1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% This module tests the ordsets, sets, and gb_sets modules.
%%
-module(sets_SUITE).
-export([all/0,groups/0,init_per_group/2,end_per_group/2,init_per_testcase/2,end_per_testcase/2,
create/1,add_element/1,del_element/1,
subtract/1,intersection/1,union/1,is_subset/1,
is_set/1,fold/1,filter/1,
take_smallest/1,take_largest/1]).
-include_lib("test_server/include/test_server.hrl").
-import(lists, [foldl/3,reverse/1]).
init_per_testcase(_Case, Config) ->
?line Dog = ?t:timetrap(?t:minutes(5)),
[{watchdog,Dog}|Config].
end_per_testcase(_Case, Config) ->
Dog = ?config(watchdog, Config),
test_server:timetrap_cancel(Dog),
ok.
all() ->
[create, add_element, del_element, subtract,
intersection, union, is_subset, is_set, fold, filter,
take_smallest, take_largest].
groups() ->
[].
init_per_group(_GroupName, Config) ->
Config.
end_per_group(_GroupName, Config) ->
Config.
create(Config) when is_list(Config) ->
test_all(fun create_1/1).
create_1(M) ->
?line S0 = M:empty(),
?line [] = M:to_list(S0),
?line 0 = M:size(S0),
?line true = M:is_empty(S0),
E = make_ref(),
?line One = M:singleton(E),
?line 1 = M:size(One),
?line false = M:is_empty(One),
[E] = M:to_list(One),
S0.
add_element(Config) when is_list(Config) ->
test_all([{0,132},{253,258},{510,514}], fun add_element_1/2).
add_element_1(List, M) ->
?line S = M:from_list(List),
?line SortedSet = lists:usort(List),
?line SortedSet = lists:sort(M:to_list(S)),
%% Make sure that we get the same result by inserting
%% elements one at the time.
?line S2 = foldl(fun(El, Set) -> M:add_element(El, Set) end,
M:empty(), List),
?line true = M:equal(S, S2),
%% Insert elements, randomly delete inserted elements,
%% and re-inserted all deleted elements at the end.
?line S3 = add_element_del(List, M, M:empty(), [], []),
?line true = M:equal(S2, S3),
?line true = M:equal(S, S3),
S.
add_element_del([H|T], M, S, Del, []) ->
add_element_del(T, M, M:add_element(H, S), Del, [H]);
add_element_del([H|T], M, S0, Del, Inserted) ->
S1 = M:add_element(H, S0),
case random:uniform(3) of
1 ->
OldEl = lists:nth(random:uniform(length(Inserted)), Inserted),
S = M:del_element(OldEl, S1),
add_element_del(T, M, S, [OldEl|Del], [H|Inserted]);
_ ->
add_element_del(T, M, S1, Del, [H|Inserted])
end;
add_element_del([], M, S, Del, _) ->
M:union(S, M:from_list(Del)).
del_element(Config) when is_list(Config) ->
test_all([{0,132},{253,258},{510,514},{1022,1026}], fun del_element_1/2).
del_element_1(List, M) ->
?line S0 = M:from_list(List),
?line Empty = foldl(fun(El, Set) -> M:del_element(El, Set) end, S0, List),
?line Empty = M:empty(),
?line M:is_empty(Empty),
?line S1 = foldl(fun(El, Set) ->
M:add_element(El, Set)
end, S0, reverse(List)),
?line true = M:equal(S0, S1),
S1.
subtract(Config) when is_list(Config) ->
test_all(fun subtract_empty/1),
%% Note: No empty set.
test_all([{2,69},{126,130},{253,258},511,512,{1023,1030}], fun subtract_1/2).
subtract_empty(M) ->
?line Empty = M:empty(),
?line true = M:is_empty(M:subtract(Empty, Empty)),
M:subtract(Empty, Empty).
subtract_1(List, M) ->
?line S0 = M:from_list(List),
?line Empty = M:empty(),
%% Trivial cases.
?line true = M:is_empty(M:subtract(Empty, S0)),
?line true = M:equal(S0, M:subtract(S0, Empty)),
%% Not so trivial.
?line subtract_check(List, mutate_some(remove_some(List, 0.4)), M),
?line subtract_check(List, rnd_list(length(List) div 2 + 5), M),
?line subtract_check(List, rnd_list(length(List) div 7 + 9), M),
?line subtract_check(List, mutate_some(List), M).
subtract_check(A, B, M) ->
one_subtract_check(B, A, M),
one_subtract_check(A, B, M).
one_subtract_check(A, B, M) ->
ASorted = lists:usort(A),
BSorted = lists:usort(B),
ASet = M:from_list(A),
BSet = M:from_list(B),
DiffSet = M:subtract(ASet, BSet),
Diff = ASorted -- BSorted,
true = M:equal(DiffSet, M:from_list(Diff)),
Diff = lists:sort(M:to_list(DiffSet)),
DiffSet.
intersection(Config) when is_list(Config) ->
%% Note: No empty set.
test_all([{1,65},{126,130},{253,259},{499,513},{1023,1025}], fun intersection_1/2).
intersection_1(List, M) ->
?line S0 = M:from_list(List),
%% Intersection with self.
?line true = M:equal(S0, M:intersection(S0, S0)),
?line true = M:equal(S0, M:intersection([S0,S0])),
?line true = M:equal(S0, M:intersection([S0,S0,S0])),
?line true = M:equal(S0, M:intersection([S0])),
%% Intersection with empty.
?line Empty = M:empty(),
?line true = M:equal(Empty, M:intersection(S0, Empty)),
?line true = M:equal(Empty, M:intersection([S0,Empty,S0,Empty])),
%% The intersection of no sets is undefined.
?line {'EXIT',_} = (catch M:intersection([])),
%% Disjoint sets.
?line Disjoint = [{El} || El <- List],
?line DisjointSet = M:from_list(Disjoint),
?line M:is_empty(M:intersection(S0, DisjointSet)),
%% Disjoint, different sizes.
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.3)))),
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.7)))),
?line M:is_empty(M:intersection(S0, M:from_list(remove_some(Disjoint, 0.9)))),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.3)), DisjointSet)),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.5)), DisjointSet)),
?line M:is_empty(M:intersection(M:from_list(remove_some(List, 0.9)), DisjointSet)),
%% Partial overlap (one or more elements in result set).
%% The sets have almost the same size. (Almost because a duplicated
%% element in the original list could be mutated and not mutated
%% at the same time.)
?line PartialOverlap = mutate_some(List, []),
?line IntersectionSet = check_intersection(List, PartialOverlap, M),
?line false = M:is_empty(IntersectionSet),
%% Partial overlap, different set sizes. (Intersection possibly empty.)
?line check_intersection(List, remove_some(PartialOverlap, 0.1), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.3), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.5), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.7), M),
?line check_intersection(List, remove_some(PartialOverlap, 0.9), M),
IntersectionSet.
check_intersection(Orig, Mutated, M) ->
OrigSet = M:from_list(Orig),
MutatedSet = M:from_list(Mutated),
Intersection = [El || El <- Mutated, not is_tuple(El)],
SortedIntersection = lists:usort(Intersection),
IntersectionSet = M:intersection(OrigSet, MutatedSet),
true = M:equal(IntersectionSet, M:from_list(SortedIntersection)),
SortedIntersection = lists:sort(M:to_list(IntersectionSet)),
IntersectionSet.
union(Config) when is_list(Config) ->
%% Note: No empty set.
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}], fun union_1/2).
union_1(List, M) ->
?line S = M:from_list(List),
%% Union with self and empty.
?line Empty = M:empty(),
?line true = M:equal(S, M:union(S, S)),
?line true = M:equal(S, M:union([S,S])),
?line true = M:equal(S, M:union([S,S,Empty])),
?line true = M:equal(S, M:union([S,Empty,S])),
?line true = M:equal(S, M:union(S, Empty)),
?line true = M:equal(S, M:union([S])),
?line true = M:is_empty(M:union([])),
%% Partial overlap.
?line check_union(List, remove_some(mutate_some(List), 0.9), M),
?line check_union(List, remove_some(mutate_some(List), 0.7), M),
?line check_union(List, remove_some(mutate_some(List), 0.5), M),
?line check_union(List, remove_some(mutate_some(List), 0.3), M),
?line check_union(List, remove_some(mutate_some(List), 0.1), M),
?line check_union(List, mutate_some(remove_some(List, 0.9)), M),
?line check_union(List, mutate_some(remove_some(List, 0.7)), M),
?line check_union(List, mutate_some(remove_some(List, 0.5)), M),
?line check_union(List, mutate_some(remove_some(List, 0.3)), M),
?line check_union(List, mutate_some(remove_some(List, 0.1)), M).
check_union(Orig, Other, M) ->
OrigSet = M:from_list(Orig),
OtherSet = M:from_list(Other),
Union = Orig++Other,
SortedUnion = lists:usort(Union),
UnionSet = M:union(OrigSet, OtherSet),
SortedUnion = lists:sort(M:to_list(UnionSet)),
M:equal(UnionSet, M:from_list(Union)),
UnionSet.
is_subset(Config) when is_list(Config) ->
test_all([{1,132},{253,270},{299,311}], fun is_subset_1/2).
is_subset_1(List, M) ->
?line S = M:from_list(List),
?line Empty = M:empty(),
%% Subset of empty and self.
?line true = M:is_subset(Empty, Empty),
?line true = M:is_subset(Empty, S),
?line false = M:is_subset(S, Empty),
?line true = M:is_subset(S, S),
%% Other cases.
Res = [?line false = M:is_subset(M:singleton(make_ref()), S),
?line true = M:is_subset(M:singleton(hd(List)), S),
?line true = check_subset(remove_some(List, 0.1), List, M),
?line true = check_subset(remove_some(List, 0.5), List, M),
?line true = check_subset(remove_some(List, 0.9), List, M),
?line check_subset(mutate_some(List), List, M),
?line check_subset(rnd_list(length(List) div 2 + 5), List, M),
?line subtract_check(List, rnd_list(length(List) div 7 + 9), M)
],
res_to_set(Res, M, 0, []).
check_subset(X, Y, M) ->
check_one_subset(Y, X, M),
check_one_subset(X, Y, M).
check_one_subset(X, Y, M) ->
XSet = M:from_list(X),
YSet = M:from_list(Y),
SortedX = lists:usort(X),
SortedY = lists:usort(Y),
IsSubSet = length(SortedY--SortedX) =:= length(SortedY) - length(SortedX),
IsSubSet = M:is_subset(XSet, YSet),
IsSubSet.
%% Encode all test results as a set to return.
res_to_set([true|T], M, I, Acc) ->
res_to_set(T, M, I+1, [I|Acc]);
res_to_set([_|T], M, I, Acc) ->
res_to_set(T, M, I+1, Acc);
res_to_set([], M, _, Acc) -> M:from_list(Acc).
is_set(Config) when is_list(Config) ->
%% is_set/1 is tested in the other test cases when its argument
%% is a set. Here test some arguments that makes it return false.
?line false = gb_sets:is_set([a,b]),
?line false = gb_sets:is_set({a,very,bad,tuple}),
?line false = sets:is_set([a,b]),
?line false = sets:is_set({a,very,bad,tuple}),
?line false = ordsets:is_set([b,a]),
?line false = ordsets:is_set({bad,tuple}),
%% Now test values that are known to be bad for all set representations.
test_all(fun is_set_1/1).
is_set_1(M) ->
?line false = M:is_set(self()),
?line false = M:is_set(blurf),
?line false = M:is_set(make_ref()),
?line false = M:is_set(<<1,2,3>>),
?line false = M:is_set(42),
?line false = M:is_set(math:pi()),
?line false = M:is_set({}),
M:empty().
fold(Config) when is_list(Config) ->
test_all([{0,71},{125,129},{254,259},{510,513},{1023,1025},{9999,10001}],
fun fold_1/2).
fold_1(List, M) ->
?line S = M:from_list(List),
?line L = M:fold(fun(E, A) -> [E|A] end, [], S),
?line true = lists:sort(L) =:= lists:usort(List),
M:empty().
filter(Config) when is_list(Config) ->
test_all([{0,69},{126,130},{254,259},{510,513},{1023,1025},{7999,8000}],
fun filter_1/2).
filter_1(List, M) ->
?line S = M:from_list(List),
IsNumber = fun(X) -> is_number(X) end,
?line M:equal(M:from_list(lists:filter(IsNumber, List)),
M:filter(IsNumber, S)),
?line M:filter(fun(X) -> is_atom(X) end, S).
%%%
%%% Test specifics for gb_sets.
%%%
take_smallest(Config) when is_list(Config) ->
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}],
fun take_smallest_1/2).
take_smallest_1(List, M) ->
case M:module() of
gb_sets -> take_smallest_2(List, M);
_ -> ok
end,
M:empty().
take_smallest_2(List0, M) ->
?line List = lists:usort(List0),
?line S = M:from_list(List0),
take_smallest_3(S, List, M).
take_smallest_3(S0, List0, M) ->
case M:is_empty(S0) of
true -> ok;
false ->
?line Smallest = hd(List0),
?line Smallest = gb_sets:smallest(S0),
?line {Smallest,S} = gb_sets:take_smallest(S0),
?line List = tl(List0),
?line true = gb_sets:to_list(S) =:= List,
take_smallest_3(S, List, M)
end.
take_largest(Config) when is_list(Config) ->
test_all([{1,71},{125,129},{254,259},{510,513},{1023,1025}],
fun take_largest_1/2).
take_largest_1(List, M) ->
case M:module() of
gb_sets -> take_largest_2(List, M);
_ -> ok
end,
M:empty().
take_largest_2(List0, M) ->
?line List = reverse(lists:usort(List0)),
?line S = M:from_list(List0),
take_largest_3(S, List, M).
take_largest_3(S0, List0, M) ->
case M:is_empty(S0) of
true -> ok;
false ->
?line Largest = hd(List0),
?line Largest = gb_sets:largest(S0),
?line {Largest,S} = gb_sets:take_largest(S0),
?line List = tl(List0),
?line true = gb_sets:to_list(S) =:= reverse(List),
take_largest_3(S, List, M)
end.
%%%
%%% Helper functions.
%%%
sets_mods() ->
Ordsets = sets_test_lib:new(ordsets, fun(X, Y) -> X == Y end),
Sets = sets_test_lib:new(sets, fun(X, Y) ->
lists:sort(sets:to_list(X)) ==
lists:sort(sets:to_list(Y)) end),
Gb = sets_test_lib:new(gb_sets, fun(X, Y) ->
gb_sets:to_list(X) ==
gb_sets:to_list(Y) end),
[Ordsets,Sets,Gb].
test_all(Tester) ->
?line Res = [begin
random:seed(1, 2, 42),
S = Tester(M),
{M:size(S),lists:sort(M:to_list(S))}
end || M <- sets_mods()],
?line all_same(Res).
test_all([{Low,High}|T], Tester) ->
test_all(lists:seq(Low, High)++T, Tester);
test_all([Sz|T], Tester) when is_integer(Sz) ->
List = rnd_list(Sz),
?line Res = [begin
random:seed(19, 2, Sz),
S = Tester(List, M),
{M:size(S),lists:sort(M:to_list(S))}
end || M <- sets_mods()],
?line all_same(Res),
test_all(T, Tester);
test_all([], _) -> ok.
all_same([H|T]) ->
all_same_1(T, H).
all_same_1([H|T], H) ->
all_same_1(T, H);
all_same_1([], _) -> ok.
rnd_list(Sz) ->
rnd_list_1(Sz, []).
atomic_rnd_term() ->
case random:uniform(3) of
1 -> list_to_atom(integer_to_list($\s+random:uniform(94))++"rnd");
2 -> random:uniform();
3 -> random:uniform(50)-37
end.
rnd_list_1(0, Acc) -> Acc;
rnd_list_1(N, Acc) -> rnd_list_1(N-1, [atomic_rnd_term()|Acc]).
mutate_some(List) ->
mutate_some(List, []).
mutate_some([X,Y,Z|T], Acc) ->
%% Intentionally change order. (Order should not matter.)
mutate_some(T, [{X},Z,Y|Acc]);
mutate_some([H|T], Acc) ->
mutate_some(T, [H|Acc]);
mutate_some([], Acc) ->
%% Intentionally not reversing.
Acc.
%% Removes at least one element.
remove_some(List0, P) ->
case remove_some(List0, P, []) of
List when length(List0) =:= length(List) ->
tl(List);
List ->
List
end.
remove_some([H|T], P, Acc) ->
case random:uniform() of
F when F < P -> %Remove.
remove_some(T, P, Acc);
_ ->
remove_some(T, P, [H|Acc])
end;
remove_some([], _, Acc) ->
%% Intentionally no reverse. Order should not matter.
Acc.
|