1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(sets_test_lib, [Mod,Equal]).
-export([module/0,equal/2,empty/0,from_list/1,to_list/1,singleton/1,
add_element/2,del_element/2,size/1,is_empty/1,is_set/1,
intersection/1,intersection/2,subtract/2,
union/1,union/2,is_subset/2,fold/3,filter/2]).
module() ->
Mod.
equal(X, Y) ->
Equal(X, Y).
empty() ->
Mod:new().
from_list(L) ->
Mod:from_list(L).
to_list(S) ->
Mod:to_list(S).
singleton(E) ->
case erlang:function_exported(Mod, singleton, 1) of
true -> Mod:singleton(E);
false -> from_list([E])
end.
add_element(El, S0) ->
S = Mod:add_element(El, S0),
true = Mod:is_element(El, S),
false = is_empty(S),
true = Mod:is_set(S),
S.
del_element(El, S0) ->
S = Mod:del_element(El, S0),
false = Mod:is_element(El, S),
true = Mod:is_set(S),
S.
size(S) ->
Mod:size(S).
is_empty(S) ->
true = Mod:is_set(S),
case erlang:function_exported(Mod, is_empty, 1) of
true -> Mod:is_empty(S);
false -> Mod:size(S) == 0
end.
is_set(S) ->
Mod:is_set(S).
intersection(S1, S2) ->
S = Mod:intersection(S1, S2),
true = Equal(S, Mod:intersection(S2, S1)),
Disjoint = is_empty(S),
Disjoint = Mod:is_disjoint(S1, S2),
Disjoint = Mod:is_disjoint(S2, S1),
S.
intersection(Ss) ->
S = Mod:intersection(Ss),
true = Equal(S, Mod:intersection(lists:reverse(Ss))),
S.
subtract(S1, S2) ->
S = Mod:subtract(S1, S2),
true = Mod:is_set(S),
true = Mod:size(S) =< Mod:size(S1),
S.
union(S1, S2) ->
S = Mod:union(S1, S2),
true = Equal(S, Mod:union(S2, S1)),
true = Mod:is_set(S),
S.
union(Ss) ->
S = Mod:union(Ss),
true = Equal(S, Mod:union(lists:reverse(Ss))),
S.
is_subset(S, Set) ->
case Mod:is_subset(S, Set) of
false -> false;
true ->
case Mod:is_subset(Set, S) of
false -> ok;
true ->
%% The sets are subsets of each other.
%% They must be equal.
true = Equal(S, Set)
end,
true
end.
fold(F, A, S) ->
true = Mod:is_set(S),
Mod:fold(F, A, S).
filter(F, S) ->
true = Mod:is_set(S),
Mod:filter(F, S).
|