1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
|
%% ---------------------------------------------------------------------
%% Licensed under the Apache License, Version 2.0 (the "License"); you may
%% not use this file except in compliance with the License. You may obtain
%% a copy of the License at <http://www.apache.org/licenses/LICENSE-2.0>
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% Note: EDoc uses @@ and @} as escape sequences, so in the doc text below,
%% `@@' must be written `@@@@' and `@}' must be written `@@}'.
%%
%% @author Richard Carlsson <carlsson.richard@gmail.com>
%% @copyright 2010-2015 Richard Carlsson
%%
%% @doc Metaprogramming in Erlang.
%% Merl is a more user friendly interface to the `erl_syntax' module, making
%% it easy both to build new ASTs from scratch and to
%% match and decompose existing ASTs. For details that are outside the scope
%% of Merl itself, please see the documentation of {@link erl_syntax}.
%%
%% == Quick start ==
%%
%% To enable the full power of Merl, your module needs to include the Merl
%% header file:
%% ```-include_lib("syntax_tools/include/merl.hrl").'''
%%
%% Then, you can use the `?Q(Text)' macros in your code to create ASTs or match
%% on existing ASTs. For example:
%% ```Tuple = ?Q("{foo, 42}"),
%% ?Q("{foo, _@Number}") = Tuple,
%% Call = ?Q("foo:bar(_@Number)")'''
%%
%% Calling `merl:print(Call)' will then print the following code:
%% ```foo:bar(42)'''
%%
%% The `?Q' macros turn the quoted code fragments into ASTs, and lifts
%% metavariables such as `_@Tuple' and `_@Number' to the level of your Erlang
%% code, so you can use the corresponding Erlang variables `Tuple' and `Number'
%% directly. This is the most straightforward way to use Merl, and in many
%% cases it's all you need.
%%
%% You can even write case switches using `?Q' macros as patterns. For example:
%% ```case AST of
%% ?Q("{foo, _@Foo}") -> handle(Foo);
%% ?Q("{bar, _@Bar}") when erl_syntax:is_integer(Bar) -> handle(Bar);
%% _ -> handle_default()
%% end'''
%%
%% These case switches only allow `?Q(...)' or `_' as clause patterns, and the
%% guards may contain any expressions, not just Erlang guard expressions.
%%
%% If the macro `MERL_NO_TRANSFORM' is defined before the `merl.hrl' header
%% file is included, the parse transform used by Merl will be disabled, and in
%% that case, the match expressions `?Q(...) = ...', case switches using
%% `?Q(...)' patterns, and automatic metavariables like `_@Tuple' cannot be
%% used in your code, but the Merl macros and functions still work. To do
%% metavariable substitution, you need to use the `?Q(Text, Map)' macro, e.g.:
%% ```Tuple = ?Q("{foo, _@bar, _@baz}", [{bar, Bar}, {baz,Baz}])'''
%%
%% The text given to a `?Q(Text)' macro can be either a single string, or a
%% list of strings. The latter is useful when you need to split a long
%% expression over multiple lines, e.g.:
%% ```?Q(["case _@Expr of",
%% " {foo, X} -> f(X);",
%% " {bar, X} -> g(X)",
%% " _ -> h(X)"
%% "end"])'''
%% If there is a syntax error somewhere in the text (like the missing semicolon
%% in the second clause above) this allows Merl to generate an error message
%% pointing to the exact line in your source code. (Just remember to
%% comma-separate the strings in the list, otherwise Erlang will concatenate
%% the string fragments as if they were a single string.)
%%
%% == Metavariable syntax ==
%%
%% There are several ways to write a metavariable in your quoted code:
%% <ul>
%% <li>Atoms starting with `@', for example `` '@foo' '' or `` '@Foo' ''</li>
%% <li>Variables starting with `_@', for example `_@bar' or `_@Bar'</li>
%% <li>Strings starting with ``"'@'', for example ``"'@File"''</li>
%% <li>Integers starting with 909, for example `9091' or `909123'</li>
%% </ul>
%% Following the prefix, one or more `_' or `0' characters may be used to
%% indicate "lifting" of the variable one or more levels, and after that, a `@'
%% or `9' character indicates a glob metavariable (matching zero or more
%% elements in a sequence) rather than a normal metavariable. For example:
%% <ul>
%% <li>`` '@_foo' '' is lifted one level, and `_@__foo' is lifted two
%% levels</li>
%% <li>`_@@@@bar' is a glob variable, and `_@_@bar' is a lifted glob
%% variable</li>
%% <li>`90901' is a lifted variable,`90991' is a glob variable, and `9090091'
%% is a glob variable lifted two levels</li>
%% </ul>
%% (Note that the last character in the name is never considered to be a lift
%% or glob marker, hence, `_@__' and `90900' are only lifted one level, not
%% two. Also note that globs only matter for matching; when doing
%% substitutions, a non-glob variable can be used to inject a sequence of
%% elements, and vice versa.)
%%
%% If the name after the prefix and any lift and glob markers is `_' or `0',
%% the variable is treated as an anonymous catch-all pattern in matches. For
%% example, `_@_', `_@@@@_', `_@__', or even `_@__@_'.
%%
%% Finally, if the name without any prefixes or lift/glob markers begins with
%% an uppercase character, as in `_@Foo' or `_@_@Foo', it will become a
%% variable on the Erlang level, and can be used to easily deconstruct and
%% construct syntax trees:
%% ```case Input of
%% ?Q("{foo, _@Number}") -> ?Q("foo:bar(_@Number)");
%% ...'''
%% We refer to these as "automatic metavariables". If in addition the name ends
%% with `@', as in `_@Foo@', the value of the variable as an Erlang term will
%% be automatically converted to the corresponding abstract syntax tree when
%% used to construct a larger tree. For example, in:
%% ```Bar = {bar, 42},
%% Foo = ?Q("{foo, _@Bar@@}")'''
%% (where Bar is just some term, not a syntax tree) the result `Foo' will be a
%% syntax tree representing `{foo, {bar, 42}}'. This avoids the need for
%% temporary variables in order to inject data, as in
%% ```TmpBar = erl_syntax:abstract(Bar),
%% Foo = ?Q("{foo, _@TmpBar}")'''
%%
%% If the context requires an integer rather than a variable, an atom, or a
%% string, you cannot use the uppercase convention to mark an automatic
%% metavariable. Instead, if the integer (without the `909'-prefix and
%% lift/glob markers) ends in a `9', the integer will become an Erlang-level
%% variable prefixed with `Q', and if it ends with `99' it will also be
%% automatically abstracted. For example, the following will increment the
%% arity of the exported function f:
%% ```case Form of
%% ?Q("-export([f/90919]).") ->
%% Q2 = erl_syntax:concrete(Q1) + 1,
%% ?Q("-export([f/909299]).");
%% ...'''
%%
%% == When to use the various forms of metavariables ==
%%
%% Merl can only parse a fragment of text if it follows the basic syntactical
%% rules of Erlang. In most places, a normal Erlang variable can be used as
%% metavariable, for example:
%% ```?Q("f(_@Arg)") = Expr'''
%% but if you want to match on something like the name of a function, you have
%% to use an atom as metavariable:
%% ```?Q("'@Name'() -> _@@@@_." = Function'''
%% (note the anonymous glob variable `_@@@@_' to ignore the function body).
%%
%% In some contexts, only a string or an integer is allowed. For example, the
%% directive `-file(Name, Line)' requires that `Name' is a string literal and
%% `Line' an integer literal:
%%
%% ```?Q("-file(\"'@File\", 9090).") = ?Q("-file(\"foo.erl\", 42).")).'''
%% This will extract the string literal `"foo.erl"' into the variable `Foo'.
%% Note the use of the anonymous variable `9090' to ignore the line number. To
%% match and also bind a metavariable that must be an integer literal, we can
%% use the convention of ending the integer with a 9, turning it into a
%% Q-prefixed variable on the Erlang level (see the previous section).
%%
%% === Globs ===
%%
%% Whenever you want to match out a number of elements in a sequence (zero or
%% more) rather than a fixed set of elements, you need to use a glob. For
%% example:
%% ```?Q("{_@@@@Elements}") = ?Q({a, b, c})'''
%% will bind Elements to the list of individual syntax trees representing the
%% atoms `a', `b', and `c'. This can also be used with static prefix and suffix
%% elements in the sequence. For example:
%% ```?Q("{a, b, _@@@@Elements}") = ?Q({a, b, c, d})'''
%% will bind Elements to the list of the `c' and `d' subtrees, and
%% ```?Q("{_@@@@Elements, c, d}") = ?Q({a, b, c, d})'''
%% will bind Elements to the list of the `a' and `b' subtrees. You can even use
%% plain metavariables in the prefix or suffix:
%% ```?Q("{_@First, _@@@@Rest}") = ?Q({a, b, c})'''
%% or
%% ```?Q("{_@@@@_, _@Last}") = ?Q({a, b, c})'''
%% (ignoring all but the last element). You cannot however have two globs as
%% part of the same sequence.
%%
%% === Lifted metavariables ===
%%
%% In some cases, the Erlang syntax rules make it impossible to place a
%% metavariable directly where you would like it. For example, you cannot
%% write:
%% ```?Q("-export([_@@@@Name]).")'''
%% to match out all name/arity pairs in the export list, or to insert a list of
%% exports in a declaration, because the Erlang parser only allows elements on
%% the form `A/I' (where `A' is an atom and `I' an integer) in the export list.
%% A variable like the above is not allowed, but neither is a single atom or
%% integer, so `` '@@@@Name' '' or `909919' wouldn't work either.
%%
%% What you have to do in such cases is to write your metavariable in a
%% syntactically valid position, and use lifting markers to denote where it
%% should really apply, as in:
%% ```?Q("-export(['@@_@@Name'/0]).")'''
%% This causes the variable to be lifted (after parsing) to the next higher
%% level in the syntax tree, replacing that entire subtree. In this case, the
%% `` '@@_@@Name'/0 '' will be replaced with `` '@@@@Name' '', and the ``/0''
%% part was just used as dummy notation and will be discarded.
%%
%% You may even need to apply lifting more than once. To match the entire
%% export list as a single syntax tree, you can write:
%% ```?Q("-export(['@@__Name'/0]).")'''
%% using two underscores, but with no glob marker this time. This will make the
%% entire ``['@@__Name'/0]'' part be replaced with `` '@@Name' ''.
%%
%% Sometimes, the tree structure of a code fragment isn't very obvious, and
%% parts of the structure may be invisible when printed as source code. For
%% instance, a simple function definition like the following:
%% ```zero() -> 0.'''
%% consists of the name (the atom `zero'), and a list of clauses containing the
%% single clause `() -> 0'. The clause consists of an argument list (empty), a
%% guard (empty), and a body (which is always a list of expressions) containing
%% the single expression `0'. This means that to match out the name and the
%% list of clauses of any function, you'll need to use a pattern like
%% ``?Q("'@Name'() -> _@_@Body.")'', using a dummy clause whose body is a glob
%% lifted one level.
%%
%% To visualize the structure of a syntax tree, you can use the function
%% `merl:show(T)', which prints a summary. For example, entering
%% ```merl:show(merl:quote("inc(X, Y) when Y > 0 -> X + Y."))'''
%% in the Erlang shell will print the following (where the `+' signs separate
%% groups of subtrees on the same level):
%% ```function: inc(X, Y) when ... -> X + Y.
%% atom: inc
%% +
%% clause: (X, Y) when ... -> X + Y
%% variable: X
%% variable: Y
%% +
%% disjunction: Y > 0
%% conjunction: Y > 0
%% infix_expr: Y > 0
%% variable: Y
%% +
%% operator: >
%% +
%% integer: 0
%% +
%% infix_expr: X + Y
%% variable: X
%% +
%% operator: +
%% +
%% variable: Y'''
%%
%% This shows another important non-obvious case: a clause guard, even if it's
%% as simple as `Y > 0', always consists of a single disjunction of one or more
%% conjunctions of tests, much like a tuple of tuples. Thus:
%% <ul>
%% <li>``"when _@Guard ->"'' will only match a guard with exactly one
%% test</li>
%% <li>``"when _@@@@Guard ->"'' will match a guard with one or more
%% comma-separated tests (but no semicolons), binding `Guard' to the list
%% of tests</li>
%% <li>``"when _@_Guard ->"'' will match just like the previous pattern, but
%% binds `Guard' to the conjunction subtree</li>
%% <li>``"when _@_@Guard ->"'' will match an arbitrary nonempty guard,
%% binding `Guard' to the list of conjunction subtrees</li>
%% <li>``"when _@__Guard ->"'' will match like the previous pattern, but
%% binds `Guard' to the whole disjunction subtree</li>
%% <li>and finally, ``"when _@__@Guard ->"'' will match any clause,
%% binding `Guard' to `[]' if the guard is empty and to `[Disjunction]'
%% otherwise</li>
%% </ul>
%%
%% Thus, the following pattern matches all possible clauses:
%% ```"(_@@Args) when _@__@Guard -> _@@Body"'''
%% @end
-module(merl).
-export([term/1, var/1, print/1, show/1]).
-export([quote/1, quote/2, qquote/2, qquote/3]).
-export([template/1, tree/1, subst/2, tsubst/2, alpha/2, match/2, switch/2]).
-export([template_vars/1, meta_template/1]).
-export([compile/1, compile/2, compile_and_load/1, compile_and_load/2]).
%% NOTE: this module may not include merl.hrl!
-type tree() :: erl_syntax:syntaxTree().
-type tree_or_trees() :: tree() | [tree()].
-type pattern() :: tree() | template().
-type pattern_or_patterns() :: pattern() | [pattern()].
-type env() :: [{Key::id(), pattern_or_patterns()}].
-type id() :: atom() | integer().
%% A list of strings or binaries is assumed to represent individual lines,
%% while a flat string or binary represents source code containing newlines.
-type text() :: string() | binary() | [string()] | [binary()].
-type location() :: erl_anno:location().
%% ------------------------------------------------------------------------
%% Compiling and loading code directly to memory
%% @equiv compile(Code, [])
compile(Code) ->
compile(Code, []).
%% @doc Compile a syntax tree or list of syntax trees representing a module
%% into a binary BEAM object.
%% @see compile_and_load/2
%% @see compile/1
compile(Code, Options) when not is_list(Code)->
case type(Code) of
form_list -> compile(erl_syntax:form_list_elements(Code));
_ -> compile([Code], Options)
end;
compile(Code, Options0) when is_list(Options0) ->
Forms = [erl_syntax:revert(F) || F <- Code],
Options = [verbose, report_errors, report_warnings, binary | Options0],
compile:noenv_forms(Forms, Options).
%% @equiv compile_and_load(Code, [])
compile_and_load(Code) ->
compile_and_load(Code, []).
%% @doc Compile a syntax tree or list of syntax trees representing a module
%% and load the resulting module into memory.
%% @see compile/2
%% @see compile_and_load/1
compile_and_load(Code, Options) ->
case compile(Code, Options) of
{ok, ModuleName, Binary} ->
_ = code:load_binary(ModuleName, "", Binary),
{ok, Binary};
Other -> Other
end.
%% ------------------------------------------------------------------------
%% Utility functions
-spec var(atom()) -> tree().
%% @doc Create a variable.
var(Name) ->
erl_syntax:variable(Name).
-spec term(term()) -> tree().
%% @doc Create a syntax tree for a constant term.
term(Term) ->
erl_syntax:abstract(Term).
%% @doc Pretty-print a syntax tree or template to the standard output. This
%% is a utility function for development and debugging.
print(Ts) when is_list(Ts) ->
lists:foreach(fun print/1, Ts);
print(T) ->
io:put_chars(erl_prettypr:format(tree(T))),
io:nl().
%% @doc Print the structure of a syntax tree or template to the standard
%% output. This is a utility function for development and debugging.
show(Ts) when is_list(Ts) ->
lists:foreach(fun show/1, Ts);
show(T) ->
io:put_chars(pp(tree(T), 0)),
io:nl().
pp(T, I) ->
[lists:duplicate(I, $\s),
limit(lists:flatten([atom_to_list(type(T)), ": ",
erl_prettypr:format(erl_syntax_lib:limit(T,3))]),
79-I),
$\n,
pp_1(lists:filter(fun (X) -> X =/= [] end, subtrees(T)), I+2)
].
pp_1([G], I) ->
pp_2(G, I);
pp_1([G | Gs], I) ->
[pp_2(G, I), lists:duplicate(I, $\s), "+\n" | pp_1(Gs, I)];
pp_1([], _I) ->
[].
pp_2(G, I) ->
[pp(E, I) || E <- G].
%% limit string to N characters, stay on a single line and compact whitespace
limit([$\n | Cs], N) -> limit([$\s | Cs], N);
limit([$\r | Cs], N) -> limit([$\s | Cs], N);
limit([$\v | Cs], N) -> limit([$\s | Cs], N);
limit([$\t | Cs], N) -> limit([$\s | Cs], N);
limit([$\s, $\s | Cs], N) -> limit([$\s | Cs], N);
limit([C | Cs], N) when C < 32 -> limit(Cs, N);
limit([C | Cs], N) when N > 3 -> [C | limit(Cs, N-1)];
limit([_C1, _C2, _C3, _C4 | _Cs], 3) -> "...";
limit(Cs, 3) -> Cs;
limit([_C1, _C2, _C3 | _], 2) -> "..";
limit(Cs, 2) -> Cs;
limit([_C1, _C2 | _], 1) -> ".";
limit(Cs, 1) -> Cs;
limit(_, _) -> [].
%% ------------------------------------------------------------------------
%% Parsing and instantiating code fragments
-spec qquote(Text::text(), Env::env()) -> tree_or_trees().
%% @doc Parse text and substitute meta-variables.
%%
%% @equiv qquote(1, Text, Env)
qquote(Text, Env) ->
qquote(1, Text, Env).
-spec qquote(StartPos::location(), Text::text(), Env::env()) -> tree_or_trees().
%% @doc Parse text and substitute meta-variables. Takes an initial scanner
%% starting position as first argument.
%%
%% The macro `?Q(Text, Env)' expands to `merl:qquote(?LINE, Text, Env)'.
%%
%% @see quote/2
qquote(StartPos, Text, Env) ->
subst(quote(StartPos, Text), Env).
-spec quote(Text::text()) -> tree_or_trees().
%% @doc Parse text.
%%
%% @equiv quote(1, Text)
quote(Text) ->
quote(1, Text).
-spec quote(StartPos::location(), Text::text()) -> tree_or_trees().
%% @doc Parse text. Takes an initial scanner starting position as first
%% argument.
%%
%% The macro `?Q(Text)' expands to `merl:quote(?LINE, Text, Env)'.
%%
%% @see quote/1
quote({Line, Col}, Text)
when is_integer(Line), is_integer(Col) ->
quote_1(Line, Col, Text);
quote(StartPos, Text) when is_integer(StartPos) ->
quote_1(StartPos, undefined, Text).
quote_1(StartLine, StartCol, Text) ->
%% be backwards compatible as far as R12, ignoring any starting column
StartPos = case erlang:system_info(version) of
"5.6" ++ _ -> StartLine;
"5.7" ++ _ -> StartLine;
"5.8" ++ _ -> StartLine;
_ when StartCol =:= undefined -> StartLine;
_ -> {StartLine, StartCol}
end,
FlatText = flatten_text(Text),
{ok, Ts, _} = erl_scan:string(FlatText, StartPos),
merge_comments(StartLine, erl_comment_scan:string(FlatText), parse_1(Ts)).
parse_1(Ts) ->
%% if dot tokens are present, it is assumed that the text represents
%% complete forms, not dot-terminated expressions or similar
case split_forms(Ts) of
{ok, Fs} -> parse_forms(Fs);
error ->
parse_2(Ts)
end.
split_forms(Ts) ->
split_forms(Ts, [], []).
split_forms([{dot,_}=T|Ts], Fs, As) ->
split_forms(Ts, [lists:reverse(As, [T]) | Fs], []);
split_forms([T|Ts], Fs, As) ->
split_forms(Ts, Fs, [T|As]);
split_forms([], Fs, []) ->
{ok, lists:reverse(Fs)};
split_forms([], [], _) ->
error; % no dot tokens found - not representing form(s)
split_forms([], _, [T|_]) ->
fail("incomplete form after ~p", [T]).
parse_forms([Ts | Tss]) ->
case erl_parse:parse_form(Ts) of
{ok, Form} -> [Form | parse_forms(Tss)];
{error, R} -> parse_error(R)
end;
parse_forms([]) ->
[].
parse_2(Ts) ->
%% one or more comma-separated expressions?
%% (recall that Ts has no dot tokens if we get to this stage)
case erl_parse:parse_exprs(Ts ++ [{dot,0}]) of
{ok, Exprs} -> Exprs;
{error, E} ->
parse_3(Ts ++ [{'end',0}, {dot,0}], [E])
end.
parse_3(Ts, Es) ->
%% try-clause or clauses?
case erl_parse:parse_exprs([{'try',0}, {atom,0,true}, {'catch',0} | Ts]) of
{ok, [{'try',_,_,_,_,_}=X]} ->
%% get the right kind of qualifiers in the clause patterns
erl_syntax:try_expr_handlers(X);
{error, E} ->
parse_4(Ts, [E|Es])
end.
parse_4(Ts, Es) ->
%% fun-clause or clauses? (`(a)' is also a pattern, but `(a,b)' isn't,
%% so fun-clauses must be tried before normal case-clauses
case erl_parse:parse_exprs([{'fun',0} | Ts]) of
{ok, [{'fun',_,{clauses,Cs}}]} -> Cs;
{error, E} ->
parse_5(Ts, [E|Es])
end.
parse_5(Ts, Es) ->
%% case-clause or clauses?
case erl_parse:parse_exprs([{'case',0}, {atom,0,true}, {'of',0} | Ts]) of
{ok, [{'case',_,_,Cs}]} -> Cs;
{error, E} ->
%% select the best error to report
parse_error(lists:last(lists:sort([E|Es])))
end.
-dialyzer({nowarn_function, parse_error/1}). % no local return
parse_error({L, M, R}) when is_atom(M), is_integer(L) ->
fail("~w: ~s", [L, M:format_error(R)]);
parse_error({{L,C}, M, R}) when is_atom(M), is_integer(L), is_integer(C) ->
fail("~w:~w: ~s", [L,C,M:format_error(R)]);
parse_error({_, M, R}) when is_atom(M) ->
fail(M:format_error(R));
parse_error(R) ->
fail("unknown parse error: ~p", [R]).
%% ------------------------------------------------------------------------
%% Templates, substitution and matching
%% Leaves are normal syntax trees, and inner nodes are tuples
%% {template,Type,Attrs,Groups} where Groups are lists of lists of nodes.
%% Metavariables are 1-tuples {VarName}, where VarName is an atom or an
%% integer. {'_'} and {0} work as anonymous variables in matching. Glob
%% metavariables are tuples {'*',VarName}, and {'*','_'} and {'*',0} are
%% anonymous globs.
%% Note that although template() :: tree() | ..., it is implied that these
%% syntax trees are free from metavariables, so pattern() :: tree() |
%% template() is in fact a wider type than template().
-type template() :: tree()
| {id()}
| {'*',id()}
| {template, atom(), term(), [[template()]]}.
-type template_or_templates() :: template() | [template()].
-spec template(pattern_or_patterns()) -> template_or_templates().
%% @doc Turn a syntax tree or list of trees into a template or templates.
%% Templates can be instantiated or matched against, and reverted back to
%% normal syntax trees using {@link tree/1}. If the input is already a
%% template, it is not modified further.
%%
%% @see subst/2
%% @see match/2
%% @see tree/1
template(Trees) when is_list(Trees) ->
[template_0(T) || T <- Trees];
template(Tree) ->
template_0(Tree).
template_0({template, _, _, _}=Template) -> Template;
template_0({'*',_}=Template) -> Template;
template_0({_}=Template) -> Template;
template_0(Tree) ->
case template_1(Tree) of
false -> Tree;
{Name} when is_list(Name) ->
fail("bad metavariable: '~s'", [tl(Name)]); % drop v/n from name
Template -> Template
end.
%% returns either a template or a lifted metavariable {String}, or 'false'
%% if Tree contained no metavariables
template_1(Tree) ->
case subtrees(Tree) of
[] ->
case metavar(Tree) of
{"v_"++Cs}=V when Cs =/= [] -> V; % to be lifted
{"n0"++Cs}=V when Cs =/= [] -> V; % to be lifted
{"v@"++Cs} when Cs =/= [] -> {'*',list_to_atom(Cs)};
{"n9"++Cs} when Cs =/= [] -> {'*',list_to_integer(Cs)};
{"v"++Cs} -> {list_to_atom(Cs)};
{"n"++Cs} -> {list_to_integer(Cs)};
false -> false
end;
Gs ->
case template_2(Gs, [], false) of
Gs1 when is_list(Gs1) ->
{template, type(Tree), erl_syntax:get_attrs(Tree), Gs1};
Other ->
Other
end
end.
template_2([G | Gs], As, Bool) ->
case template_3(G, [], false) of
{"v_"++Cs}=V when Cs =/= [] -> V; % lift further
{"n0"++Cs}=V when Cs =/= [] -> V; % lift further
{"v@"++Cs} when Cs =/= [] -> {'*',list_to_atom(Cs)}; % stop
{"n9"++Cs} when Cs =/= [] -> {'*',list_to_integer(Cs)}; % stop
{"v"++Cs} when is_list(Cs) -> {list_to_atom(Cs)}; % stop
{"n"++Cs} when is_list(Cs) -> {list_to_integer(Cs)}; % stop
false -> template_2(Gs, [G | As], Bool);
G1 -> template_2(Gs, [G1 | As], true)
end;
template_2([], _As, false) -> false;
template_2([], As, true) -> lists:reverse(As).
template_3([T | Ts], As, Bool) ->
case template_1(T) of
{"v_"++Cs} when Cs =/= [] -> {"v"++Cs}; % lift
{"n0"++Cs} when Cs =/= [] -> {"n"++Cs}; % lift
false -> template_3(Ts, [T | As], Bool);
T1 -> template_3(Ts, [T1 | As], true)
end;
template_3([], _As, false) -> false;
template_3([], As, true) -> lists:reverse(As).
%% @doc Turn a template into a syntax tree representing the template.
%% Meta-variables in the template are turned into normal Erlang variables if
%% their names (after the metavariable prefix characters) begin with an
%% uppercase character. E.g., `_@Foo' in the template becomes the variable
%% `Foo' in the meta-template. Furthermore, variables ending with `@' are
%% automatically wrapped in a call to merl:term/1, so e.g. `_@Foo@ in the
%% template becomes `merl:term(Foo)' in the meta-template.
-spec meta_template(template_or_templates()) -> tree_or_trees().
meta_template(Templates) when is_list(Templates) ->
[meta_template_1(T) || T <- Templates];
meta_template(Template) ->
meta_template_1(Template).
meta_template_1({template, Type, Attrs, Groups}) ->
erl_syntax:tuple(
[erl_syntax:atom(template),
erl_syntax:atom(Type),
erl_syntax:abstract(Attrs),
erl_syntax:list([erl_syntax:list([meta_template_1(T) || T <- G])
|| G <- Groups])]);
meta_template_1({Var}=V) ->
meta_template_2(Var, V);
meta_template_1({'*',Var}=V) ->
meta_template_2(Var, V);
meta_template_1(Leaf) ->
erl_syntax:abstract(Leaf).
meta_template_2(Var, V) when is_atom(Var) ->
case atom_to_list(Var) of
[C|_]=Name when C >= $A, C =< $Z ; C >= $À, C =< $Þ, C /= $× ->
case lists:reverse(Name) of
"@"++([_|_]=RevRealName) -> % don't allow empty RealName
RealName = lists:reverse(RevRealName),
erl_syntax:application(erl_syntax:atom(merl),
erl_syntax:atom(term),
[erl_syntax:variable(RealName)]);
_ ->
%% plain automatic metavariable
erl_syntax:variable(Name)
end;
_ ->
erl_syntax:abstract(V)
end;
meta_template_2(Var, V) when is_integer(Var) ->
if Var > 9, (Var rem 10) =:= 9 ->
%% at least 2 digits, ends in 9: make it a Q-variable
if Var > 99, (Var rem 100) =:= 99 ->
%% at least 3 digits, ends in 99: wrap in merl:term/1
Name = "Q" ++ integer_to_list(Var div 100),
erl_syntax:application(erl_syntax:atom(merl),
erl_syntax:atom(term),
[erl_syntax:variable(Name)]);
true ->
%% plain automatic Q-variable
Name = integer_to_list(Var div 10),
erl_syntax:variable("Q" ++ Name)
end;
true ->
erl_syntax:abstract(V)
end.
-spec template_vars(template_or_templates()) -> [id()].
%% @doc Return an ordered list of the metavariables in the template.
template_vars(Template) ->
template_vars(Template, []).
template_vars(Templates, Vars) when is_list(Templates) ->
lists:foldl(fun template_vars_1/2, Vars, Templates);
template_vars(Template, Vars) ->
template_vars_1(Template, Vars).
template_vars_1({template, _, _, Groups}, Vars) ->
lists:foldl(fun (G, V) -> lists:foldl(fun template_vars_1/2, V, G) end,
Vars, Groups);
template_vars_1({Var}, Vars) ->
ordsets:add_element(Var, Vars);
template_vars_1({'*',Var}, Vars) ->
ordsets:add_element(Var, Vars);
template_vars_1(_, Vars) ->
Vars.
-spec tree(template_or_templates()) -> tree_or_trees().
%% @doc Revert a template to a normal syntax tree. Any remaining
%% metavariables are turned into `@'-prefixed atoms or `909'-prefixed
%% integers.
%% @see template/1
tree(Templates) when is_list(Templates) ->
[tree_1(T) || T <- Templates];
tree(Template) ->
tree_1(Template).
tree_1({template, Type, Attrs, Groups}) ->
%% flattening here is needed for templates created via source transforms
Gs = [lists:flatten([tree_1(T) || T <- G]) || G <- Groups],
erl_syntax:set_attrs(make_tree(Type, Gs), Attrs);
tree_1({Var}) when is_atom(Var) ->
erl_syntax:atom(list_to_atom("@"++atom_to_list(Var)));
tree_1({Var}) when is_integer(Var) ->
erl_syntax:integer(list_to_integer("909"++integer_to_list(Var)));
tree_1({'*',Var}) when is_atom(Var) ->
erl_syntax:atom(list_to_atom("@@"++atom_to_list(Var)));
tree_1({'*',Var}) when is_integer(Var) ->
erl_syntax:integer(list_to_integer("9099"++integer_to_list(Var)));
tree_1(Leaf) ->
Leaf. % any syntax tree, not necessarily atomic (due to substitutions)
-spec subst(pattern_or_patterns(), env()) -> tree_or_trees().
%% @doc Substitute metavariables in a pattern or list of patterns, yielding
%% a syntax tree or list of trees as result. Both for normal metavariables
%% and glob metavariables, the substituted value may be a single element or
%% a list of elements. For example, if a list representing `1, 2, 3' is
%% substituted for `var' in either of `[foo, _@var, bar]' or `[foo, _@@var,
%% bar]', the result represents `[foo, 1, 2, 3, bar]'.
subst(Trees, Env) when is_list(Trees) ->
[subst_0(T, Env) || T <- Trees];
subst(Tree, Env) ->
subst_0(Tree, Env).
subst_0(Tree, Env) ->
tree_1(subst_1(template(Tree), Env)).
-spec tsubst(pattern_or_patterns(), env()) -> template_or_templates().
%% @doc Like subst/2, but does not convert the result from a template back
%% to a tree. Useful if you want to do multiple separate substitutions.
%% @see subst/2
%% @see tree/1
tsubst(Trees, Env) when is_list(Trees) ->
[subst_1(template(T), Env) || T <- Trees];
tsubst(Tree, Env) ->
subst_1(template(Tree), Env).
subst_1({template, Type, Attrs, Groups}, Env) ->
Gs1 = [lists:flatten([subst_1(T, Env) || T <- G]) || G <- Groups],
{template, Type, Attrs, Gs1};
subst_1({Var}=V, Env) ->
case lists:keyfind(Var, 1, Env) of
{Var, TreeOrTrees} -> TreeOrTrees;
false -> V
end;
subst_1({'*',Var}=V, Env) ->
case lists:keyfind(Var, 1, Env) of
{Var, TreeOrTrees} -> TreeOrTrees;
false -> V
end;
subst_1(Leaf, _Env) ->
Leaf.
-spec alpha(pattern_or_patterns(), [{id(), id()}]) -> template_or_templates().
%% @doc Alpha converts a pattern (renames variables). Similar to tsubst/1,
%% but only renames variables (including globs).
%% @see tsubst/2
alpha(Trees, Env) when is_list(Trees) ->
[alpha_1(template(T), Env) || T <- Trees];
alpha(Tree, Env) ->
alpha_1(template(Tree), Env).
alpha_1({template, Type, Attrs, Groups}, Env) ->
Gs1 = [lists:flatten([alpha_1(T, Env) || T <- G]) || G <- Groups],
{template, Type, Attrs, Gs1};
alpha_1({Var}=V, Env) ->
case lists:keyfind(Var, 1, Env) of
{Var, NewVar} -> {NewVar};
false -> V
end;
alpha_1({'*',Var}=V, Env) ->
case lists:keyfind(Var, 1, Env) of
{Var, NewVar} -> {'*',NewVar};
false -> V
end;
alpha_1(Leaf, _Env) ->
Leaf.
-spec match(pattern_or_patterns(), tree_or_trees()) ->
{ok, env()} | error.
%% @doc Match a pattern against a syntax tree (or patterns against syntax
%% trees) returning an environment mapping variable names to subtrees; the
%% environment is always sorted on keys. Note that multiple occurrences of
%% metavariables in the pattern is not allowed, but is not checked.
%%
%% @see template/1
%% @see switch/2
match(Patterns, Trees) when is_list(Patterns), is_list(Trees) ->
try {ok, match_1(Patterns, Trees, [])}
catch
error -> error
end;
match(Patterns, Tree) when is_list(Patterns) -> match(Patterns, [Tree]);
match(Pattern, Trees) when is_list(Trees) -> match([Pattern], Trees);
match(Pattern, Tree) ->
try {ok, match_template(template(Pattern), Tree, [])}
catch
error -> error
end.
match_1([P|Ps], [T | Ts], Dict) ->
match_1(Ps, Ts, match_template(template(P), T, Dict));
match_1([], [], Dict) ->
Dict;
match_1(_, _, _Dict) ->
erlang:error(merl_match_arity).
%% match a template against a syntax tree
match_template({template, Type, _, Gs}, Tree, Dict) ->
case type(Tree) of
Type -> match_template_1(Gs, subtrees(Tree), Dict);
_ -> throw(error) % type mismatch
end;
match_template({Var}, _Tree, Dict)
when Var =:= '_' ; Var =:= 0 ->
Dict; % anonymous variable
match_template({Var}, Tree, Dict) ->
orddict:store(Var, Tree, Dict);
match_template(Tree1, Tree2, Dict) ->
%% if Tree1 is not a template, Tree1 and Tree2 are both syntax trees
case compare_trees(Tree1, Tree2) of
true -> Dict;
false -> throw(error) % different trees
end.
match_template_1([G1 | Gs1], [G2 | Gs2], Dict) ->
match_template_2(G1, G2, match_template_1(Gs1, Gs2, Dict));
match_template_1([], [], Dict) ->
Dict;
match_template_1(_, _, _Dict) ->
throw(error). % shape mismatch
match_template_2([{Var} | Ts1], [_ | Ts2], Dict)
when Var =:= '_' ; Var =:= 0 ->
match_template_2(Ts1, Ts2, Dict); % anonymous variable
match_template_2([{Var} | Ts1], [Tree | Ts2], Dict) ->
match_template_2(Ts1, Ts2, orddict:store(Var, Tree, Dict));
match_template_2([{'*',Var} | Ts1], Ts2, Dict) ->
match_glob(lists:reverse(Ts1), lists:reverse(Ts2), Var, Dict);
match_template_2([T1 | Ts1], [T2 | Ts2], Dict) ->
match_template_2(Ts1, Ts2, match_template(T1, T2, Dict));
match_template_2([], [], Dict) ->
Dict;
match_template_2(_, _, _Dict) ->
throw(error). % shape mismatch
%% match the tails in reverse order; no further globs allowed
match_glob([{'*',Var} | _], _, _, _) ->
fail("multiple glob variables in same match group: ~w", [Var]);
match_glob([T1 | Ts1], [T2 | Ts2], Var, Dict) ->
match_glob(Ts1, Ts2, Var, match_template(T1, T2, Dict));
match_glob([], _Group, Var, Dict) when Var =:= '_' ; Var =:= 0 ->
Dict; % anonymous glob variable
match_glob([], Group, Var, Dict) ->
orddict:store(Var, lists:reverse(Group), Dict);
match_glob(_, _, _, _Dict) ->
throw(error). % shape mismatch
%% compare two syntax trees for equivalence
compare_trees(T1, T2) ->
Type1 = type(T1),
case type(T2) of
Type1 ->
case subtrees(T1) of
[] ->
case subtrees(T2) of
[] -> compare_leaves(Type1, T1, T2);
_Gs2 -> false % shape mismatch
end;
Gs1 ->
case subtrees(T2) of
[] -> false; % shape mismatch
Gs2 -> compare_trees_1(Gs1, Gs2)
end
end;
_Type2 ->
false % different tree types
end.
compare_trees_1([G1 | Gs1], [G2 | Gs2]) ->
compare_trees_2(G1, G2) andalso compare_trees_1(Gs1, Gs2);
compare_trees_1([], []) ->
true;
compare_trees_1(_, _) ->
false. % shape mismatch
compare_trees_2([T1 | Ts1], [T2 | Ts2]) ->
compare_trees(T1, T2) andalso compare_trees_2(Ts1, Ts2);
compare_trees_2([], []) ->
true;
compare_trees_2(_, _) ->
false. % shape mismatch
compare_leaves(Type, T1, T2) ->
case Type of
atom ->
erl_syntax:atom_value(T1)
=:= erl_syntax:atom_value(T2);
char ->
erl_syntax:char_value(T1)
=:= erl_syntax:char_value(T2);
float ->
erl_syntax:float_value(T1)
=:= erl_syntax:float_value(T2);
integer ->
erl_syntax:integer_value(T1)
=:= erl_syntax:integer_value(T2);
string ->
erl_syntax:string_value(T1)
=:= erl_syntax:string_value(T2);
operator ->
erl_syntax:operator_name(T1)
=:= erl_syntax:operator_name(T2);
text ->
erl_syntax:text_string(T1)
=:= erl_syntax:text_string(T2);
variable ->
erl_syntax:variable_name(T1)
=:= erl_syntax:variable_name(T2);
_ ->
true % trivially equal nodes
end.
%% @doc Match against one or more clauses with patterns and optional guards.
%%
%% Note that clauses following a default action will be ignored.
%%
%% @see match/2
-type switch_clause() ::
{pattern_or_patterns(), guarded_actions()}
| {pattern_or_patterns(), guard_test(), switch_action()}
| default_action().
-type guarded_actions() :: guarded_action() | [guarded_action()].
-type guarded_action() :: switch_action() | {guard_test(), switch_action()}.
-type switch_action() :: fun( (env()) -> any() ).
-type guard_test() :: fun( (env()) -> boolean() ).
-type default_action() :: fun( () -> any() ).
-spec switch(tree_or_trees(), [switch_clause()]) -> any().
switch(Trees, [{Patterns, GuardedActions} | Cs]) when is_list(GuardedActions) ->
switch_1(Trees, Patterns, GuardedActions, Cs);
switch(Trees, [{Patterns, GuardedAction} | Cs]) ->
switch_1(Trees, Patterns, [GuardedAction], Cs);
switch(Trees, [{Patterns, Guard, Action} | Cs]) ->
switch_1(Trees, Patterns, [{Guard, Action}], Cs);
switch(_Trees, [Default | _Cs]) when is_function(Default, 0) ->
Default();
switch(_Trees, []) ->
erlang:error(merl_switch_clause);
switch(_Tree, _) ->
erlang:error(merl_switch_badarg).
switch_1(Trees, Patterns, GuardedActions, Cs) ->
case match(Patterns, Trees) of
{ok, Env} ->
switch_2(Env, GuardedActions, Trees, Cs);
error ->
switch(Trees, Cs)
end.
switch_2(Env, [{Guard, Action} | Bs], Trees, Cs)
when is_function(Guard, 1), is_function(Action, 1) ->
case Guard(Env) of
true -> Action(Env);
false -> switch_2(Env, Bs, Trees, Cs)
end;
switch_2(Env, [Action | _Bs], _Trees, _Cs) when is_function(Action, 1) ->
Action(Env);
switch_2(_Env, [], Trees, Cs) ->
switch(Trees, Cs);
switch_2(_Env, _, _Trees, _Cs) ->
erlang:error(merl_switch_badarg).
%% ------------------------------------------------------------------------
%% Internal utility functions
-dialyzer({nowarn_function, fail/1}). % no local return
fail(Text) ->
fail(Text, []).
fail(Fs, As) ->
throw({error, lists:flatten(io_lib:format(Fs, As))}).
flatten_text([L | _]=Lines) when is_list(L) ->
lists:foldr(fun(S, T) -> S ++ [$\n | T] end, "", Lines);
flatten_text([B | _]=Lines) when is_binary(B) ->
lists:foldr(fun(S, T) -> binary_to_list(S) ++ [$\n | T] end, "", Lines);
flatten_text(Text) when is_binary(Text) ->
binary_to_list(Text);
flatten_text(Text) ->
Text.
-spec metavar(tree()) -> {string()} | false.
%% Check if a syntax tree represents a metavariable. If not, 'false' is
%% returned; otherwise, this returns a 1-tuple with a string containing the
%% variable name including lift/glob prefixes but without any leading
%% metavariable prefix, and instead prefixed with "v" for a variable or "i"
%% for an integer.
%%
%% Metavariables are atoms starting with @, variables starting with _@,
%% strings starting with "'@, or integers starting with 909. Following the
%% prefix, one or more _ or 0 characters (unless it's the last character in
%% the name) may be used to indicate "lifting" of the variable one or more
%% levels , and after that, a @ or 9 character indicates a glob metavariable
%% rather than a normal metavariable. If the name after the prefix is _ or
%% 0, the variable is treated as an anonymous catch-all pattern in matches.
metavar(Tree) ->
case type(Tree) of
atom ->
case erl_syntax:atom_name(Tree) of
"@" ++ Cs when Cs =/= [] -> {"v"++Cs};
_ -> false
end;
variable ->
case erl_syntax:variable_literal(Tree) of
"_@" ++ Cs when Cs =/= [] -> {"v"++Cs};
_ -> false
end;
integer ->
case erl_syntax:integer_value(Tree) of
N when N >= 9090 ->
case integer_to_list(N) of
"909" ++ Cs -> {"n"++Cs};
_ -> false
end;
_ -> false
end;
string ->
case erl_syntax:string_value(Tree) of
"'@" ++ Cs -> {"v"++Cs};
_ -> false
end;
_ ->
false
end.
%% wrappers around erl_syntax functions to provide more uniform shape of
%% generic subtrees (maybe this can be fixed in syntax_tools one day)
type(T) ->
case erl_syntax:type(T) of
nil -> list;
Type -> Type
end.
subtrees(T) ->
case erl_syntax:type(T) of
tuple ->
[erl_syntax:tuple_elements(T)]; %% don't treat {} as a leaf
nil ->
[[], []]; %% don't treat [] as a leaf, but as a list
list ->
case erl_syntax:list_suffix(T) of
none ->
[erl_syntax:list_prefix(T), []];
S ->
[erl_syntax:list_prefix(T), [S]]
end;
binary_field ->
[[erl_syntax:binary_field_body(T)],
erl_syntax:binary_field_types(T)];
clause ->
case erl_syntax:clause_guard(T) of
none ->
[erl_syntax:clause_patterns(T), [],
erl_syntax:clause_body(T)];
G ->
[erl_syntax:clause_patterns(T), [G],
erl_syntax:clause_body(T)]
end;
receive_expr ->
case erl_syntax:receive_expr_timeout(T) of
none ->
[erl_syntax:receive_expr_clauses(T), [], []];
E ->
[erl_syntax:receive_expr_clauses(T), [E],
erl_syntax:receive_expr_action(T)]
end;
record_expr ->
case erl_syntax:record_expr_argument(T) of
none ->
[[], [erl_syntax:record_expr_type(T)],
erl_syntax:record_expr_fields(T)];
V ->
[[V], [erl_syntax:record_expr_type(T)],
erl_syntax:record_expr_fields(T)]
end;
record_field ->
case erl_syntax:record_field_value(T) of
none ->
[[erl_syntax:record_field_name(T)], []];
V ->
[[erl_syntax:record_field_name(T)], [V]]
end;
_ ->
erl_syntax:subtrees(T)
end.
make_tree(list, [P, []]) -> erl_syntax:list(P);
make_tree(list, [P, [S]]) -> erl_syntax:list(P, S);
make_tree(tuple, [E]) -> erl_syntax:tuple(E);
make_tree(binary_field, [[B], Ts]) -> erl_syntax:binary_field(B, Ts);
make_tree(clause, [P, [], B]) -> erl_syntax:clause(P, none, B);
make_tree(clause, [P, [G], B]) -> erl_syntax:clause(P, G, B);
make_tree(receive_expr, [C, [], _A]) -> erl_syntax:receive_expr(C);
make_tree(receive_expr, [C, [E], A]) -> erl_syntax:receive_expr(C, E, A);
make_tree(record_expr, [[], [T], F]) -> erl_syntax:record_expr(T, F);
make_tree(record_expr, [[E], [T], F]) -> erl_syntax:record_expr(E, T, F);
make_tree(record_field, [[N], []]) -> erl_syntax:record_field(N);
make_tree(record_field, [[N], [E]]) -> erl_syntax:record_field(N, E);
make_tree(Type, Groups) ->
erl_syntax:make_tree(Type, Groups).
merge_comments(_StartLine, [], [T]) -> T;
merge_comments(_StartLine, [], Ts) -> Ts;
merge_comments(StartLine, Comments, Ts) ->
merge_comments(StartLine, Comments, Ts, []).
merge_comments(_StartLine, [], [], [T]) -> T;
merge_comments(_StartLine, [], [T], []) -> T;
merge_comments(_StartLine, [], Ts, Acc) ->
lists:reverse(Acc, Ts);
merge_comments(StartLine, Cs, [], Acc) ->
merge_comments(StartLine, [], [],
[erl_syntax:set_pos(
erl_syntax:comment(Indent, Text),
StartLine + Line - 1)
|| {Line, _, Indent, Text} <- Cs] ++ Acc);
merge_comments(StartLine, [C|Cs], [T|Ts], Acc) ->
{Line, _Col, Indent, Text} = C,
CommentLine = StartLine + Line - 1,
case erl_syntax:get_pos(T) of
Pos when Pos < CommentLine ->
%% TODO: traverse sub-tree rather than only the top level nodes
merge_comments(StartLine, [C|Cs], Ts, [T|Acc]);
CommentLine ->
Tc = erl_syntax:add_postcomments(
[erl_syntax:comment(Indent, Text)], T),
merge_comments(StartLine, Cs, [Tc|Ts], Acc);
_ ->
Tc = erl_syntax:add_precomments(
[erl_syntax:comment(Indent, Text)], T),
merge_comments(StartLine, Cs, [Tc|Ts], Acc)
end.
|