,
5.6658776325616389e-01,5.6199677581452390e-01,5.5743789361876550e-01,
5.5291049042583185e-01,5.4841396325526537e-01,5.4394773119002582e-01,
5.3951123425695158e-01,5.3510393238045717e-01,5.3072530440366150e-01,
5.2637484717168403e-01,5.2205207467232140e-01,5.1775651722975591e-01,
5.1348772074732651e-01,5.0924524599574761e-01,5.0502866794346790e-01,
5.0083757512614835e-01,4.9667156905248933e-01,4.9253026364386815e-01,
4.8841328470545758e-01,4.8432026942668288e-01,4.8025086590904642e-01,
4.7620473271950547e-01,4.7218153846772976e-01,4.6818096140569321e-01,
4.6420268904817391e-01,4.6024641781284248e-01,4.5631185267871610e-01,
4.5239870686184824e-01,4.4850670150720273e-01,4.4463556539573912e-01,
4.4078503466580377e-01,4.3695485254798533e-01,4.3314476911265209e-01,
4.2935454102944126e-01,4.2558393133802180e-01,4.2183270922949573e-01,
4.1810064983784795e-01,4.1438753404089090e-01,4.1069314827018799e-01,
4.0701728432947315e-01,4.0335973922111429e-01,3.9972031498019700e-01,
3.9609881851583223e-01,3.9249506145931540e-01,3.8890886001878855e-01,
3.8534003484007706e-01,3.8178841087339344e-01,3.7825381724561896e-01,
3.7473608713789086e-01,3.7123505766823922e-01,3.6775056977903225e-01,
3.6428246812900372e-01,3.6083060098964775e-01,3.5739482014578022e-01,
3.5397498080007656e-01,3.5057094148140588e-01,3.4718256395679348e-01,
3.4380971314685055e-01,3.4045225704452164e-01,3.3711006663700588e-01,
3.3378301583071823e-01,3.3047098137916342e-01,3.2717384281360129e-01,
3.2389148237639104e-01,3.2062378495690530e-01,3.1737063802991350e-01,
3.1413193159633707e-01,3.1090755812628634e-01,3.0769741250429189e-01,
3.0450139197664983e-01,3.0131939610080288e-01,2.9815132669668531e-01,
2.9499708779996164e-01,2.9185658561709499e-01,2.8872972848218270e-01,
2.8561642681550159e-01,2.8251659308370741e-01,2.7943014176163772e-01,
2.7635698929566810e-01,2.7329705406857691e-01,2.7025025636587519e-01,
2.6721651834356114e-01,2.6419576399726080e-01,2.6118791913272082e-01,
2.5819291133761890e-01,2.5521066995466168e-01,2.5224112605594190e-01,
2.4928421241852824e-01,2.4633986350126363e-01,2.4340801542275012e-01,
2.4048860594050039e-01,2.3758157443123795e-01,2.3468686187232990e-01,
2.3180441082433859e-01,2.2893416541468023e-01,2.2607607132238020e-01,
2.2323007576391746e-01,2.2039612748015194e-01,2.1757417672433113e-01,
2.1476417525117358e-01,2.1196607630703015e-01,2.0917983462112499e-01,
2.0640540639788071e-01,2.0364274931033485e-01,2.0089182249465656e-01,
1.9815258654577511e-01,1.9542500351413428e-01,1.9270903690358912e-01,
1.9000465167046496e-01,1.8731181422380025e-01,1.8463049242679927e-01,
1.8196065559952254e-01,1.7930227452284767e-01,1.7665532144373500e-01,
1.7401977008183875e-01,1.7139559563750595e-01,1.6878277480121151e-01,
1.6618128576448205e-01,1.6359110823236570e-01,1.6101222343751107e-01,
1.5844461415592431e-01,1.5588826472447920e-01,1.5334316106026283e-01,
1.5080929068184568e-01,1.4828664273257453e-01,1.4577520800599403e-01,
1.4327497897351341e-01,1.4078594981444470e-01,1.3830811644855071e-01,
1.3584147657125373e-01,1.3338602969166913e-01,1.3094177717364430e-01,
1.2850872227999952e-01,1.2608687022018586e-01,1.2367622820159654e-01,
1.2127680548479021e-01,1.1888861344290998e-01,1.1651166562561080e-01,
1.1414597782783835e-01,1.1179156816383801e-01,1.0944845714681163e-01,
1.0711666777468364e-01,1.0479622562248690e-01,1.0248715894193508e-01,
1.0018949876880981e-01,9.7903279038862284e-02,9.5628536713008819e-02,
9.3365311912690860e-02,9.1113648066373634e-02,8.8873592068275789e-02,
8.6645194450557961e-02,8.4428509570353374e-02,8.2223595813202863e-02,
8.0030515814663056e-02,7.7849336702096039e-02,7.5680130358927067e-02,
7.3522973713981268e-02,7.1377949058890375e-02,6.9245144397006769e-02,
6.7124653827788497e-02,6.5016577971242842e-02,6.2921024437758113e-02,
6.0838108349539864e-02,5.8767952920933758e-02,5.6710690106202902e-02,
5.4666461324888914e-02,5.2635418276792176e-02,5.0617723860947761e-02,
4.8613553215868521e-02,4.6623094901930368e-02,4.4646552251294443e-02,
4.2684144916474431e-02,4.0736110655940933e-02,3.8802707404526113e-02,
3.6884215688567284e-02,3.4980941461716084e-02,3.3093219458578522e-02,
3.1221417191920245e-02,2.9365939758133314e-02,2.7527235669603082e-02,
2.5705804008548896e-02,2.3902203305795882e-02,2.2117062707308864e-02,
2.0351096230044517e-02,1.8605121275724643e-02,1.6880083152543166e-02,
1.5177088307935325e-02,1.3497450601739880e-02,1.1842757857907888e-02,
1.0214971439701471e-02,8.6165827693987316e-03,7.0508754713732268e-03,
5.5224032992509968e-03,4.0379725933630305e-03,2.6090727461021627e-03,
1.2602859304985975e-03}).
%%%bitcount64(0) -> 0;
%%%bitcount64(V) -> 1 + bitcount(V, 64).
%%%
%%%-define(
%%% BITCOUNT(V, N),
%%% bitcount(V, N) ->
%%% if
%%% (1 bsl ((N) bsr 1)) =< (V) ->
%%% ((N) bsr 1) + bitcount((V) bsr ((N) bsr 1), ((N) bsr 1));
%%% true ->
%%% bitcount((V), ((N) bsr 1))
%%% end).
%%%?BITCOUNT(V, 64);
%%%?BITCOUNT(V, 32);
%%%?BITCOUNT(V, 16);
%%%?BITCOUNT(V, 8);
%%%?BITCOUNT(V, 4);
%%%?BITCOUNT(V, 2);
%%%bitcount(_, 1) -> 0.
bc64(V) -> ?BC(V, 64).
%% Linear from high bit - higher probability first gives faster execution
bc(V, B, N) when B =< V -> N;
bc(V, B, N) -> bc(V, B bsr 1, N - 1).
make_float(S, E, M) ->
<<F/float>> = <<S:1, E:11, M:52>>,
F.
float2str(N) ->
<<S:1, E:11, M:52>> = <<(float(N))/float>>,
lists:flatten(
io_lib:format(
"~c~c.~13.16.0bE~b",
[case S of 1 -> $-; 0 -> $+ end,
case E of 0 -> $0; _ -> $1 end,
M, E - 16#3ff])).
|