aboutsummaryrefslogtreecommitdiffstats
path: root/lib/syntax_tools/src/prettypr.erl
blob: 5156af667b08d6c32f8b8337ccbcdcfa1eb3e41a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
%% =====================================================================
%% This library is free software; you can redistribute it and/or modify
%% it under the terms of the GNU Lesser General Public License as
%% published by the Free Software Foundation; either version 2 of the
%% License, or (at your option) any later version.
%%
%% This library is distributed in the hope that it will be useful, but
%% WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
%% Lesser General Public License for more details.
%%
%% You should have received a copy of the GNU Lesser General Public
%% License along with this library; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301
%% USA
%%
%% @copyright 2000-2006 Richard Carlsson
%% @author Richard Carlsson <[email protected]>
%% @end
%% =====================================================================

%% @doc A generic pretty printer library. This module uses a
%% strict-style context passing implementation of John Hughes algorithm,
%% described in "The design of a Pretty-printing Library". The
%% paragraph-style formatting, empty documents, floating documents, and
%% null strings are my own additions to the algorithm.
%%
%% To get started, you should read about the {@link document()} data
%% type; the main constructor functions: {@link text/1}, {@link
%% above/2}, {@link beside/2}, {@link nest/2}, {@link sep/1}, and {@link
%% par/2}; and the main layout function {@link format/3}.
%%
%% If you simply want to format a paragraph of plain text, you probably
%% want to use the {@link text_par/2} function, as in the following
%% example:
%% ```
%% prettypr:format(prettypr:text_par("Lorem ipsum dolor sit amet"), 20)
%% '''

%% @TODO can floats be moved in/out of sep:s without too much pain?

-module(prettypr).

-export([above/2, beside/2, best/3, break/1, empty/0, floating/1,
	 floating/3, follow/2, follow/3, format/1, format/2, format/3,
	 nest/2, par/1, par/2, sep/1, text/1, null_text/1, text_par/1,
	 text_par/2]).

-export_type([document/0]).

%% ---------------------------------------------------------------------

-type deep_string() :: [char() | deep_string()].

%% Document structures fully implemented and available to the user:
-record(text,   {s  :: deep_string()}).
-record(nest,   {n  :: integer(),  d  :: document()}).
-record(beside, {d1 :: document(), d2 :: document()}).
-record(above,  {d1 :: document(), d2 :: document()}).
-record(sep,    {ds :: [document()], i = 0 :: integer(),
                 p = false :: boolean()}).

%% Document structure which is not clear whether it is fully implemented: 
-record(float,  {d  :: document(), h :: integer(), v :: integer()}).

%% Document structures not available to the user:
-record(union,  {d1 :: document(), d2 :: document()}).
-record(fit,    {d  :: document()}).

%% ---------------------------------------------------------------------
%% A small warning for hackers: it's fairly easy to break this
%% thing (in particular, to muck up the complexity) if you don't
%% understand how it works.
%% ---------------------------------------------------------------------


%% =====================================================================
%% @type document(). An abstract character-based "document" representing
%% a number of possible layouts, which can be processed to produce a
%% single concrete layout. A concrete layout can then be rendered as a
%% sequence of characters containing linebreaks, which can be passed to
%% a printer or terminal that uses a fixed-width font.
%%
%% For example, a document `sep([text("foo"), text("bar")])' 
%% represents the two layouts
%% ```foo bar'''
%% and
%% ```foo
%%    bar'''
%%
%% Which layout is chosen depends on the available horizontal space.
%% When processing a document, the main parameters are the <em>paper
%% width</em> and the <em>line width</em> (also known as the "ribbon
%% width"). In the resulting layout, no text should be printed beyond
%% the paper width (which by default is 80 characters) as long as it can
%% be avoided, and each single line of text (its indentation not
%% counted, hence "ribbon") should preferably be no wider than the
%% specified line width (which by default is 65).
%%
%% Documents can be joined into a single new document using the
%% constructor functions of this module. Note that the new document
%% often represents a larger number of possible layouts than just the
%% sum of the components.

-type document() :: 'null' | #text{} | #nest{} | #beside{}
                  | #above{} | #sep{} | #float{} | #union{} | #fit{}.

%% =====================================================================
%% @spec text(Characters::string()) -> document()
%%
%% @doc Yields a document representing a fixed, unbreakable sequence of
%% characters. The string should contain only <em>printable</em>
%% characters (tabs allowed but not recommended), and <em>not</em>
%% newline, line feed, vertical tab, etc. A tab character (`\t') is
%% interpreted as padding of 1-8 space characters to the next column of
%% 8 characters <em>within the string</em>.
%%
%% @see empty/0
%% @see null_text/1
%% @see text_par/2

-spec text(string()) -> #text{}.

text(S) ->
    mktext(string(S)).	  % convert to internal representation

%% This function is used internally only, and expects a string on
%% the internal representation:

mktext(S) ->
    #text{s = S}.


%% =====================================================================
%% @spec null_text(Characters::string()) -> document()
%%
%% @doc Similar to {@link text/1}, but the result is treated as having
%% zero width. This is regardless of the actual length of the string.
%% Null text is typically used for markup, which is supposed to have no
%% effect on the actual layout.
%%
%% The standard example is when formatting source code as HTML to be
%% placed within `<pre>...</pre>' markup, and using e.g. `<i>' and `<b>'
%% to make parts of the source code stand out. In this case, the markup
%% does not add to the width of the text when viewed in an HTML browser,
%% so the layout engine should simply pretend that the markup has zero
%% width.
%%
%% @see text/1
%% @see empty/0

-spec null_text(string()) -> #text{}.

null_text(S) ->
    mktext(null_string(S)).    % convert to internal representation


%% =====================================================================
%% @spec text_par(Text::string()) -> document()
%% @equiv text_par(Text, 0)

-spec text_par(string()) -> document().

text_par(S) ->
    text_par(S, 0).


%% =====================================================================
%% @spec text_par(Text::string(), Indentation::integer()) -> document()
%%
%% @doc Yields a document representing paragraph-formatted plain text.
%% The optional `Indentation' parameter specifies the extra indentation
%% of the first line of the paragraph. For example, `text_par("Lorem
%% ipsum dolor sit amet", N)' could represent
%% ```Lorem ipsum dolor
%%    sit amet'''
%% if `N' = 0, or
%% ```  Lorem ipsum
%%    dolor sit amet'''
%% if `N' = 2, or
%% ```Lorem ipsum dolor
%%      sit amet'''
%% if `N' = -2.
%% 
%% (The sign of the indentation is thus reversed compared to the {@link
%% par/2} function, and the behaviour varies slightly depending on the
%% sign in order to match the expected layout of a paragraph of text.)
%%
%% Note that this is just a utility function, which does all the work of
%% splitting the given string into words separated by whitespace and
%% setting up a {@link par/2. `par'} with the proper indentation,
%% containing a list of {@link text/1. `text'} elements.
%%
%% @see text_par/1
%% @see text/1
%% @see par/2

-spec text_par(string(), integer()) -> document().

text_par(S, 0) ->
    par(words(S));
text_par(S, N) when N > 0 ->
    nest(N, par(words(S), -N));
text_par(S, N) when N < 0 ->
    par(words(S), -N).

words(S) ->
    words(S, [], []).

words([$\s | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([$\t | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([$\n | Cs], As, Ws) -> words_1(Cs, As, Ws);
words([C | Cs], As, Ws) -> words(Cs, [C | As], Ws);
words([], [], Ws) -> lists:reverse(Ws);
words([], As, Ws) -> words_1([], As, Ws).

words_1(Cs, [], Ws) ->
    words(Cs, [], Ws);
words_1(Cs, As, Ws) ->
    words(Cs, [], [text(lists:reverse(As)) | Ws]).


%% =====================================================================
%% @spec empty() -> document()
%%
%% @doc Yields the empty document, which has neither height nor width.
%% (`empty' is thus different from an empty {@link text/1. `text'}
%% string, which has zero width but height 1.)
%% 
%% Empty documents are occasionally useful; in particular, they have the
%% property that `above(X, empty())' will force a new line after `X'
%% without leaving an empty line below it; since this is a common idiom,
%% the utility function {@link break/1} will place a given document in
%% such a context.
%%
%% @see text/1

-spec empty() -> 'null'.

empty() ->
    null.


%% =====================================================================
%% @spec break(document()) -> document()
%%
%% @doc Forces a line break at the end of the given document. This is a
%% utility function; see {@link empty/0} for details.

-spec break(document()) -> #above{}.

break(D) ->
    above(D, empty()).


%% =====================================================================
%% @spec nest(N::integer(), D::document()) -> document()
%%
%% @doc Indents a document a number of character positions to the right.
%% Note that `N' may be negative, shifting the text to the left, or
%% zero, in which case `D' is returned unchanged.

-spec nest(integer(), document()) -> document().

nest(N, D) ->
    if N =:= 0 ->
	    D;
       true ->
	    #nest{n = N, d = D}
    end.


%% =====================================================================
%% @spec beside(D1::document(), D2::document()) -> document()
%%
%% @doc Concatenates documents horizontally. Returns a document
%% representing the concatenation of the documents `D1' and `D2' such
%% that the last character of `D1' is horizontally adjacent to the first
%% character of `D2', in all possible layouts. (Note: any indentation of
%% `D2' is lost.)
%%
%% Examples:
%% ```ab  cd  =>  abcd
%%
%%    ab  ef      ab
%%    cd  gh  =>  cdef
%%                  gh'''

-spec beside(document(), document()) -> #beside{}.

beside(D1, D2) ->
    #beside{d1 = D1, d2 = D2}.


%% =====================================================================
%% @spec above(D1::document(), D2::document()) -> document()
%%
%% @doc Concatenates documents vertically. Returns a document
%% representing the concatenation of the documents `D1' and `D2' such
%% that the first line of `D2' follows directly below the last line of
%% `D1', and the first character of `D2' is in the same horizontal
%% column as the first character of `D1', in all possible layouts.
%%
%% Examples:
%% ```ab  cd  =>  ab
%%                cd
%%
%%                   abc
%%    abc   fgh  =>   de
%%     de    ij      fgh
%%                    ij'''

-spec above(document(), document()) -> #above{}.

above(D1, D2) ->
    #above{d1 = D1, d2 = D2}.


%% =====================================================================
%% @spec sep(Docs::[document()]) -> document()
%%
%% @doc Arranges documents horizontally or vertically, separated by
%% whitespace. Returns a document representing two alternative layouts
%% of the (nonempty) sequence `Docs' of documents, such that either all
%% elements in `Docs' are concatenated horizontally, and separated by a
%% space character, or all elements are concatenated vertically (without
%% extra separation).
%%
%% Note: If some document in `Docs' contains a line break, the vertical
%% layout will always be selected.
%%
%% Examples:
%% ```                             ab
%%    ab  cd  ef  =>  ab cd ef  |  cd
%%                                 ef
%%
%%    ab           ab
%%    cd  ef  =>   cd
%%                 ef'''
%%
%% @see par/2

-spec sep([document()]) -> #sep{}.

sep(Ds) ->
    #sep{ds = Ds}.


%% =====================================================================
%% @spec par(Docs::[document()]) -> document()
%% @equiv par(Ds, 0)

-spec par([document()]) -> #sep{}.

par(Ds) ->
    par(Ds, 0).


%% =====================================================================
%% @spec par(Docs::[document()], Offset::integer()) -> document()
%%
%% @doc Arranges documents in a paragraph-like layout. Returns a
%% document representing all possible left-aligned paragraph-like
%% layouts of the (nonempty) sequence `Docs' of documents. Elements in
%% `Docs' are separated horizontally by a single space character and
%% vertically with a single line break. All lines following the first
%% (if any) are indented to the same left column, whose indentation is
%% specified by the optional `Offset' parameter relative to the position
%% of the first element in `Docs'. For example, with an offset of -4,
%% the following layout can be produced, for a list of documents
%% representing the numbers 0 to 15:
%%
%% ```    0 1 2 3
%%    4 5 6 7 8 9
%%    10 11 12 13
%%    14 15'''
%% or with an offset of +2:
%% ```0 1 2 3 4 5 6
%%      7 8 9 10 11
%%      12 13 14 15'''
%%
%% The utility function {@link text_par/2} can be used to easily
%% transform a string of text into a `par' representation by splitting
%% it into words.
%%
%% Note that whenever a document in `Docs' contains a line break, it
%% will be placed on a separate line. Thus, neither a layout such as
%% ```ab cd
%%       ef'''
%% nor
%% ```ab
%%    cd ef'''
%% will be generated. However, a useful idiom for making the former
%% variant possible (when wanted) is `beside(par([D1, text("")], N),
%% D2)' for two documents `D1' and `D2'. This will break the line
%% between `D1' and `D2' if `D1' contains a line break (or if otherwise
%% necessary), and optionally further indent `D2' by `N' character
%% positions. The utility function {@link follow/3} creates this context
%% for two documents `D1' and `D2', and an optional integer `N'.
%%
%% @see par/1
%% @see text_par/2

-spec par([document()], integer()) -> #sep{}.

par(Ds, N) ->
    mksep(Ds, N, true).

%% Used internally only:

mksep(Ds, N, P) when is_integer(N) ->
    #sep{ds = Ds, i = N, p = P}.


%% =====================================================================
%% @spec follow(D1::document(), D2::document()) -> document()
%% @equiv follow(D1, D2, 0)

-spec follow(document(), document()) -> #beside{}.

follow(D1, D2) ->
    follow(D1, D2, 0).


%% =====================================================================
%% @spec follow(D1::document(), D2::document(), Offset::integer()) ->
%%           document()
%% 
%% @doc Separates two documents by either a single space, or a line
%% break and intentation. In other words, one of the layouts
%% ```abc def'''
%% or
%% ```abc
%%     def'''
%% will be generated, using the optional offset in the latter case. This
%% is often useful for typesetting programming language constructs.
%%
%% This is a utility function; see {@link par/2} for further details.
%%
%% @see follow/2

-spec follow(document(), document(), integer()) -> #beside{}.

follow(D1, D2, N) when is_integer(N) ->
    beside(par([D1, nil()], N), D2).


%% =====================================================================
%% @spec floating(document()) -> document()
%% @equiv floating(D, 0, 0)

-spec floating(document()) -> #float{}.

floating(D) ->
    floating(D, 0, 0).


%% =====================================================================
%% @spec floating(D::document(), Hp::integer(), Vp::integer()) ->
%%           document()
%%
%% @doc Creates a "floating" document. The result represents the same
%% set of layouts as `D'; however, a floating document may be moved
%% relative to other floating documents immediately beside or above it,
%% according to their relative horizontal and vertical priorities. These
%% priorities are set with the `Hp' and `Vp' parameters; if omitted,
%% both default to zero.
%%
%% Notes: Floating documents appear to work well, but are currently less
%% general than you might wish, losing effect when embedded in certain
%% contexts. It is possible to nest floating-operators (even with
%% different priorities), but the effects may be difficult to predict.
%% In any case, note that the way the algorithm reorders floating
%% documents amounts to a "bubblesort", so don't expect it to be able to
%% sort large sequences of floating documents quickly.

-spec floating(document(), integer(), integer()) -> #float{}.

floating(D, H, V) when is_integer(H), is_integer(V) ->
    #float{d = D, h = H, v = V}.


%% =====================================================================
%% @spec format(D::document()) -> string()
%% @equiv format(D, 80)

-spec format(document()) -> string().

format(D) ->
    format(D, 80).


%% =====================================================================
%% @spec format(D::document(), PaperWidth::integer()) -> string()
%% @equiv format(D, PaperWidth, 65)

-spec format(document(), integer()) -> string().

format(D, W) ->
    format(D, W, 65).


%% =====================================================================
%% @spec format(D:: document(), PaperWidth::integer(),
%%              LineWidth::integer()) -> string()
%% @throws no_layout
%%
%% @doc Computes a layout for a document and returns the corresponding
%% text. See {@link document()} for further information. Throws
%% `no_layout' if no layout could be selected.
%%
%% `PaperWidth' specifies the total width (in character positions) of
%% the field for which the text is to be laid out. `LineWidth' specifies
%% the desired maximum width (in number of characters) of the text
%% printed on any single line, disregarding leading and trailing white
%% space. These parameters need to be properly balanced in order to
%% produce good layouts. By default, `PaperWidth' is 80 and `LineWidth'
%% is 65.
%%
%% @see best/3

-spec format(document(), integer(), integer()) -> string().

format(D, W, R) ->
    case best(D, W, R) of
	empty ->
	    throw(no_layout);
	L -> layout(L)
    end.


%% =====================================================================
%% Representation:
%%
%%	document() = #text{s = string()}
%%		   | #nest{n = integer(), d = document()}
%%		   | #beside{d1 = document(), d2 = document()}
%%		   | #above{d1 = document(), d2 = document()}
%%		   | #sep{ds = [document()], i = integer(), p = boolean()}
%%		   | null
%%
%% A `text' node simply represents a string (which should not contain
%% linefeed or carriage return characters). A `nest' node specifies a
%% relative indentation (in number of character positions) of a
%% document. The indentation could be a negative number. A `beside' node
%% specifies a horizontal composition of two documents, and an `above'
%% node a vertical composition. A `sep' node specifies a list of
%% alternative documents; the `i' field holds the extra indentation of
%% all documents but the first in `ds', and if the `p' field is `true'
%% then the list is typeset in paragraph mode.
%%
%% The function `best/3' yields a representation of a "best layout",
%% suitable for direct conversion to text, having the following
%% restricted form:
%%
%%	layout() = #text{s = string()}
%%		 | #above{d1 = #text{s = string()}, d2 = layout()}
%%		 | #nest{n = integer(), d = layout()}
%%		 | null
%%
%% The function `layout/1' performs the final transformation to a single
%% flat string from the restricted document form.

layout(L) ->
    lists:reverse(layout(0, L, [])).

layout(N, #above{d1 = #text{s = S}, d2 = L}, Cs) ->
    layout(N, L, [$\n | flatrev(string_chars(S), indent(N, Cs))]);
layout(N, #nest{n = N1, d = L}, Cs) ->
    layout(N + N1, L, Cs);
layout(N, #text{s = S}, Cs) ->
    flatrev(string_chars(S), indent(N, Cs));
layout(_N, null, Cs) ->
    Cs.

indent(N, Cs) when N >= 8 ->
    indent(N - 8, [$\t | Cs]);
indent(N, Cs) when N > 0 ->
    indent(N - 1, [$\s | Cs]);
indent(_N, Cs) ->
    Cs.

flatrev(Cs, As) ->
    flatrev(Cs, As, []).

flatrev([C = [_|_] | Cs], As, Ss) ->
    flatrev(C, As, [Cs | Ss]);
flatrev([[] | Cs], As, Ss) ->
    flatrev(Cs, As, Ss);
flatrev([C | Cs], As, Ss) ->
    flatrev(Cs, [C | As], Ss);
flatrev([], As, [S | Ss]) ->
    flatrev(S, As, Ss);
flatrev([], As, []) ->
    As.


%% =====================================================================
%% @spec best(document(), PaperWidth::integer(),
%%            LineWidth::integer()) -> empty | document()
%%
%% @doc Selects a "best" layout for a document, creating a corresponding
%% fixed-layout document. If no layout could be produced, the atom
%% `empty' is returned instead. For details about `PaperWidth' and
%% `LineWidth', see {@link format/3}. The function is idempotent.
%%
%% One possible use of this function is to compute a fixed layout for a
%% document, which can then be included as part of a larger document.
%% For example:
%% ```above(text("Example:"), nest(8, best(D, W - 12, L - 6)))'''
%% will format `D' as a displayed-text example indented by 8, whose
%% right margin is indented by 4 relative to the paper width `W' of the
%% surrounding document, and whose maximum individual line length is
%% shorter by 6 than the line length `L' of the surrounding document.
%%
% This function is used by the {@link format/3} function to prepare a
%% document before being laid out as text.

%% Recall that a document represents a set of possible layouts. `best'
%% selects the "best" layout of a document, returning a simplified
%% representation that can be given directly to `layout', unless the
%% returned value is `empty', signaling that no layout could be
%% produced. In addition, documents on the form `#union{d1 = D1, d2 =
%% D2}' and `#fit{d = D}' are used internally.
%%
%% Note: It is vital for this algorithm to maintain the invariant on
%% unions that the left argument has a longer first line than the right
%% argument!

%% Contexts:
%%
%%	#c_best_nest{w = integer(), r = integer(), i = integer()}
%%	#c_above_nest{d = document(), i = integer(), c = ctxt()}
%%	#c_beside{d = document(), c = ctxt()}
%%	#c_text_beside{s = string(), c = ctxt()}
%%	#c_sep_nest{ds = [document()], i = integer(), p = boolean(),
%%		    c = ctxt()}
%%	#c_best_nest_or{w = integer(), r = integer(), i = integer(),
%%			d = document()}
%%	#c_fit{c = ctxt()}

%% best(w, r, nest(i, *))
-record(c_best_nest, {w :: integer(), r :: integer(), i :: integer()}).

%% above(*, nest(i, d))
-record(c_above_nest, {d :: document(), i = 0 :: integer(), c :: ctxt()}).

-record(c_beside, {d :: document(), c :: ctxt()}).	%% beside(*, d)

-record(c_text_beside, {s :: string(), c :: ctxt()}).	%% beside(text(s), *)

%% p = false	=>	sep([* | map(nest i, ds)])
%% p = true	=>	par([* | map(nest i, ds)])

-record(c_sep_nest, {ds :: [document()], i :: integer(),
		     p  :: boolean(),    c :: ctxt()}).

%% nicest(best(w, r, nest(i, *)), best(w, r, d))
-record(c_best_nest_or, {w :: integer(), r :: integer(),
			 i :: integer(), d :: document()}).

-record(c_fit, {c :: ctxt()}).			%% fit(*)

%% beside(float(d, h, v), *)
-record(c_float_beside, {d :: document(), h :: integer(),
			 v :: integer(),  c :: ctxt()}).
%% above(float(d, h, v), nest(i, *))
-record(c_float_above_nest, {d :: document(), h :: integer(),
			     v :: integer(),  i :: integer(), c :: ctxt()}).

%% Contexts introduced:		In case:
%%
%%	c_best_nest		top-level call
%%	c_above_nest		above (c_best_nest)
%%	c_beside		beside (c_best_nest)
%%	c_text_beside		text (c_beside)
%%	c_sep_nest		sep (c_best_nest)
%%	c_best_nest_or		union (c_best_nest)
%%	c_fit			fit
%%	c_float_beside		float (c_beside)
%%	c_float_above_nest	float (c_above_nest)

-type ctxt() :: #c_best_nest{} | #c_above_nest{}
	      | #c_beside{} | #c_text_beside{}
	      | #c_sep_nest{} | #c_best_nest_or{}
	      | #c_fit{} | #c_float_beside{} | #c_float_above_nest{}.

%% Entry point for the layout algorithm:

-spec best(document(), integer(), integer()) -> 'empty' | document().

best(D, W, R) ->
    rewrite(D, #c_best_nest{w = W, r = R, i = 0}).

rewrite(#text{s = S}, C) ->
    case C of
	#c_best_nest{i = N} ->
	    nest(N, mktext(S));		% finish
	#c_above_nest{d = D1, i = N1, c = C1} ->
	    case C1 of
		#c_best_nest{w = W, r = R, i = N} ->
		    %% Move out completed line.
		    %% (Note new indentation N1.)
		    nest(N,
			 above(mktext(S),
			       rewrite(D1,
				       #c_best_nest{w = W - N,
						    r = R,
						    i = N1})));
		#c_beside{d = D2, c = C2} ->
		    %% Associativity (not symmetric)
		    rewrite(above(mktext(S),
				  nest(N1, beside(D1, D2))), C2);
		#c_text_beside{s = S1, c = C2} ->
		    %% Join segments (note the indentation!)
		    rewrite(above(mktext(concat(S1, S)),
				  nest(N1 + width(S1), D1)),
			    C2);
		#c_sep_nest{ds = Ds, i = N, c = C2} ->
		    case is_empty_string(S) of
			false ->
			    %% Move out the prefix (note the
			    %% indentation!)
			    W = width(S),
			    rewrite(beside(
				      mktext(S),
				      mksep([above(nil(),
						   nest(N1 - W,
							D1))
					     | Ds],
					    N - W,
					    C1#c_sep_nest.p)),
				    C2);
			true ->
			    %% Like when we have just an empty
			    %% string and nothing else, this
			    %% forces us to expand the `sep'. The
			    %% line break will then force a normal
			    %% `sep' to select the vertical
			    %% alternative, but for a `par', we
			    %% need to force a line break before
			    %% the remaining elements are laid
			    %% out. (Note the indentation!)
			    case C1#c_sep_nest.p of
				false ->
				    rewrite(expand_sep(
					      above(nil(),
						    nest(N1, D1)),
					      Ds, N),
					    C2);
				true ->
				    rewrite(expand_par(
					      above(nil(),
						    nest(N1, D1)),
					      Ds, N),
					    C2)
			    end
		    end;
		#c_best_nest_or{w = W, r = R, i = N, d = D} ->
		    L = width(S),
		    case ((L + N) > W) or (L > R) of
			true ->
			    %% The first line of the LHS layout is
			    %% not nice, so select the RHS.
			    rewrite(D, #c_best_nest{w = W, r = R,
						    i = N});
			false ->
			    %% Select the LHS. (Note the
			    %% indentation!)
			    rewrite(above(mktext(S),
					  nest(N1, D1)),
				    #c_best_nest{w = W, r = R,
						 i = N})
		    end;
		#c_float_beside{d = D2, c = C2} ->
		    rewrite(beside(D2, above(mktext(S),
					     nest(N1, D1))),
			    C2);
		#c_float_above_nest{d = D2, i = N2, c = C2} ->
		    rewrite(above(D2,
				  nest(N2, above(mktext(S),
						 nest(N1, D1)))),
			    C2);
		#c_above_nest{} ->
		    exit(badarg);	% this can't happen
		#c_fit{} ->
		    exit(badarg)	% this can't happen
	    end;
	#c_beside{d = D1, c = C1} ->
	    case C1 of
		#c_above_nest{d = D2, i = N, c = C2} ->
		    case is_empty_string(S) of
			false ->
			    %% Move out the prefix (note the
			    %% indentation!)
			    W = width(S),
			    rewrite(beside(mktext(S),
					   above(
					     beside(nil(), D1),
					     nest(N - W, D2))),
				    C2);
			true ->
			    %% Pass on
			    rewrite(D1, #c_text_beside{s = S,
						       c = C1})
		    end;
		#c_text_beside{s = S1, c = C2} ->
		    %% Associativity (we simplify early)
		    rewrite(beside(mktext(concat(S1, S)), D1),
			    C2);
		#c_sep_nest{ds = Ds, i = N, c = C2} ->
		    case is_empty_string(S) of
			false ->
			    %% Move out the prefix (note the
			    %% indentation!)
			    W = width(S),
			    rewrite(beside(mktext(S),
					   mksep(
					     [beside(nil(), D1)
					      | Ds],
					     N - W,
					     C1#c_sep_nest.p)),
				    C2);
			true ->
			    %% Pass on
			    rewrite(D1, #c_text_beside{s = S,
						       c = C1})
		    end;
		#c_best_nest_or{w = W, r = R, i = N, d = D} ->
		    L = width(S),
		    case ((L + N) > W) or (L > R) of
			true ->
			    %% The first line of the LHS layout is
			    %% not nice, so select the RHS.
			    rewrite(D, #c_best_nest{w = W, r = R,
						    i = N});
			false ->
			    %% Pass on
			    rewrite(D1, #c_text_beside{s = S,
						       c = C1})
		    end;
		#c_float_beside{d = D2, c = C2} ->
		    rewrite(beside(D2, beside(mktext(S), D1)),
			    C2);
		#c_float_above_nest{d = D2, i = N, c = C2} ->
		    rewrite(above(D2,
				  nest(N, beside(mktext(S), D1))),
			    C2);
		_ ->
		    %% Pass on
		    rewrite(D1, #c_text_beside{s = S, c = C1})
	    end;
	#c_text_beside{s = S1, c = C1} ->
	    rewrite(mktext(concat(S1, S)), C1);	% join segments
	#c_sep_nest{ds = Ds, i = N, c = C1} ->
	    case is_empty_string(S) of
		false ->
		    %% Move out the prefix (note the indentation!)
		    rewrite(beside(mktext(S),
				   mksep([nil() | Ds],
					 N - width(S),
					 C#c_sep_nest.p)),
			    C1);
		true ->
		    %% This is the only place where we are forced to
		    %% introduce a union. Recall the invariant that the
		    %% left argument must have a longer first line than
		    %% the right argument; also recall that `Ds' is
		    %% always nonempty here. Now, since [D | Ds]
		    %% contains at least two elements, the first line of
		    %% the horizontal layout will always contain at
		    %% least one space character more than the first
		    %% line of the vertical layout.
		    case C#c_sep_nest.p of
			false ->
			    rewrite(expand_sep(nil(), Ds, N), C1);
			true ->
			    rewrite(expand_par(nil(), Ds, N), C1)
		    end
	    end;
	#c_best_nest_or{w = W, r = R, i = N, d = D} ->
	    L = width(S),
	    case ((L + N) > W) or (L > R) of
		true ->
		    %% The first line of the LHS layout is not
		    %% nice, so select the RHS (which contains
		    %% at least two lines).
		    rewrite(D, #c_best_nest{w = W, r = R, i = N});
		false ->
		    nest(N, mktext(S))	  % finish
	    end;
	#c_fit{c = C1} ->
	    %% Identity:
	    rewrite(mktext(S), C1);
	#c_float_beside{d = D1, c = C1} ->
	    rewrite(beside(D1, mktext(S)), C1);
	#c_float_above_nest{d = D1, i = N, c = C1} ->
	    rewrite(above(D1, nest(N, mktext(S))), C1)
    end;
rewrite(#nest{n = N, d = D}, C) ->
    case C of
	#c_best_nest{w = W, r = R, i = N1} ->
	    %% Note that we simplify by not creating an actual `nest'
	    %% node, but instead just modifying the context:
	    %% rewrite(nest(N1, nest(N, D))) = rewrite(nest(N1 + N, D)).
	    rewrite(D, #c_best_nest{w = W, r = R, i = N + N1});
	#c_above_nest{d = D1, i = N1, c = C1} ->
	    %% Distributivity
	    %% (Note the indentation!)
	    rewrite(nest(N, above(D, nest(N1 - N, D1))), C1);
	#c_beside{d = D1, c = C1} ->
	    %% Associativity (not symmetric):
	    rewrite(nest(N, beside(D, D1)), C1);
	#c_text_beside{} ->
	    rewrite(D, C);   % (`beside' kills RHS indentation)
	#c_sep_nest{ds = Ds, i = N1, c = C1} ->
	    %% Distributivity (in the vertical form, the RHS
	    %% indentation is killed)
	    rewrite(nest(N, mksep([D | Ds],
				  N1 - N,
				  C#c_sep_nest.p)),
		    C1);
	#c_fit{c = C1} ->
	    %% Distributivity:
	    rewrite(nest(N, fit(D)), C1);
	#c_float_beside{} ->
	    rewrite(D, C);    % (`beside' kills RHS indentation)
	#c_float_above_nest{d = D1, h = H, v = V, i = N1,
			    c = C1} ->
	    rewrite(D, #c_float_above_nest{d = D1, h = H, v = V,
					   i = N + N1, c = C1});
	#c_best_nest_or{} ->
	    exit(badarg)    % this can't happen
    end;
rewrite(#above{d1 = D1, d2 = D2}, C) ->
    case C of
	#c_above_nest{d = D3, i = N, c = C1} ->
	    %% Associativity:
	    %% (Note the indentation!)
	    rewrite(D1, #c_above_nest{d = above(D2, nest(N, D3)),
				      c = C1});
	#c_beside{d = D3, c = C1} ->
	    %% Associativity (not symmetric):
	    rewrite(above(D1, beside(D2, D3)), C1);
	#c_fit{c = C1} ->
	    rewrite(empty, C1);	% this is the whole point of `fit'
	_ ->
	    rewrite(D1, #c_above_nest{d = D2, c = C})	% pass on
    end;
rewrite(#beside{d1 = D1, d2 = D2}, C) ->
    case C of
	#c_beside{d = D3, c = C1} ->
	    %% Associativity:
	    rewrite(D1, #c_beside{d = beside(D2, D3), c = C1});
	#c_fit{c = C1} ->
	    %% Distributivity:
	    rewrite(beside(fit(D1), fit(D2)), C1);
	_ ->
	    rewrite(D1, #c_beside{d = D2, c = C})	% pass on
    end;
rewrite(#sep{ds = Ds, i = N, p = P}, C) ->
    case C of
	#c_fit{c = C1} ->
	    %% The vertical layout is thus impossible, and the
	    %% extra indentation has no effect.
	    rewrite(fit(horizontal(Ds)), C1);
	#c_float_beside{d = D1, c = C1} ->
	    %% Floats are not moved in or out of sep's
	    rewrite(beside(D1, mksep(Ds, N, P)), C1);
	#c_float_above_nest{d = D1, i = N1, c = C1} ->
	    %% Floats are not moved in or out of sep's
	    rewrite(above(D1, nest(N1, mksep(Ds, N, P))), C1);
	_ ->
	    enter_sep(Ds, N, P, C)		% pass on
    end;
rewrite(#union{d1 = D1, d2 = D2}, C) ->
    %% Introduced by the occurrence of an empty `text' string in a
    %% `sep' context. See the note above about the invariant for
    %% unions!
    case C of
	#c_best_nest{w = W, r = R, i = N} ->
	    %% Pass on
	    rewrite(D1, #c_best_nest_or{w = W, r = R, i = N,
					d = D2});
	#c_above_nest{d = D3, i = N, c = C1} ->
	    %% Distributivity:
	    %% (Note the indentation!)
	    rewrite(union(above(D1, nest(N, D3)),
			  above(D2, nest(N, D3))),
		    C1);
	#c_beside{d = D3, c = C1} ->
	    %% Distributivity:
	    rewrite(union(beside(D1, D3), beside(D2, D3)), C1);
	#c_text_beside{s = S, c = C1} ->
	    %% Distributivity:
	    rewrite(union(beside(mktext(S), D1),
			  beside(mktext(S), D2)),
		    C1);
	#c_sep_nest{ds = Ds, i = N, c = C1} ->
	    %% Distributivity:
	    rewrite(union(mksep([D1 | Ds], N, C#c_sep_nest.p),
			  mksep([D2 | Ds], N, C#c_sep_nest.p)),
		    C1);
	#c_best_nest_or{w = W, r = R, i = N, d = D3} ->
	    %% Associativity:
	    rewrite(D1, #c_best_nest_or{w = W, r = R, i = N,
					d = union(D2, D3)});
	#c_fit{c = C1} ->
	    %% Distributivity:
	    rewrite(union(fit(D1), fit(D2)), C1);
	#c_float_beside{d = D3, h = H, v = V, c = C1} ->
	    %% Distributivity:
	    rewrite(union(beside(floating(D3, H, V), D1),
			  beside(floating(D3, H, V), D2)),
		    C1);
	#c_float_above_nest{d = D3, h = H, v = V, i = N, c = C1} ->
	    %% Distributivity:
	    rewrite(union(above(floating(D3, H, V), nest(N, D1)),
			  above(floating(D3, H, V), nest(N, D2))),
		    C1)
    end;
rewrite(empty, C) ->
    %% Introduced by `sep'.
    case C of
	#c_best_nest{} ->
	    empty;		% preserve `empty'
	#c_above_nest{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_beside{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_text_beside{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_sep_nest{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_best_nest_or{w = W, r = R, i = N, d = D} ->
	    %% Try the other layout
	    rewrite(D, #c_best_nest{w = W, r = R, i = N});
	#c_fit{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_float_beside{c = C1} ->
	    rewrite(empty, C1);	% preserve `empty'
	#c_float_above_nest{c = C1} ->
	    rewrite(empty, C1)	% preserve `empty'
	end;
rewrite(#fit{d = D}, C) ->
    %% Introduced by the occurrence of an empty `text' string in a
    %% `sep' context.
    case C of
	#c_fit{} ->
	    %% Idempotency:
	    rewrite(D, C);
	_ ->
	    rewrite(D, #c_fit{c = C})	% pass on
    end;
rewrite(#float{d = D, h = H, v = V}, C) ->
    case C of
	#c_beside{d = D1, c = C1} ->
	    case C1 of
		#c_float_beside{d = D2, h = H1, v = V1, c = C2}
		when H1 > H ->
		    %% Move left
		    rewrite(beside(floating(D, H, V),
				   beside(floating(D2, H1, V1),
					  D1)),
			    C2);
		#c_float_beside{d = D2, h = H1, v = V1, c = C2}
		when V1 /= V ->
		    %% Align vertically
		    rewrite(above(floating(D2, H1, V1),
				  beside(floating(D, H, V), D1)),
			    C2);
		#c_float_above_nest{d = D2, h = H1, v = V1,
				    i = N1, c = C2}
		when V1 > V ->
		    %% Move up (note the indentation, and note
		    %% that all three become aligned vertically)
		    rewrite(above(nest(N1, floating(D, H, V)),
				  above(floating(D2, H1, V1),
					D1)),
			    C2);
		#c_float_above_nest{d = D2, h = H1, v = V1,
				    i = _N1, c = C2}
		when V1 == V, H1 /= H ->
		    %% Align horizontally
		    rewrite(beside(floating(D2, H1, V1),
				   beside(floating(D, H, V),
					  D1)),
			    C2);
		_ ->
		    rewrite(D1, #c_float_beside{d = D, h = H,
						v = V, c = C1})
	    end;
	#c_above_nest{d = D1, i = N, c = C1} ->
	    case C1 of
		#c_float_beside{d = D2, h = H1, v = V1, c = C2}
		when H1 > H ->
		    %% Move left (indentation is lost; note that
		    %% all three become aligned horizontally)
		    rewrite(beside(floating(D, H, V),
				   beside(floating(D2, H1, V1),
					  D1)),
			    C2);
		#c_float_beside{d = D2, h = H1, v = V1, c = C2}
		when V1 /= V ->
		    %% Align vertically
		    rewrite(above(floating(D2, H1, V1),
				  above(floating(D, H, V),
					nest(N, D1))),
			    C2);
		#c_float_above_nest{d = D2, h = H1, v = V1,
				    i = N1, c = C2}
		when V1 > V ->
		    %% Move up (note the indentation)
		    rewrite(above(nest(N1, floating(D, H, V)),
				  above(floating(D2, H1, V1),
					nest(N + N1, D1))),
			    C2);
		#c_float_above_nest{d = D2, h = H1, v = V1,
				    i = _N1, c = C2}
		when V1 == V, H1 /= H ->
		    %% Align horizontally
		    rewrite(beside(
			      floating(D2, H1, V1),
			      above(floating(D, H, V),
				    nest(N, D1))),
			    C2);
		_ ->
		    rewrite(D1, #c_float_above_nest{d = D, h = H,
						    v = V, i = N,
						    c = C1})
	    end;
	#c_fit{c = C1} ->
	    rewrite(floating(fit(D), H, V), C1);
	#c_float_beside{d = D1, h = H1, v = V1, c = C1} ->
	    if H1 > H ->
		    %% Swap
		    rewrite(beside(floating(D, H, V),
				   floating(D1, H1, V1)),
			    C1);
	       V1 /= V ->
		    %% Align vertically
		    rewrite(above(floating(D, H, V),
				  floating(D1, H1, V1)),
			    C1);
	       true ->
		    %% Drop the 'float' wrapper of the rightmost.
		    rewrite(beside(floating(D1, H1, V1), D), C1)
	    end;
	#c_float_above_nest{d = D1, h = H1, v = V1, i = N,
			    c = C1} ->
	    if V1 > V ->
		    %% Swap (note the indentation)
		    rewrite(above(nest(N, floating(D, H, V)),
				  floating(D1, H1, V1)),
			    C1);
	       V1 == V, H1 /= H ->
		    %% Align horizontally
		    rewrite(beside(floating(D, H, V),
				   floating(D1, H1, V1)),
			    C1);
	       true ->
		    %% Drop the 'float' wrapper of the lower.
		    rewrite(above(floating(D1, H1, V1),
				  nest(N, D)),
			    C1)
	    end;
	_ ->
	    %% All other cases simply drop the `float' wrapper.
	    rewrite(D, C)
    end;
rewrite(null, C) ->
    case C of
	#c_best_nest{} ->
	    null;    % done
	#c_above_nest{d = D, i = N, c = C1} ->
	    rewrite(nest(N, D), C1);
	#c_beside{d = D, c = C1} ->
	    rewrite(D, C1);
	#c_text_beside{s = S, c = C1} ->
	    rewrite(mktext(S), C1);
	#c_sep_nest{} ->
	    %% In a `nest' context, an empty document behaves like
	    %% the empty string.
	    rewrite(nil(), C);
	#c_best_nest_or{w = W, r = R, i = N} ->
	    %% An empty document as "nice" as it can be, so we
	    %% discard the alternative.
	    rewrite(null, #c_best_nest{w = W, r = R, i = N});
	#c_fit{c = C1} ->
	    rewrite(null, C1);    % identity
	#c_float_beside{d = D, h = _H, v = _V, c = C1} ->
	    %% We just remove the float wrapper; cf. below.
	    rewrite(beside(D, null), C1);
	#c_float_above_nest{d = D, h = _H, v = _V, i = N, c = C1} ->
	    %% It is important that this case just removes the
	    %% float wrapper; the empty document must be preserved
	    %% until later, or it will not be useful for forcing
	    %% line breaks.
	    rewrite(above(D, nest(N, null)), C1)
    end.

%% Both `null' and `empty' are already in use, so what do you do?

nil() ->
    text("").

hspace() ->
    text([$\s]).

union(D1, D2) ->
    #union{d1 = D1, d2 = D2}.

fit(D) ->
    #fit{d = D}.

enter_sep(Ds, N, P, C) ->
    case Ds of
	[D] ->
	    rewrite(D, C);    % Handle this case separately
	[D | Ds1] ->
	    %% Note that we never build a `sep'-context with an
	    %% empty "tail" list! `Ds1' is nonempty here!
	    rewrite(D, #c_sep_nest{ds = Ds1, i = N, p = P, c = C})
    end.

%% When we expand a `sep', the extra indentation appears as `nest'
%% operators, but not until then.

expand_sep(D, Ds, N) ->
    union(fit(horizontal([D | Ds])),
	  vertical([D | [nest(N, D1) || D1 <- Ds]])).

expand_par(D, [D1 | Ds] = DL, N) ->
    union(beside(fit(D),
		 beside(hspace(),
			mksep([fit(D1) | Ds], N - 1, true))),
	  above(D, nest(N, par(DL)))).

horizontal(Ds) ->
    foldr1(fun (D1, D2) ->
		   beside(D1, beside(hspace(), D2))
	   end, Ds).

vertical(Ds) ->
    foldr1(fun above/2, Ds).

foldr1(_F, [H]) ->
    H;
foldr1(F, [H | T]) ->
    F(H, foldr1(F, T)).

%% Internal representation of strings; stores the field width and does
%% not perform list concatenation until the text is requested. Strings
%% are thus deep lists whose first element is the length of the string.
%% Null strings are strings whose "official width" is zero, typically
%% used for markup that is not supposed to affect the indentation.

string(S) ->
    [strwidth(S) | S].

null_string(S) ->
    [0 | S].

concat([_ | []], [_ | _] = S) ->
    S;
concat([_ | _] = S, [_ | []]) ->
    S;
concat([L1 | S1], [L2 | S2]) ->
    [L1 + L2 | [S1 | S2]].

string_chars([_ | S]) ->
    S.

width(S) ->
    hd(S).

is_empty_string([_ | []]) ->
    true;
is_empty_string([_ | _]) ->
    false.

%% We need to use `strwidth' instead of list `length', to properly
%% handle Tab characters in the text segments. Note that the width of
%% tabs is hard-coded as 8 character positions, and that strings are
%% individually considered to be aligned at column 0; Tab characters are
%% not really nice to give to a prettyprinter, and this seems to be the
%% best interpretation.

strwidth(S) ->
    strwidth(S, 0).

strwidth([$\t | Cs], N) ->
    strwidth(Cs, N - (N rem 8) + 8);
strwidth([_ | Cs], N) ->
    strwidth(Cs, N + 1);
strwidth([], N) ->
    N.

%% =====================================================================