1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2008-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%% OPENGL API
%% This file is generated DO NOT EDIT
%% @doc Standard OpenGL api.
%% See <a href="http://www.opengl.org/sdk/docs/man/">www.opengl.org</a>
%%
%% Booleans are represented by integers 0 and 1.
-module(gl).
-compile(inline).
-define(GLenum,32/native-unsigned).
-define(GLboolean,8/native-unsigned).
-define(GLbitfield,32/native-unsigned).
-define(GLbyte,8/native-signed).
-define(GLshort,16/native-signed).
-define(GLint,32/native-signed).
-define(GLubyte,8/native-unsigned).
-define(GLushort,16/native-unsigned).
-define(GLuint,32/native-unsigned).
-define(GLsizei,32/native-signed).
-define(GLfloat,32/native-float).
-define(GLclampf,32/native-float).
-define(GLdouble,64/native-float).
-define(GLclampd,64/native-float).
-define(GLsizeiptr,64/native-unsigned).
-define(GLintptr,64/native-unsigned).
-define(GLUquadric,64/native-unsigned).
-define(GLhandleARB,64/native-unsigned).
-define(GLsync,64/native-unsigned).
-define(GLuint64,64/native-unsigned).
-define(GLint64,64/native-signed).
-type enum() :: non_neg_integer(). %% See wx/include/gl.hrl
-type clamp() :: float(). %% 0.0..1.0
-type offset() :: non_neg_integer(). %% Offset in memory block
-type matrix12() :: {float(),float(),float(),float(),
float(),float(),float(),float(),
float(),float(),float(),float()}.
-type matrix16() :: {float(),float(),float(),float(),
float(),float(),float(),float(),
float(),float(),float(),float(),
float(),float(),float(),float()}.
-type matrix() :: matrix12() | matrix16().
-type mem() :: binary() | tuple(). %% Memory block
-export([clearIndex/1,clearColor/4,clear/1,indexMask/1,colorMask/4,alphaFunc/2,
blendFunc/2,logicOp/1,cullFace/1,frontFace/1,pointSize/1,lineWidth/1,
lineStipple/2,polygonMode/2,polygonOffset/2,polygonStipple/1,getPolygonStipple/0,
edgeFlag/1,edgeFlagv/1,scissor/4,clipPlane/2,getClipPlane/1,drawBuffer/1,
readBuffer/1,enable/1,disable/1,isEnabled/1,enableClientState/1,disableClientState/1,
getBooleanv/1,getDoublev/1,getFloatv/1,getIntegerv/1,pushAttrib/1,
popAttrib/0,pushClientAttrib/1,popClientAttrib/0,renderMode/1,getError/0,
getString/1,finish/0,flush/0,hint/2,clearDepth/1,depthFunc/1,depthMask/1,
depthRange/2,clearAccum/4,accum/2,matrixMode/1,ortho/6,frustum/6,viewport/4,
pushMatrix/0,popMatrix/0,loadIdentity/0,loadMatrixd/1,loadMatrixf/1,
multMatrixd/1,multMatrixf/1,rotated/4,rotatef/4,scaled/3,scalef/3,translated/3,
translatef/3,isList/1,deleteLists/2,genLists/1,newList/2,endList/0,
callList/1,callLists/1,listBase/1,'begin'/1,'end'/0,vertex2d/2,vertex2f/2,
vertex2i/2,vertex2s/2,vertex3d/3,vertex3f/3,vertex3i/3,vertex3s/3,vertex4d/4,
vertex4f/4,vertex4i/4,vertex4s/4,vertex2dv/1,vertex2fv/1,vertex2iv/1,
vertex2sv/1,vertex3dv/1,vertex3fv/1,vertex3iv/1,vertex3sv/1,vertex4dv/1,
vertex4fv/1,vertex4iv/1,vertex4sv/1,normal3b/3,normal3d/3,normal3f/3,
normal3i/3,normal3s/3,normal3bv/1,normal3dv/1,normal3fv/1,normal3iv/1,
normal3sv/1,indexd/1,indexf/1,indexi/1,indexs/1,indexub/1,indexdv/1,
indexfv/1,indexiv/1,indexsv/1,indexubv/1,color3b/3,color3d/3,color3f/3,
color3i/3,color3s/3,color3ub/3,color3ui/3,color3us/3,color4b/4,color4d/4,
color4f/4,color4i/4,color4s/4,color4ub/4,color4ui/4,color4us/4,color3bv/1,
color3dv/1,color3fv/1,color3iv/1,color3sv/1,color3ubv/1,color3uiv/1,
color3usv/1,color4bv/1,color4dv/1,color4fv/1,color4iv/1,color4sv/1,
color4ubv/1,color4uiv/1,color4usv/1,texCoord1d/1,texCoord1f/1,texCoord1i/1,
texCoord1s/1,texCoord2d/2,texCoord2f/2,texCoord2i/2,texCoord2s/2,texCoord3d/3,
texCoord3f/3,texCoord3i/3,texCoord3s/3,texCoord4d/4,texCoord4f/4,texCoord4i/4,
texCoord4s/4,texCoord1dv/1,texCoord1fv/1,texCoord1iv/1,texCoord1sv/1,
texCoord2dv/1,texCoord2fv/1,texCoord2iv/1,texCoord2sv/1,texCoord3dv/1,
texCoord3fv/1,texCoord3iv/1,texCoord3sv/1,texCoord4dv/1,texCoord4fv/1,
texCoord4iv/1,texCoord4sv/1,rasterPos2d/2,rasterPos2f/2,rasterPos2i/2,
rasterPos2s/2,rasterPos3d/3,rasterPos3f/3,rasterPos3i/3,rasterPos3s/3,
rasterPos4d/4,rasterPos4f/4,rasterPos4i/4,rasterPos4s/4,rasterPos2dv/1,
rasterPos2fv/1,rasterPos2iv/1,rasterPos2sv/1,rasterPos3dv/1,rasterPos3fv/1,
rasterPos3iv/1,rasterPos3sv/1,rasterPos4dv/1,rasterPos4fv/1,rasterPos4iv/1,
rasterPos4sv/1,rectd/4,rectf/4,recti/4,rects/4,rectdv/2,rectfv/2,rectiv/2,
rectsv/2,vertexPointer/4,normalPointer/3,colorPointer/4,indexPointer/3,
texCoordPointer/4,edgeFlagPointer/2,arrayElement/1,drawArrays/3,drawElements/4,
interleavedArrays/3,shadeModel/1,lightf/3,lighti/3,lightfv/3,lightiv/3,
getLightfv/2,getLightiv/2,lightModelf/2,lightModeli/2,lightModelfv/2,
lightModeliv/2,materialf/3,materiali/3,materialfv/3,materialiv/3,getMaterialfv/2,
getMaterialiv/2,colorMaterial/2,pixelZoom/2,pixelStoref/2,pixelStorei/2,
pixelTransferf/2,pixelTransferi/2,pixelMapfv/3,pixelMapuiv/3,pixelMapusv/3,
getPixelMapfv/2,getPixelMapuiv/2,getPixelMapusv/2,bitmap/7,readPixels/7,
drawPixels/5,copyPixels/5,stencilFunc/3,stencilMask/1,stencilOp/3,
clearStencil/1,texGend/3,texGenf/3,texGeni/3,texGendv/3,texGenfv/3,
texGeniv/3,getTexGendv/2,getTexGenfv/2,getTexGeniv/2,texEnvf/3,texEnvi/3,
texEnvfv/3,texEnviv/3,getTexEnvfv/2,getTexEnviv/2,texParameterf/3,
texParameteri/3,texParameterfv/3,texParameteriv/3,getTexParameterfv/2,
getTexParameteriv/2,getTexLevelParameterfv/3,getTexLevelParameteriv/3,
texImage1D/8,texImage2D/9,getTexImage/5,genTextures/1,deleteTextures/1,
bindTexture/2,prioritizeTextures/2,areTexturesResident/1,isTexture/1,
texSubImage1D/7,texSubImage2D/9,copyTexImage1D/7,copyTexImage2D/8,
copyTexSubImage1D/6,copyTexSubImage2D/8,map1d/6,map1f/6,map2d/10,map2f/10,
getMapdv/3,getMapfv/3,getMapiv/3,evalCoord1d/1,evalCoord1f/1,evalCoord1dv/1,
evalCoord1fv/1,evalCoord2d/2,evalCoord2f/2,evalCoord2dv/1,evalCoord2fv/1,
mapGrid1d/3,mapGrid1f/3,mapGrid2d/6,mapGrid2f/6,evalPoint1/1,evalPoint2/2,
evalMesh1/3,evalMesh2/5,fogf/2,fogi/2,fogfv/2,fogiv/2,feedbackBuffer/3,
passThrough/1,selectBuffer/2,initNames/0,loadName/1,pushName/1,popName/0,
blendColor/4,blendEquation/1,drawRangeElements/6,texImage3D/10,texSubImage3D/11,
copyTexSubImage3D/9,colorTable/6,colorTableParameterfv/3,colorTableParameteriv/3,
copyColorTable/5,getColorTable/4,getColorTableParameterfv/2,getColorTableParameteriv/2,
colorSubTable/6,copyColorSubTable/5,convolutionFilter1D/6,convolutionFilter2D/7,
convolutionParameterf/3,convolutionParameterfv/3,convolutionParameteri/3,
convolutionParameteriv/3,copyConvolutionFilter1D/5,copyConvolutionFilter2D/6,
getConvolutionFilter/4,getConvolutionParameterfv/2,getConvolutionParameteriv/2,
separableFilter2D/8,getHistogram/5,getHistogramParameterfv/2,getHistogramParameteriv/2,
getMinmax/5,getMinmaxParameterfv/2,getMinmaxParameteriv/2,histogram/4,
minmax/3,resetHistogram/1,resetMinmax/1,activeTexture/1,sampleCoverage/2,
compressedTexImage3D/9,compressedTexImage2D/8,compressedTexImage1D/7,
compressedTexSubImage3D/11,compressedTexSubImage2D/9,compressedTexSubImage1D/7,
getCompressedTexImage/3,clientActiveTexture/1,multiTexCoord1d/2,
multiTexCoord1dv/2,multiTexCoord1f/2,multiTexCoord1fv/2,multiTexCoord1i/2,
multiTexCoord1iv/2,multiTexCoord1s/2,multiTexCoord1sv/2,multiTexCoord2d/3,
multiTexCoord2dv/2,multiTexCoord2f/3,multiTexCoord2fv/2,multiTexCoord2i/3,
multiTexCoord2iv/2,multiTexCoord2s/3,multiTexCoord2sv/2,multiTexCoord3d/4,
multiTexCoord3dv/2,multiTexCoord3f/4,multiTexCoord3fv/2,multiTexCoord3i/4,
multiTexCoord3iv/2,multiTexCoord3s/4,multiTexCoord3sv/2,multiTexCoord4d/5,
multiTexCoord4dv/2,multiTexCoord4f/5,multiTexCoord4fv/2,multiTexCoord4i/5,
multiTexCoord4iv/2,multiTexCoord4s/5,multiTexCoord4sv/2,loadTransposeMatrixf/1,
loadTransposeMatrixd/1,multTransposeMatrixf/1,multTransposeMatrixd/1,
blendFuncSeparate/4,multiDrawArrays/3,pointParameterf/2,pointParameterfv/2,
pointParameteri/2,pointParameteriv/2,fogCoordf/1,fogCoordfv/1,fogCoordd/1,
fogCoorddv/1,fogCoordPointer/3,secondaryColor3b/3,secondaryColor3bv/1,
secondaryColor3d/3,secondaryColor3dv/1,secondaryColor3f/3,secondaryColor3fv/1,
secondaryColor3i/3,secondaryColor3iv/1,secondaryColor3s/3,secondaryColor3sv/1,
secondaryColor3ub/3,secondaryColor3ubv/1,secondaryColor3ui/3,secondaryColor3uiv/1,
secondaryColor3us/3,secondaryColor3usv/1,secondaryColorPointer/4,
windowPos2d/2,windowPos2dv/1,windowPos2f/2,windowPos2fv/1,windowPos2i/2,
windowPos2iv/1,windowPos2s/2,windowPos2sv/1,windowPos3d/3,windowPos3dv/1,
windowPos3f/3,windowPos3fv/1,windowPos3i/3,windowPos3iv/1,windowPos3s/3,
windowPos3sv/1,genQueries/1,deleteQueries/1,isQuery/1,beginQuery/2,
endQuery/1,getQueryiv/2,getQueryObjectiv/2,getQueryObjectuiv/2,bindBuffer/2,
deleteBuffers/1,genBuffers/1,isBuffer/1,bufferData/4,bufferSubData/4,
getBufferSubData/4,getBufferParameteriv/2,blendEquationSeparate/2,
drawBuffers/1,stencilOpSeparate/4,stencilFuncSeparate/4,stencilMaskSeparate/2,
attachShader/2,bindAttribLocation/3,compileShader/1,createProgram/0,
createShader/1,deleteProgram/1,deleteShader/1,detachShader/2,disableVertexAttribArray/1,
enableVertexAttribArray/1,getActiveAttrib/3,getActiveUniform/3,getAttachedShaders/2,
getAttribLocation/2,getProgramiv/2,getProgramInfoLog/2,getShaderiv/2,
getShaderInfoLog/2,getShaderSource/2,getUniformLocation/2,getUniformfv/2,
getUniformiv/2,getVertexAttribdv/2,getVertexAttribfv/2,getVertexAttribiv/2,
isProgram/1,isShader/1,linkProgram/1,shaderSource/2,useProgram/1,uniform1f/2,
uniform2f/3,uniform3f/4,uniform4f/5,uniform1i/2,uniform2i/3,uniform3i/4,
uniform4i/5,uniform1fv/2,uniform2fv/2,uniform3fv/2,uniform4fv/2,uniform1iv/2,
uniform2iv/2,uniform3iv/2,uniform4iv/2,uniformMatrix2fv/3,uniformMatrix3fv/3,
uniformMatrix4fv/3,validateProgram/1,vertexAttrib1d/2,vertexAttrib1dv/2,
vertexAttrib1f/2,vertexAttrib1fv/2,vertexAttrib1s/2,vertexAttrib1sv/2,
vertexAttrib2d/3,vertexAttrib2dv/2,vertexAttrib2f/3,vertexAttrib2fv/2,
vertexAttrib2s/3,vertexAttrib2sv/2,vertexAttrib3d/4,vertexAttrib3dv/2,
vertexAttrib3f/4,vertexAttrib3fv/2,vertexAttrib3s/4,vertexAttrib3sv/2,
vertexAttrib4Nbv/2,vertexAttrib4Niv/2,vertexAttrib4Nsv/2,vertexAttrib4Nub/5,
vertexAttrib4Nubv/2,vertexAttrib4Nuiv/2,vertexAttrib4Nusv/2,vertexAttrib4bv/2,
vertexAttrib4d/5,vertexAttrib4dv/2,vertexAttrib4f/5,vertexAttrib4fv/2,
vertexAttrib4iv/2,vertexAttrib4s/5,vertexAttrib4sv/2,vertexAttrib4ubv/2,
vertexAttrib4uiv/2,vertexAttrib4usv/2,vertexAttribPointer/6,uniformMatrix2x3fv/3,
uniformMatrix3x2fv/3,uniformMatrix2x4fv/3,uniformMatrix4x2fv/3,uniformMatrix3x4fv/3,
uniformMatrix4x3fv/3,colorMaski/5,getBooleani_v/2,getIntegeri_v/2,
enablei/2,disablei/2,isEnabledi/2,beginTransformFeedback/1,endTransformFeedback/0,
bindBufferRange/5,bindBufferBase/3,transformFeedbackVaryings/3,getTransformFeedbackVarying/3,
clampColor/2,beginConditionalRender/2,endConditionalRender/0,vertexAttribIPointer/5,
getVertexAttribIiv/2,getVertexAttribIuiv/2,vertexAttribI1i/2,vertexAttribI2i/3,
vertexAttribI3i/4,vertexAttribI4i/5,vertexAttribI1ui/2,vertexAttribI2ui/3,
vertexAttribI3ui/4,vertexAttribI4ui/5,vertexAttribI1iv/2,vertexAttribI2iv/2,
vertexAttribI3iv/2,vertexAttribI4iv/2,vertexAttribI1uiv/2,vertexAttribI2uiv/2,
vertexAttribI3uiv/2,vertexAttribI4uiv/2,vertexAttribI4bv/2,vertexAttribI4sv/2,
vertexAttribI4ubv/2,vertexAttribI4usv/2,getUniformuiv/2,bindFragDataLocation/3,
getFragDataLocation/2,uniform1ui/2,uniform2ui/3,uniform3ui/4,uniform4ui/5,
uniform1uiv/2,uniform2uiv/2,uniform3uiv/2,uniform4uiv/2,texParameterIiv/3,
texParameterIuiv/3,getTexParameterIiv/2,getTexParameterIuiv/2,clearBufferiv/3,
clearBufferuiv/3,clearBufferfv/3,clearBufferfi/4,getStringi/2,drawArraysInstanced/4,
drawElementsInstanced/5,texBuffer/3,primitiveRestartIndex/1,getInteger64i_v/2,
getBufferParameteri64v/2,framebufferTexture/4,vertexAttribDivisor/2,
minSampleShading/1,blendEquationi/2,blendEquationSeparatei/3,blendFunci/3,
blendFuncSeparatei/5,loadTransposeMatrixfARB/1,loadTransposeMatrixdARB/1,
multTransposeMatrixfARB/1,multTransposeMatrixdARB/1,weightbvARB/1,
weightsvARB/1,weightivARB/1,weightfvARB/1,weightdvARB/1,weightubvARB/1,
weightusvARB/1,weightuivARB/1,vertexBlendARB/1,currentPaletteMatrixARB/1,
matrixIndexubvARB/1,matrixIndexusvARB/1,matrixIndexuivARB/1,programStringARB/3,
bindProgramARB/2,deleteProgramsARB/1,genProgramsARB/1,programEnvParameter4dARB/6,
programEnvParameter4dvARB/3,programEnvParameter4fARB/6,programEnvParameter4fvARB/3,
programLocalParameter4dARB/6,programLocalParameter4dvARB/3,programLocalParameter4fARB/6,
programLocalParameter4fvARB/3,getProgramEnvParameterdvARB/2,getProgramEnvParameterfvARB/2,
getProgramLocalParameterdvARB/2,getProgramLocalParameterfvARB/2,
getProgramStringARB/3,getBufferParameterivARB/2,deleteObjectARB/1,
getHandleARB/1,detachObjectARB/2,createShaderObjectARB/1,shaderSourceARB/2,
compileShaderARB/1,createProgramObjectARB/0,attachObjectARB/2,linkProgramARB/1,
useProgramObjectARB/1,validateProgramARB/1,getObjectParameterfvARB/2,
getObjectParameterivARB/2,getInfoLogARB/2,getAttachedObjectsARB/2,
getUniformLocationARB/2,getActiveUniformARB/3,getUniformfvARB/2,
getUniformivARB/2,getShaderSourceARB/2,bindAttribLocationARB/3,getActiveAttribARB/3,
getAttribLocationARB/2,isRenderbuffer/1,bindRenderbuffer/2,deleteRenderbuffers/1,
genRenderbuffers/1,renderbufferStorage/4,getRenderbufferParameteriv/2,
isFramebuffer/1,bindFramebuffer/2,deleteFramebuffers/1,genFramebuffers/1,
checkFramebufferStatus/1,framebufferTexture1D/5,framebufferTexture2D/5,
framebufferTexture3D/6,framebufferRenderbuffer/4,getFramebufferAttachmentParameteriv/3,
generateMipmap/1,blitFramebuffer/10,renderbufferStorageMultisample/5,
framebufferTextureLayer/5,framebufferTextureFaceARB/5,flushMappedBufferRange/3,
bindVertexArray/1,deleteVertexArrays/1,genVertexArrays/1,isVertexArray/1,
getUniformIndices/2,getActiveUniformsiv/3,getActiveUniformName/3,
getUniformBlockIndex/2,getActiveUniformBlockiv/4,getActiveUniformBlockName/3,
uniformBlockBinding/3,copyBufferSubData/5,drawElementsBaseVertex/5,
drawRangeElementsBaseVertex/7,drawElementsInstancedBaseVertex/6,
provokingVertex/1,fenceSync/2,isSync/1,deleteSync/1,clientWaitSync/3,
waitSync/3,getInteger64v/1,getSynciv/3,texImage2DMultisample/6,texImage3DMultisample/7,
getMultisamplefv/2,sampleMaski/2,namedStringARB/3,deleteNamedStringARB/1,
compileShaderIncludeARB/2,isNamedStringARB/1,getNamedStringARB/2,
getNamedStringivARB/2,bindFragDataLocationIndexed/4,getFragDataIndex/2,
genSamplers/1,deleteSamplers/1,isSampler/1,bindSampler/2,samplerParameteri/3,
samplerParameteriv/3,samplerParameterf/3,samplerParameterfv/3,samplerParameterIiv/3,
samplerParameterIuiv/3,getSamplerParameteriv/2,getSamplerParameterIiv/2,
getSamplerParameterfv/2,getSamplerParameterIuiv/2,queryCounter/2,
getQueryObjecti64v/2,getQueryObjectui64v/2,drawArraysIndirect/2,
drawElementsIndirect/3,uniform1d/2,uniform2d/3,uniform3d/4,uniform4d/5,
uniform1dv/2,uniform2dv/2,uniform3dv/2,uniform4dv/2,uniformMatrix2dv/3,
uniformMatrix3dv/3,uniformMatrix4dv/3,uniformMatrix2x3dv/3,uniformMatrix2x4dv/3,
uniformMatrix3x2dv/3,uniformMatrix3x4dv/3,uniformMatrix4x2dv/3,uniformMatrix4x3dv/3,
getUniformdv/2,getSubroutineUniformLocation/3,getSubroutineIndex/3,
getActiveSubroutineUniformName/4,getActiveSubroutineName/4,uniformSubroutinesuiv/2,
getUniformSubroutineuiv/2,getProgramStageiv/3,patchParameteri/2,
patchParameterfv/2,bindTransformFeedback/2,deleteTransformFeedbacks/1,
genTransformFeedbacks/1,isTransformFeedback/1,pauseTransformFeedback/0,
resumeTransformFeedback/0,drawTransformFeedback/2,drawTransformFeedbackStream/3,
beginQueryIndexed/3,endQueryIndexed/2,getQueryIndexediv/3,releaseShaderCompiler/0,
shaderBinary/3,getShaderPrecisionFormat/2,depthRangef/2,clearDepthf/1,
getProgramBinary/2,programBinary/3,programParameteri/3,useProgramStages/3,
activeShaderProgram/2,createShaderProgramv/2,bindProgramPipeline/1,
deleteProgramPipelines/1,genProgramPipelines/1,isProgramPipeline/1,
getProgramPipelineiv/2,programUniform1i/3,programUniform1iv/3,programUniform1f/3,
programUniform1fv/3,programUniform1d/3,programUniform1dv/3,programUniform1ui/3,
programUniform1uiv/3,programUniform2i/4,programUniform2iv/3,programUniform2f/4,
programUniform2fv/3,programUniform2d/4,programUniform2dv/3,programUniform2ui/4,
programUniform2uiv/3,programUniform3i/5,programUniform3iv/3,programUniform3f/5,
programUniform3fv/3,programUniform3d/5,programUniform3dv/3,programUniform3ui/5,
programUniform3uiv/3,programUniform4i/6,programUniform4iv/3,programUniform4f/6,
programUniform4fv/3,programUniform4d/6,programUniform4dv/3,programUniform4ui/6,
programUniform4uiv/3,programUniformMatrix2fv/4,programUniformMatrix3fv/4,
programUniformMatrix4fv/4,programUniformMatrix2dv/4,programUniformMatrix3dv/4,
programUniformMatrix4dv/4,programUniformMatrix2x3fv/4,programUniformMatrix3x2fv/4,
programUniformMatrix2x4fv/4,programUniformMatrix4x2fv/4,programUniformMatrix3x4fv/4,
programUniformMatrix4x3fv/4,programUniformMatrix2x3dv/4,programUniformMatrix3x2dv/4,
programUniformMatrix2x4dv/4,programUniformMatrix4x2dv/4,programUniformMatrix3x4dv/4,
programUniformMatrix4x3dv/4,validateProgramPipeline/1,getProgramPipelineInfoLog/2,
vertexAttribL1d/2,vertexAttribL2d/3,vertexAttribL3d/4,vertexAttribL4d/5,
vertexAttribL1dv/2,vertexAttribL2dv/2,vertexAttribL3dv/2,vertexAttribL4dv/2,
vertexAttribLPointer/5,getVertexAttribLdv/2,viewportArrayv/2,viewportIndexedf/5,
viewportIndexedfv/2,scissorArrayv/2,scissorIndexed/5,scissorIndexedv/2,
depthRangeArrayv/2,depthRangeIndexed/3,getFloati_v/2,getDoublei_v/2,
debugMessageControlARB/5,debugMessageInsertARB/5,getDebugMessageLogARB/2,
getGraphicsResetStatusARB/0,drawArraysInstancedBaseInstance/5,drawElementsInstancedBaseInstance/6,
drawElementsInstancedBaseVertexBaseInstance/7,drawTransformFeedbackInstanced/3,
drawTransformFeedbackStreamInstanced/4,getInternalformativ/4,bindImageTexture/7,
memoryBarrier/1,texStorage1D/4,texStorage2D/5,texStorage3D/6,depthBoundsEXT/2,
stencilClearTagEXT/2]).
-export([call/2, cast/2, send_bin/1]).
%% @hidden
call(Op, Args) ->
Port = get(opengl_port),
_ = erlang:port_control(Port,Op,Args),
rec(Op).
%% @hidden
cast(Op, Args) ->
Port = get(opengl_port),
_ = erlang:port_control(Port,Op,Args),
ok.
%% @hidden
rec(Op) ->
receive
{'_egl_result_', Res} -> Res;
{'_egl_error_', Op, Res} -> error({error,Res,Op});
{'_egl_error_', Other, Res} ->
Err = io_lib:format("~p in op: ~p", [Res, Other]),
error_logger:error_report([{gl, error}, {message, lists:flatten(Err)}]),
rec(Op)
end.
%% @hidden
send_bin(Bin) when is_binary(Bin) ->
Port = get(opengl_port),
erlang:port_command(Port,Bin);
send_bin(Tuple) when is_tuple(Tuple) ->
Port = get(opengl_port),
case element(2, Tuple) of
Bin when is_binary(Bin) ->
erlang:port_command(Port,Bin)
end.
%% API
%% @doc Specify the clear value for the color index buffers
%%
%% ``gl:clearIndex'' specifies the index used by {@link gl:clear/1} to clear the color index
%% buffers. `C' is not clamped. Rather, `C' is converted to a fixed-point value
%% with unspecified precision to the right of the binary point. The integer part of this
%% value is then masked with 2 m-1, where m is the number of bits in a color index stored
%% in the frame buffer.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearIndex.xml">external</a> documentation.
-spec clearIndex(C) -> 'ok' when C :: float().
clearIndex(C) ->
cast(5037, <<C:?GLfloat>>).
%% @doc Specify clear values for the color buffers
%%
%% ``gl:clearColor'' specifies the red, green, blue, and alpha values used by {@link gl:clear/1}
%% to clear the color buffers. Values specified by ``gl:clearColor'' are clamped to the
%% range [0 1].
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearColor.xml">external</a> documentation.
-spec clearColor(Red, Green, Blue, Alpha) -> 'ok' when Red :: clamp(),Green :: clamp(),Blue :: clamp(),Alpha :: clamp().
clearColor(Red,Green,Blue,Alpha) ->
cast(5038, <<Red:?GLclampf,Green:?GLclampf,Blue:?GLclampf,Alpha:?GLclampf>>).
%% @doc Clear buffers to preset values
%%
%% ``gl:clear'' sets the bitplane area of the window to values previously selected by ``gl:clearColor''
%% , ``gl:clearDepth'', and ``gl:clearStencil''. Multiple color buffers can be cleared
%% simultaneously by selecting more than one buffer at a time using {@link gl:drawBuffer/1} .
%%
%% The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect
%% the operation of ``gl:clear''. The scissor box bounds the cleared region. Alpha function,
%% blend function, logical operation, stenciling, texture mapping, and depth-buffering are
%% ignored by ``gl:clear''.
%%
%% ``gl:clear'' takes a single argument that is the bitwise OR of several values indicating
%% which buffer is to be cleared.
%%
%% The values are as follows:
%%
%% `?GL_COLOR_BUFFER_BIT': Indicates the buffers currently enabled for color writing.
%%
%% `?GL_DEPTH_BUFFER_BIT': Indicates the depth buffer.
%%
%% `?GL_STENCIL_BUFFER_BIT': Indicates the stencil buffer.
%%
%% The value to which each buffer is cleared depends on the setting of the clear value for
%% that buffer.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClear.xml">external</a> documentation.
-spec clear(Mask) -> 'ok' when Mask :: integer().
clear(Mask) ->
cast(5039, <<Mask:?GLbitfield>>).
%% @doc Control the writing of individual bits in the color index buffers
%%
%% ``gl:indexMask'' controls the writing of individual bits in the color index buffers.
%% The least significant n bits of `Mask' , where n is the number of bits in a color
%% index buffer, specify a mask. Where a 1 (one) appears in the mask, it's possible to write
%% to the corresponding bit in the color index buffer (or buffers). Where a 0 (zero) appears,
%% the corresponding bit is write-protected.
%%
%% This mask is used only in color index mode, and it affects only the buffers currently
%% selected for writing (see {@link gl:drawBuffer/1} ). Initially, all bits are enabled for
%% writing.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIndexMask.xml">external</a> documentation.
-spec indexMask(Mask) -> 'ok' when Mask :: integer().
indexMask(Mask) ->
cast(5040, <<Mask:?GLuint>>).
%% @doc Enable and disable writing of frame buffer color components
%%
%% ``gl:colorMask'' and ``gl:colorMaski'' specify whether the individual color components
%% in the frame buffer can or cannot be written. ``gl:colorMaski'' sets the mask for a
%% specific draw buffer, whereas ``gl:colorMask'' sets the mask for all draw buffers. If `Red'
%% is `?GL_FALSE', for example, no change is made to the red component of any pixel
%% in any of the color buffers, regardless of the drawing operation attempted.
%%
%% Changes to individual bits of components cannot be controlled. Rather, changes are either
%% enabled or disabled for entire color components.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorMask.xml">external</a> documentation.
-spec colorMask(Red, Green, Blue, Alpha) -> 'ok' when Red :: 0|1,Green :: 0|1,Blue :: 0|1,Alpha :: 0|1.
colorMask(Red,Green,Blue,Alpha) ->
cast(5041, <<Red:?GLboolean,Green:?GLboolean,Blue:?GLboolean,Alpha:?GLboolean>>).
%% @doc Specify the alpha test function
%%
%% The alpha test discards fragments depending on the outcome of a comparison between an
%% incoming fragment's alpha value and a constant reference value. ``gl:alphaFunc'' specifies
%% the reference value and the comparison function. The comparison is performed only if alpha
%% testing is enabled. By default, it is not enabled. (See {@link gl:enable/1} and {@link gl:enable/1}
%% of `?GL_ALPHA_TEST'.)
%%
%% `Func' and `Ref' specify the conditions under which the pixel is drawn. The
%% incoming alpha value is compared to `Ref' using the function specified by `Func' .
%% If the value passes the comparison, the incoming fragment is drawn if it also passes subsequent
%% stencil and depth buffer tests. If the value fails the comparison, no change is made to
%% the frame buffer at that pixel location. The comparison functions are as follows:
%%
%% `?GL_NEVER': Never passes.
%%
%% `?GL_LESS': Passes if the incoming alpha value is less than the reference value.
%%
%% `?GL_EQUAL': Passes if the incoming alpha value is equal to the reference value.
%%
%% `?GL_LEQUAL': Passes if the incoming alpha value is less than or equal to the reference
%% value.
%%
%% `?GL_GREATER': Passes if the incoming alpha value is greater than the reference
%% value.
%%
%% `?GL_NOTEQUAL': Passes if the incoming alpha value is not equal to the reference
%% value.
%%
%% `?GL_GEQUAL': Passes if the incoming alpha value is greater than or equal to the
%% reference value.
%%
%% `?GL_ALWAYS': Always passes (initial value).
%%
%% ``gl:alphaFunc'' operates on all pixel write operations, including those resulting from
%% the scan conversion of points, lines, polygons, and bitmaps, and from pixel draw and copy
%% operations. ``gl:alphaFunc'' does not affect screen clear operations.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glAlphaFunc.xml">external</a> documentation.
-spec alphaFunc(Func, Ref) -> 'ok' when Func :: enum(),Ref :: clamp().
alphaFunc(Func,Ref) ->
cast(5042, <<Func:?GLenum,Ref:?GLclampf>>).
%% @doc Specify pixel arithmetic
%%
%% Pixels can be drawn using a function that blends the incoming (source) RGBA values with
%% the RGBA values that are already in the frame buffer (the destination values). Blending
%% is initially disabled. Use {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_BLEND'
%% to enable and disable blending.
%%
%% ``gl:blendFunc'' defines the operation of blending for all draw buffers when it is enabled.
%% ``gl:blendFunci'' defines the operation of blending for a single draw buffer specified
%% by `Buf' when enabled for that draw buffer. `Sfactor' specifies which method
%% is used to scale the source color components. `Dfactor' specifies which method is
%% used to scale the destination color components. Both parameters must be one of the following
%% symbolic constants: `?GL_ZERO', `?GL_ONE', `?GL_SRC_COLOR', `?GL_ONE_MINUS_SRC_COLOR'
%% , `?GL_DST_COLOR', `?GL_ONE_MINUS_DST_COLOR', `?GL_SRC_ALPHA', `?GL_ONE_MINUS_SRC_ALPHA'
%% , `?GL_DST_ALPHA', `?GL_ONE_MINUS_DST_ALPHA', `?GL_CONSTANT_COLOR', `?GL_ONE_MINUS_CONSTANT_COLOR'
%% , `?GL_CONSTANT_ALPHA', `?GL_ONE_MINUS_CONSTANT_ALPHA', `?GL_SRC_ALPHA_SATURATE'
%% , `?GL_SRC1_COLOR', `?GL_ONE_MINUS_SRC1_COLOR', `?GL_SRC1_ALPHA', and `?GL_ONE_MINUS_SRC1_ALPHA'
%% . The possible methods are described in the following table. Each method defines four
%% scale factors, one each for red, green, blue, and alpha. In the table and in subsequent
%% equations, first source, second source and destination color components are referred to
%% as (R s0 G s0 B s0 A s0), (R s1 G s1 B s1 A s1) and (R d G d B d A d), respectively. The color specified by {@link gl:blendColor/4} is referred to
%% as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B k A), where
%%
%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
%% Source and destination scale factors are referred to as (s R s G s B s A) and (d R d G d B d A). The scale factors described
%% in the table, denoted (f R f G f B f A), represent either source or destination factors. All scale factors
%% have range [0 1].
%%
%% <table><tbody><tr><td>` Parameter '</td><td>(f R f G f B f A)</td></tr></tbody><tbody><tr><td>`?GL_ZERO'
%% </td><td>(0 0 0 0)</td></tr><tr><td>`?GL_ONE'</td><td>(1 1 1 1)</td></tr><tr><td>`?GL_SRC_COLOR'</td>
%% <td>(R s0 k/R G s0 k/G B s0 k/B A s0 k/A)</td></tr><tr><td>`?GL_ONE_MINUS_SRC_COLOR'</td><td>(1 1 1 1)-(R s0 k/R G s0 k/G B s0 k/B
%% A s0 k/A)</td></tr><tr><td>`?GL_DST_COLOR'
%% </td><td>(R d k/R G d k/G B d k/B A d k/A)</td></tr><tr><td>`?GL_ONE_MINUS_DST_COLOR'</td><td>(1 1 1 1)-(R d k/R G d k/G B d k/B
%% A d k/A)</td></tr><tr><td>`?GL_SRC_ALPHA'
%% </td><td>(A s0 k/A A s0 k/A A s0 k/A A s0 k/A)</td></tr><tr><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td>(1 1 1 1)-(A s0 k/A A s0 k/A A s0
%% k/A A s0 k/A)</td></tr><tr><td>`?GL_DST_ALPHA'
%% </td><td>(A d k/A A d k/A A d k/A A d k/A)</td></tr><tr><td>`?GL_ONE_MINUS_DST_ALPHA'</td><td>(1 1 1 1)-(A d k/A A d k/A A d k/A
%% A d k/A)</td></tr><tr><td>`?GL_CONSTANT_COLOR'
%% </td><td>(R c G c B c A c)</td></tr><tr><td>`?GL_ONE_MINUS_CONSTANT_COLOR'</td><td>(1 1 1 1)-(R c G c B c A c)</td></tr><tr><td>
%% `?GL_CONSTANT_ALPHA'</td><td>(A c A c A c A c)</td></tr><tr><td>`?GL_ONE_MINUS_CONSTANT_ALPHA'</td>
%% <td>(1 1 1 1)-(A c A c A c A c)</td></tr><tr><td>`?GL_SRC_ALPHA_SATURATE'</td><td>(i i i 1)</td></tr><tr><td>`?GL_SRC1_COLOR'
%% </td><td>(R s1 k/R G s1 k/G B s1 k/B A s1 k/A)</td></tr><tr><td>`?GL_ONE_MINUS_SRC1_COLOR'</td><td>(1 1 1 1)-(R s1 k/R G s1 k/G B
%% s1 k/B A s1 k/A)</td></tr><tr><td>`?GL_SRC1_ALPHA'
%% </td><td>(A s1 k/A A s1 k/A A s1 k/A A s1 k/A)</td></tr><tr><td>`?GL_ONE_MINUS_SRC1_ALPHA'</td><td>(1 1 1 1)-(A s1 k/A A s1 k/A A
%% s1 k/A A s1 k/A)</td></tr></tbody></table>
%%
%%
%% In the table,
%%
%% i=min(A s k A-A d) k/A
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
%% factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a blend
%% factor equal to 0 reduces its multiplicand to 0. For example, when `Sfactor' is `?GL_SRC_ALPHA'
%% , `Dfactor' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendFunc.xml">external</a> documentation.
-spec blendFunc(Sfactor, Dfactor) -> 'ok' when Sfactor :: enum(),Dfactor :: enum().
blendFunc(Sfactor,Dfactor) ->
cast(5043, <<Sfactor:?GLenum,Dfactor:?GLenum>>).
%% @doc Specify a logical pixel operation for rendering
%%
%% ``gl:logicOp'' specifies a logical operation that, when enabled, is applied between
%% the incoming RGBA color and the RGBA color at the corresponding location in the frame
%% buffer. To enable or disable the logical operation, call {@link gl:enable/1} and {@link gl:enable/1}
%% using the symbolic constant `?GL_COLOR_LOGIC_OP'. The initial value is disabled.
%%
%% <table><tbody><tr><td>` Opcode '</td><td>` Resulting Operation '</td></tr></tbody>
%% <tbody><tr><td>`?GL_CLEAR'</td><td> 0 </td></tr><tr><td>`?GL_SET'</td><td> 1 </td>
%% </tr><tr><td>`?GL_COPY'</td><td> s </td></tr><tr><td>`?GL_COPY_INVERTED'</td><td>
%% ~s </td></tr><tr><td>`?GL_NOOP'</td><td> d </td></tr><tr><td>`?GL_INVERT'</td><td>
%% ~d </td></tr><tr><td>`?GL_AND'</td><td> s & d </td></tr><tr><td>`?GL_NAND'</td>
%% <td> ~(s & d) </td></tr><tr><td>`?GL_OR'</td><td> s | d </td></tr><tr><td>`?GL_NOR'
%% </td><td> ~(s | d) </td></tr><tr><td>`?GL_XOR'</td><td> s ^ d </td></tr><tr><td>`?GL_EQUIV'
%% </td><td> ~(s ^ d) </td></tr><tr><td>`?GL_AND_REVERSE'</td><td> s & ~d </td></tr>
%% <tr><td>`?GL_AND_INVERTED'</td><td> ~s & d </td></tr><tr><td>`?GL_OR_REVERSE'
%% </td><td> s | ~d </td></tr><tr><td>`?GL_OR_INVERTED'</td><td> ~s | d </td></tr></tbody>
%% </table>
%%
%% `Opcode' is a symbolic constant chosen from the list above. In the explanation of
%% the logical operations, `s' represents the incoming color and `d' represents
%% the color in the frame buffer. Standard C-language operators are used. As these bitwise
%% operators suggest, the logical operation is applied independently to each bit pair of
%% the source and destination colors.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLogicOp.xml">external</a> documentation.
-spec logicOp(Opcode) -> 'ok' when Opcode :: enum().
logicOp(Opcode) ->
cast(5044, <<Opcode:?GLenum>>).
%% @doc Specify whether front- or back-facing facets can be culled
%%
%% ``gl:cullFace'' specifies whether front- or back-facing facets are culled (as specified
%% by `mode') when facet culling is enabled. Facet culling is initially disabled. To
%% enable and disable facet culling, call the {@link gl:enable/1} and {@link gl:enable/1}
%% commands with the argument `?GL_CULL_FACE'. Facets include triangles, quadrilaterals,
%% polygons, and rectangles.
%%
%% {@link gl:frontFace/1} specifies which of the clockwise and counterclockwise facets are
%% front-facing and back-facing. See {@link gl:frontFace/1} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCullFace.xml">external</a> documentation.
-spec cullFace(Mode) -> 'ok' when Mode :: enum().
cullFace(Mode) ->
cast(5045, <<Mode:?GLenum>>).
%% @doc Define front- and back-facing polygons
%%
%% In a scene composed entirely of opaque closed surfaces, back-facing polygons are never
%% visible. Eliminating these invisible polygons has the obvious benefit of speeding up the
%% rendering of the image. To enable and disable elimination of back-facing polygons, call {@link gl:enable/1}
%% and {@link gl:enable/1} with argument `?GL_CULL_FACE'.
%%
%% The projection of a polygon to window coordinates is said to have clockwise winding if
%% an imaginary object following the path from its first vertex, its second vertex, and so
%% on, to its last vertex, and finally back to its first vertex, moves in a clockwise direction
%% about the interior of the polygon. The polygon's winding is said to be counterclockwise
%% if the imaginary object following the same path moves in a counterclockwise direction
%% about the interior of the polygon. ``gl:frontFace'' specifies whether polygons with
%% clockwise winding in window coordinates, or counterclockwise winding in window coordinates,
%% are taken to be front-facing. Passing `?GL_CCW' to `Mode' selects counterclockwise
%% polygons as front-facing; `?GL_CW' selects clockwise polygons as front-facing. By
%% default, counterclockwise polygons are taken to be front-facing.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFrontFace.xml">external</a> documentation.
-spec frontFace(Mode) -> 'ok' when Mode :: enum().
frontFace(Mode) ->
cast(5046, <<Mode:?GLenum>>).
%% @doc Specify the diameter of rasterized points
%%
%% ``gl:pointSize'' specifies the rasterized diameter of points. If point size mode is
%% disabled (see {@link gl:enable/1} with parameter `?GL_PROGRAM_POINT_SIZE'), this value
%% will be used to rasterize points. Otherwise, the value written to the shading language
%% built-in variable gl_PointSize will be used.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPointSize.xml">external</a> documentation.
-spec pointSize(Size) -> 'ok' when Size :: float().
pointSize(Size) ->
cast(5047, <<Size:?GLfloat>>).
%% @doc Specify the width of rasterized lines
%%
%% ``gl:lineWidth'' specifies the rasterized width of both aliased and antialiased lines.
%% Using a line width other than 1 has different effects, depending on whether line antialiasing
%% is enabled. To enable and disable line antialiasing, call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_LINE_SMOOTH'. Line antialiasing is initially disabled.
%%
%% If line antialiasing is disabled, the actual width is determined by rounding the supplied
%% width to the nearest integer. (If the rounding results in the value 0, it is as if the
%% line width were 1.) If |&Delta; x|>=|&Delta; y|, `i' pixels are filled in each column that is rasterized,
%% where `i' is the rounded value of `Width' . Otherwise, `i' pixels are filled
%% in each row that is rasterized.
%%
%% If antialiasing is enabled, line rasterization produces a fragment for each pixel square
%% that intersects the region lying within the rectangle having width equal to the current
%% line width, length equal to the actual length of the line, and centered on the mathematical
%% line segment. The coverage value for each fragment is the window coordinate area of the
%% intersection of the rectangular region with the corresponding pixel square. This value
%% is saved and used in the final rasterization step.
%%
%% Not all widths can be supported when line antialiasing is enabled. If an unsupported
%% width is requested, the nearest supported width is used. Only width 1 is guaranteed to
%% be supported; others depend on the implementation. Likewise, there is a range for aliased
%% line widths as well. To query the range of supported widths and the size difference between
%% supported widths within the range, call {@link gl:getBooleanv/1} with arguments `?GL_ALIASED_LINE_WIDTH_RANGE'
%% , `?GL_SMOOTH_LINE_WIDTH_RANGE', and `?GL_SMOOTH_LINE_WIDTH_GRANULARITY'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLineWidth.xml">external</a> documentation.
-spec lineWidth(Width) -> 'ok' when Width :: float().
lineWidth(Width) ->
cast(5048, <<Width:?GLfloat>>).
%% @doc Specify the line stipple pattern
%%
%% Line stippling masks out certain fragments produced by rasterization; those fragments
%% will not be drawn. The masking is achieved by using three parameters: the 16-bit line
%% stipple pattern `Pattern' , the repeat count `Factor' , and an integer stipple
%% counter s.
%%
%% Counter s is reset to 0 whenever {@link gl:'begin'/1} is called and before each line segment
%% of a {@link gl:'begin'/1} (`?GL_LINES')/ {@link gl:'begin'/1} sequence is generated. It is
%% incremented after each fragment of a unit width aliased line segment is generated or after
%% each i fragments of an i width line segment are generated. The i fragments associated
%% with count s are masked out if
%%
%% `Pattern' bit (s/factor)% 16
%%
%% is 0, otherwise these fragments are sent to the frame buffer. Bit zero of `Pattern'
%% is the least significant bit.
%%
%% Antialiased lines are treated as a sequence of 1×width rectangles for purposes of stippling.
%% Whether rectangle s is rasterized or not depends on the fragment rule described for
%% aliased lines, counting rectangles rather than groups of fragments.
%%
%% To enable and disable line stippling, call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_LINE_STIPPLE'. When enabled, the line stipple pattern is applied
%% as described above. When disabled, it is as if the pattern were all 1's. Initially, line
%% stippling is disabled.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLineStipple.xml">external</a> documentation.
-spec lineStipple(Factor, Pattern) -> 'ok' when Factor :: integer(),Pattern :: integer().
lineStipple(Factor,Pattern) ->
cast(5049, <<Factor:?GLint,Pattern:?GLushort>>).
%% @doc Select a polygon rasterization mode
%%
%% ``gl:polygonMode'' controls the interpretation of polygons for rasterization. `Face'
%% describes which polygons `Mode' applies to: both front and back-facing polygons (`?GL_FRONT_AND_BACK'
%% ). The polygon mode affects only the final rasterization of polygons. In particular, a
%% polygon's vertices are lit and the polygon is clipped and possibly culled before these
%% modes are applied.
%%
%% Three modes are defined and can be specified in `Mode' :
%%
%% `?GL_POINT': Polygon vertices that are marked as the start of a boundary edge are
%% drawn as points. Point attributes such as `?GL_POINT_SIZE' and `?GL_POINT_SMOOTH'
%% control the rasterization of the points. Polygon rasterization attributes other than `?GL_POLYGON_MODE'
%% have no effect.
%%
%% `?GL_LINE': Boundary edges of the polygon are drawn as line segments. Line attributes
%% such as `?GL_LINE_WIDTH' and `?GL_LINE_SMOOTH' control the rasterization of
%% the lines. Polygon rasterization attributes other than `?GL_POLYGON_MODE' have no
%% effect.
%%
%% `?GL_FILL': The interior of the polygon is filled. Polygon attributes such as `?GL_POLYGON_SMOOTH'
%% control the rasterization of the polygon.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPolygonMode.xml">external</a> documentation.
-spec polygonMode(Face, Mode) -> 'ok' when Face :: enum(),Mode :: enum().
polygonMode(Face,Mode) ->
cast(5050, <<Face:?GLenum,Mode:?GLenum>>).
%% @doc Set the scale and units used to calculate depth values
%%
%% When `?GL_POLYGON_OFFSET_FILL', `?GL_POLYGON_OFFSET_LINE', or `?GL_POLYGON_OFFSET_POINT'
%% is enabled, each fragment's `depth' value will be offset after it is interpolated
%% from the `depth' values of the appropriate vertices. The value of the offset is
%% factor×DZ+r×units, where DZ is a measurement of the change in depth relative to the
%% screen area of the polygon, and r is the smallest value that is guaranteed to produce
%% a resolvable offset for a given implementation. The offset is added before the depth test
%% is performed and before the value is written into the depth buffer.
%%
%% ``gl:polygonOffset'' is useful for rendering hidden-line images, for applying decals
%% to surfaces, and for rendering solids with highlighted edges.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPolygonOffset.xml">external</a> documentation.
-spec polygonOffset(Factor, Units) -> 'ok' when Factor :: float(),Units :: float().
polygonOffset(Factor,Units) ->
cast(5051, <<Factor:?GLfloat,Units:?GLfloat>>).
%% @doc Set the polygon stippling pattern
%%
%% Polygon stippling, like line stippling (see {@link gl:lineStipple/2} ), masks out certain
%% fragments produced by rasterization, creating a pattern. Stippling is independent of polygon
%% antialiasing.
%%
%% `Pattern' is a pointer to a 32×32 stipple pattern that is stored in memory just
%% like the pixel data supplied to a {@link gl:drawPixels/5} call with height and `width'
%% both equal to 32, a pixel format of `?GL_COLOR_INDEX', and data type of `?GL_BITMAP'
%% . That is, the stipple pattern is represented as a 32×32 array of 1-bit color indices
%% packed in unsigned bytes. {@link gl:pixelStoref/2} parameters like `?GL_UNPACK_SWAP_BYTES'
%% and `?GL_UNPACK_LSB_FIRST' affect the assembling of the bits into a stipple pattern.
%% Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,
%% however.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a stipple pattern is specified, `Pattern' is
%% treated as a byte offset into the buffer object's data store.
%%
%% To enable and disable polygon stippling, call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_POLYGON_STIPPLE'. Polygon stippling is initially disabled. If
%% it's enabled, a rasterized polygon fragment with window coordinates x w and y w is
%% sent to the next stage of the GL if and only if the ( x w% 32)th bit in the ( y w% 32)th
%% row of the stipple pattern is 1 (one). When polygon stippling is disabled, it is as if
%% the stipple pattern consists of all 1's.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPolygonStipple.xml">external</a> documentation.
-spec polygonStipple(Mask) -> 'ok' when Mask :: binary().
polygonStipple(Mask) ->
send_bin(Mask),
cast(5052, <<>>).
%% @doc Return the polygon stipple pattern
%%
%% ``gl:getPolygonStipple'' returns to `Pattern' a 32×32 polygon stipple pattern.
%% The pattern is packed into memory as if {@link gl:readPixels/7} with both `height'
%% and `width' of 32, `type' of `?GL_BITMAP', and `format' of `?GL_COLOR_INDEX'
%% were called, and the stipple pattern were stored in an internal 32×32 color index buffer.
%% Unlike {@link gl:readPixels/7} , however, pixel transfer operations (shift, offset, pixel
%% map) are not applied to the returned stipple image.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a polygon stipple pattern is requested, `Pattern'
%% is treated as a byte offset into the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetPolygonStipple.xml">external</a> documentation.
-spec getPolygonStipple() -> binary().
getPolygonStipple() ->
call(5053, <<>>).
%% @doc Flag edges as either boundary or nonboundary
%%
%% Each vertex of a polygon, separate triangle, or separate quadrilateral specified between
%% a {@link gl:'begin'/1} / {@link gl:'begin'/1} pair is marked as the start of either a boundary or
%% nonboundary edge. If the current edge flag is true when the vertex is specified, the vertex
%% is marked as the start of a boundary edge. Otherwise, the vertex is marked as the start
%% of a nonboundary edge. ``gl:edgeFlag'' sets the edge flag bit to `?GL_TRUE' if `Flag'
%% is `?GL_TRUE' and to `?GL_FALSE' otherwise.
%%
%% The vertices of connected triangles and connected quadrilaterals are always marked as
%% boundary, regardless of the value of the edge flag.
%%
%% Boundary and nonboundary edge flags on vertices are significant only if `?GL_POLYGON_MODE'
%% is set to `?GL_POINT' or `?GL_LINE'. See {@link gl:polygonMode/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEdgeFlag.xml">external</a> documentation.
-spec edgeFlag(Flag) -> 'ok' when Flag :: 0|1.
edgeFlag(Flag) ->
cast(5054, <<Flag:?GLboolean>>).
%% @equiv edgeFlag(Flag)
-spec edgeFlagv(Flag) -> 'ok' when Flag :: {Flag :: 0|1}.
edgeFlagv({Flag}) -> edgeFlag(Flag).
%% @doc Define the scissor box
%%
%% ``gl:scissor'' defines a rectangle, called the scissor box, in window coordinates. The
%% first two arguments, `X' and `Y' , specify the lower left corner of the box. `Width'
%% and `Height' specify the width and height of the box.
%%
%% To enable and disable the scissor test, call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_SCISSOR_TEST'. The test is initially disabled. While the test
%% is enabled, only pixels that lie within the scissor box can be modified by drawing commands.
%% Window coordinates have integer values at the shared corners of frame buffer pixels. glScissor(0,0,1,1)
%% allows modification of only the lower left pixel in the window, and glScissor(0,0,0,0)
%% doesn't allow modification of any pixels in the window.
%%
%% When the scissor test is disabled, it is as though the scissor box includes the entire
%% window.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glScissor.xml">external</a> documentation.
-spec scissor(X, Y, Width, Height) -> 'ok' when X :: integer(),Y :: integer(),Width :: integer(),Height :: integer().
scissor(X,Y,Width,Height) ->
cast(5055, <<X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Specify a plane against which all geometry is clipped
%%
%% Geometry is always clipped against the boundaries of a six-plane frustum in `x', `y'
%% , and `z'. ``gl:clipPlane'' allows the specification of additional planes, not
%% necessarily perpendicular to the `x', `y', or `z' axis, against which all
%% geometry is clipped. To determine the maximum number of additional clipping planes, call {@link gl:getBooleanv/1}
%% with argument `?GL_MAX_CLIP_PLANES'. All implementations support at least six such
%% clipping planes. Because the resulting clipping region is the intersection of the defined
%% half-spaces, it is always convex.
%%
%% ``gl:clipPlane'' specifies a half-space using a four-component plane equation. When ``gl:clipPlane''
%% is called, `Equation' is transformed by the inverse of the modelview matrix and
%% stored in the resulting eye coordinates. Subsequent changes to the modelview matrix have
%% no effect on the stored plane-equation components. If the dot product of the eye coordinates
%% of a vertex with the stored plane equation components is positive or zero, the vertex is `in'
%% with respect to that clipping plane. Otherwise, it is `out'.
%%
%% To enable and disable clipping planes, call {@link gl:enable/1} and {@link gl:enable/1}
%% with the argument `?GL_CLIP_PLANE'`i', where `i' is the plane number.
%%
%% All clipping planes are initially defined as (0, 0, 0, 0) in eye coordinates and are
%% disabled.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClipPlane.xml">external</a> documentation.
-spec clipPlane(Plane, Equation) -> 'ok' when Plane :: enum(),Equation :: {float(),float(),float(),float()}.
clipPlane(Plane,{E1,E2,E3,E4}) ->
cast(5056, <<Plane:?GLenum,0:32,E1:?GLdouble,E2:?GLdouble,E3:?GLdouble,E4:?GLdouble>>).
%% @doc Return the coefficients of the specified clipping plane
%%
%% ``gl:getClipPlane'' returns in `Equation' the four coefficients of the plane equation
%% for `Plane' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetClipPlane.xml">external</a> documentation.
-spec getClipPlane(Plane) -> {float(),float(),float(),float()} when Plane :: enum().
getClipPlane(Plane) ->
call(5057, <<Plane:?GLenum>>).
%% @doc Specify which color buffers are to be drawn into
%%
%% When colors are written to the frame buffer, they are written into the color buffers
%% specified by ``gl:drawBuffer''. The specifications are as follows:
%%
%% `?GL_NONE': No color buffers are written.
%%
%% `?GL_FRONT_LEFT': Only the front left color buffer is written.
%%
%% `?GL_FRONT_RIGHT': Only the front right color buffer is written.
%%
%% `?GL_BACK_LEFT': Only the back left color buffer is written.
%%
%% `?GL_BACK_RIGHT': Only the back right color buffer is written.
%%
%% `?GL_FRONT': Only the front left and front right color buffers are written. If there
%% is no front right color buffer, only the front left color buffer is written.
%%
%% `?GL_BACK': Only the back left and back right color buffers are written. If there
%% is no back right color buffer, only the back left color buffer is written.
%%
%% `?GL_LEFT': Only the front left and back left color buffers are written. If there
%% is no back left color buffer, only the front left color buffer is written.
%%
%% `?GL_RIGHT': Only the front right and back right color buffers are written. If there
%% is no back right color buffer, only the front right color buffer is written.
%%
%% `?GL_FRONT_AND_BACK': All the front and back color buffers (front left, front right,
%% back left, back right) are written. If there are no back color buffers, only the front
%% left and front right color buffers are written. If there are no right color buffers, only
%% the front left and back left color buffers are written. If there are no right or back
%% color buffers, only the front left color buffer is written.
%%
%% If more than one color buffer is selected for drawing, then blending or logical operations
%% are computed and applied independently for each color buffer and can produce different
%% results in each buffer.
%%
%% Monoscopic contexts include only `left' buffers, and stereoscopic contexts include
%% both `left' and `right' buffers. Likewise, single-buffered contexts include
%% only `front' buffers, and double-buffered contexts include both `front' and `back'
%% buffers. The context is selected at GL initialization.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawBuffer.xml">external</a> documentation.
-spec drawBuffer(Mode) -> 'ok' when Mode :: enum().
drawBuffer(Mode) ->
cast(5058, <<Mode:?GLenum>>).
%% @doc Select a color buffer source for pixels
%%
%% ``gl:readBuffer'' specifies a color buffer as the source for subsequent {@link gl:readPixels/7}
%% , {@link gl:copyTexImage1D/7} , {@link gl:copyTexImage2D/8} , {@link gl:copyTexSubImage1D/6} , {@link gl:copyTexSubImage2D/8}
%% , and {@link gl:copyTexSubImage3D/9} commands. `Mode' accepts one of twelve or more
%% predefined values. In a fully configured system, `?GL_FRONT', `?GL_LEFT', and `?GL_FRONT_LEFT'
%% all name the front left buffer, `?GL_FRONT_RIGHT' and `?GL_RIGHT' name the
%% front right buffer, and `?GL_BACK_LEFT' and `?GL_BACK' name the back left buffer.
%% Further more, the constants `?GL_COLOR_ATTACHMENT'`i' may be used to indicate
%% the `i'th color attachment where `i' ranges from zero to the value of `?GL_MAX_COLOR_ATTACHMENTS'
%% minus one.
%%
%% Nonstereo double-buffered configurations have only a front left and a back left buffer.
%% Single-buffered configurations have a front left and a front right buffer if stereo, and
%% only a front left buffer if nonstereo. It is an error to specify a nonexistent buffer to ``gl:readBuffer''
%% .
%%
%% `Mode' is initially `?GL_FRONT' in single-buffered configurations and `?GL_BACK'
%% in double-buffered configurations.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glReadBuffer.xml">external</a> documentation.
-spec readBuffer(Mode) -> 'ok' when Mode :: enum().
readBuffer(Mode) ->
cast(5059, <<Mode:?GLenum>>).
%% @doc Enable or disable server-side GL capabilities
%%
%% ``gl:enable'' and {@link gl:enable/1} enable and disable various capabilities. Use {@link gl:isEnabled/1}
%% or {@link gl:getBooleanv/1} to determine the current setting of any capability. The initial value
%% for each capability with the exception of `?GL_DITHER' and `?GL_MULTISAMPLE'
%% is `?GL_FALSE'. The initial value for `?GL_DITHER' and `?GL_MULTISAMPLE'
%% is `?GL_TRUE'.
%%
%% Both ``gl:enable'' and {@link gl:enable/1} take a single argument, `Cap' , which
%% can assume one of the following values:
%%
%% Some of the GL's capabilities are indexed. ``gl:enablei'' and ``gl:disablei'' enable
%% and disable indexed capabilities.
%%
%% `?GL_BLEND': If enabled, blend the computed fragment color values with the values
%% in the color buffers. See {@link gl:blendFunc/2} .
%%
%% `?GL_CLIP_DISTANCE'`i': If enabled, clip geometry against user-defined half
%% space `i'.
%%
%% `?GL_COLOR_LOGIC_OP': If enabled, apply the currently selected logical operation
%% to the computed fragment color and color buffer values. See {@link gl:logicOp/1} .
%%
%% `?GL_CULL_FACE': If enabled, cull polygons based on their winding in window coordinates.
%% See {@link gl:cullFace/1} .
%%
%% `?GL_DEPTH_CLAMP': If enabled, the -w c&le; z c&le; w c plane equation is
%% ignored by view volume clipping (effectively, there is no near or far plane clipping).
%% See {@link gl:depthRange/2} .
%%
%% `?GL_DEPTH_TEST': If enabled, do depth comparisons and update the depth buffer.
%% Note that even if the depth buffer exists and the depth mask is non-zero, the depth buffer
%% is not updated if the depth test is disabled. See {@link gl:depthFunc/1} and {@link gl:depthRange/2}
%% .
%%
%% `?GL_DITHER': If enabled, dither color components or indices before they are written
%% to the color buffer.
%%
%% `?GL_FRAMEBUFFER_SRGB': If enabled and the value of `?GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING'
%% for the framebuffer attachment corresponding to the destination buffer is `?GL_SRGB',
%% the R, G, and B destination color values (after conversion from fixed-point to floating-point)
%% are considered to be encoded for the sRGB color space and hence are linearized prior to
%% their use in blending.
%%
%% `?GL_LINE_SMOOTH': If enabled, draw lines with correct filtering. Otherwise, draw
%% aliased lines. See {@link gl:lineWidth/1} .
%%
%% `?GL_MULTISAMPLE': If enabled, use multiple fragment samples in computing the final
%% color of a pixel. See {@link gl:sampleCoverage/2} .
%%
%% `?GL_POLYGON_OFFSET_FILL': If enabled, and if the polygon is rendered in `?GL_FILL'
%% mode, an offset is added to depth values of a polygon's fragments before the depth comparison
%% is performed. See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_OFFSET_LINE': If enabled, and if the polygon is rendered in `?GL_LINE'
%% mode, an offset is added to depth values of a polygon's fragments before the depth comparison
%% is performed. See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_OFFSET_POINT': If enabled, an offset is added to depth values of a
%% polygon's fragments before the depth comparison is performed, if the polygon is rendered
%% in `?GL_POINT' mode. See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_SMOOTH': If enabled, draw polygons with proper filtering. Otherwise,
%% draw aliased polygons. For correct antialiased polygons, an alpha buffer is needed and
%% the polygons must be sorted front to back.
%%
%% `?GL_PRIMITIVE_RESTART': Enables primitive restarting. If enabled, any one of the
%% draw commands which transfers a set of generic attribute array elements to the GL will
%% restart the primitive when the index of the vertex is equal to the primitive restart
%% index. See {@link gl:primitiveRestartIndex/1} .
%%
%% `?GL_SAMPLE_ALPHA_TO_COVERAGE': If enabled, compute a temporary coverage value where
%% each bit is determined by the alpha value at the corresponding sample location. The temporary
%% coverage value is then ANDed with the fragment coverage value.
%%
%% `?GL_SAMPLE_ALPHA_TO_ONE': If enabled, each sample alpha value is replaced by the
%% maximum representable alpha value.
%%
%% `?GL_SAMPLE_COVERAGE': If enabled, the fragment's coverage is ANDed with the temporary
%% coverage value. If `?GL_SAMPLE_COVERAGE_INVERT' is set to `?GL_TRUE', invert
%% the coverage value. See {@link gl:sampleCoverage/2} .
%%
%% `?GL_SAMPLE_SHADING': If enabled, the active fragment shader is run once for each
%% covered sample, or at fraction of this rate as determined by the current value of `?GL_MIN_SAMPLE_SHADING_VALUE'
%% . See {@link gl:minSampleShading/1} .
%%
%% `?GL_SAMPLE_MASK': If enabled, the sample coverage mask generated for a fragment
%% during rasterization will be ANDed with the value of `?GL_SAMPLE_MASK_VALUE' before
%% shading occurs. See {@link gl:sampleMaski/2} .
%%
%% `?GL_SCISSOR_TEST': If enabled, discard fragments that are outside the scissor rectangle.
%% See {@link gl:scissor/4} .
%%
%% `?GL_STENCIL_TEST': If enabled, do stencil testing and update the stencil buffer.
%% See {@link gl:stencilFunc/3} and {@link gl:stencilOp/3} .
%%
%% `?GL_TEXTURE_CUBE_MAP_SEAMLESS': If enabled, cubemap textures are sampled such that
%% when linearly sampling from the border between two adjacent faces, texels from both faces
%% are used to generate the final sample value. When disabled, texels from only a single
%% face are used to construct the final sample value.
%%
%% `?GL_PROGRAM_POINT_SIZE': If enabled and a vertex or geometry shader is active,
%% then the derived point size is taken from the (potentially clipped) shader builtin `?gl_PointSize'
%% and clamped to the implementation-dependent point size range.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEnable.xml">external</a> documentation.
-spec enable(Cap) -> 'ok' when Cap :: enum().
enable(Cap) ->
cast(5060, <<Cap:?GLenum>>).
%% @doc
%% See {@link enable/1}
-spec disable(Cap) -> 'ok' when Cap :: enum().
disable(Cap) ->
cast(5061, <<Cap:?GLenum>>).
%% @doc Test whether a capability is enabled
%%
%% ``gl:isEnabled'' returns `?GL_TRUE' if `Cap' is an enabled capability and
%% returns `?GL_FALSE' otherwise. Boolean states that are indexed may be tested with ``gl:isEnabledi''
%% . For ``gl:isEnabledi'', `Index' specifies the index of the capability to test. `Index'
%% must be between zero and the count of indexed capabilities for `Cap' . Initially
%% all capabilities except `?GL_DITHER' are disabled; `?GL_DITHER' is initially
%% enabled.
%%
%% The following capabilities are accepted for `Cap' : <table><tbody><tr><td>` Constant '
%% </td><td>` See '</td></tr></tbody><tbody><tr><td>`?GL_BLEND'</td><td> {@link gl:blendFunc/2}
%% , {@link gl:logicOp/1} </td></tr><tr><td>`?GL_CLIP_DISTANCE'`i'</td><td> {@link gl:enable/1}
%% </td></tr><tr><td>`?GL_COLOR_LOGIC_OP'</td><td> {@link gl:logicOp/1} </td></tr><tr><td>`?GL_CULL_FACE'
%% </td><td> {@link gl:cullFace/1} </td></tr><tr><td>`?GL_DEPTH_CLAMP'</td><td> {@link gl:enable/1}
%% </td></tr><tr><td>`?GL_DEPTH_TEST'</td><td> {@link gl:depthFunc/1} , {@link gl:depthRange/2}
%% </td></tr><tr><td>`?GL_DITHER'</td><td> {@link gl:enable/1} </td></tr><tr><td>`?GL_FRAMEBUFFER_SRGB'
%% </td><td> {@link gl:enable/1} </td></tr><tr><td>`?GL_LINE_SMOOTH'</td><td> {@link gl:lineWidth/1}
%% </td></tr><tr><td>`?GL_MULTISAMPLE'</td><td> {@link gl:sampleCoverage/2} </td></tr><tr><td>
%% `?GL_POLYGON_SMOOTH'</td><td> {@link gl:polygonMode/2} </td></tr><tr><td>`?GL_POLYGON_OFFSET_FILL'
%% </td><td> {@link gl:polygonOffset/2} </td></tr><tr><td>`?GL_POLYGON_OFFSET_LINE'</td><td>
%% {@link gl:polygonOffset/2} </td></tr><tr><td>`?GL_POLYGON_OFFSET_POINT'</td><td> {@link gl:polygonOffset/2}
%% </td></tr><tr><td>`?GL_PROGRAM_POINT_SIZE'</td><td> {@link gl:enable/1} </td></tr><tr><td>
%% `?GL_PRIMITIVE_RESTART'</td><td> {@link gl:enable/1} , {@link gl:primitiveRestartIndex/1} </td>
%% </tr><tr><td>`?GL_SAMPLE_ALPHA_TO_COVERAGE'</td><td> {@link gl:sampleCoverage/2} </td></tr>
%% <tr><td>`?GL_SAMPLE_ALPHA_TO_ONE'</td><td> {@link gl:sampleCoverage/2} </td></tr><tr><td>
%% `?GL_SAMPLE_COVERAGE'</td><td> {@link gl:sampleCoverage/2} </td></tr><tr><td>`?GL_SAMPLE_MASK'
%% </td><td> {@link gl:enable/1} </td></tr><tr><td>`?GL_SCISSOR_TEST'</td><td> {@link gl:scissor/4}
%% </td></tr><tr><td>`?GL_STENCIL_TEST'</td><td> {@link gl:stencilFunc/3} , {@link gl:stencilOp/3}
%% </td></tr><tr><td>`?GL_TEXTURE_CUBEMAP_SEAMLESS'</td><td> {@link gl:enable/1} </td></tr>
%% </tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsEnabled.xml">external</a> documentation.
-spec isEnabled(Cap) -> 0|1 when Cap :: enum().
isEnabled(Cap) ->
call(5062, <<Cap:?GLenum>>).
%% @doc Enable or disable client-side capability
%%
%% ``gl:enableClientState'' and {@link gl:enableClientState/1} enable or disable individual
%% client-side capabilities. By default, all client-side capabilities are disabled. Both ``gl:enableClientState''
%% and {@link gl:enableClientState/1} take a single argument, `Cap' , which can assume
%% one of the following values:
%%
%% `?GL_COLOR_ARRAY': If enabled, the color array is enabled for writing and used during
%% rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4} ,
%% {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:colorPointer/4} .
%%
%% `?GL_EDGE_FLAG_ARRAY': If enabled, the edge flag array is enabled for writing and
%% used during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:edgeFlagPointer/2} .
%%
%% `?GL_FOG_COORD_ARRAY': If enabled, the fog coordinate array is enabled for writing
%% and used during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:fogCoordPointer/3} .
%%
%% `?GL_INDEX_ARRAY': If enabled, the index array is enabled for writing and used during
%% rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4} ,
%% {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:indexPointer/3} .
%%
%% `?GL_NORMAL_ARRAY': If enabled, the normal array is enabled for writing and used
%% during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:normalPointer/3} .
%%
%% `?GL_SECONDARY_COLOR_ARRAY': If enabled, the secondary color array is enabled for
%% writing and used during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:colorPointer/4} .
%%
%% `?GL_TEXTURE_COORD_ARRAY': If enabled, the texture coordinate array is enabled for
%% writing and used during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:texCoordPointer/4} .
%%
%% `?GL_VERTEX_ARRAY': If enabled, the vertex array is enabled for writing and used
%% during rendering when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:drawElements/4}
%% , {@link gl:drawRangeElements/6} {@link gl:multiDrawArrays/3} , or see `glMultiDrawElements'
%% is called. See {@link gl:vertexPointer/4} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEnableClientState.xml">external</a> documentation.
-spec enableClientState(Cap) -> 'ok' when Cap :: enum().
enableClientState(Cap) ->
cast(5063, <<Cap:?GLenum>>).
%% @doc
%% See {@link enableClientState/1}
-spec disableClientState(Cap) -> 'ok' when Cap :: enum().
disableClientState(Cap) ->
cast(5064, <<Cap:?GLenum>>).
%% @doc Return the value or values of a selected parameter
%%
%% These four commands return values for simple state variables in GL. `Pname' is a
%% symbolic constant indicating the state variable to be returned, and `Params' is a
%% pointer to an array of the indicated type in which to place the returned data.
%%
%% Type conversion is performed if `Params' has a different type than the state variable
%% value being requested. If ``gl:getBooleanv'' is called, a floating-point (or integer)
%% value is converted to `?GL_FALSE' if and only if it is 0.0 (or 0). Otherwise, it
%% is converted to `?GL_TRUE'. If ``gl:getIntegerv'' is called, boolean values are
%% returned as `?GL_TRUE' or `?GL_FALSE', and most floating-point values are rounded
%% to the nearest integer value. Floating-point colors and normals, however, are returned
%% with a linear mapping that maps 1.0 to the most positive representable integer value and
%% -1.0 to the most negative representable integer value. If ``gl:getFloatv'' or ``gl:getDoublev''
%% is called, boolean values are returned as `?GL_TRUE' or `?GL_FALSE', and integer
%% values are converted to floating-point values.
%%
%% The following symbolic constants are accepted by `Pname' :
%%
%% `?GL_ACTIVE_TEXTURE': `Params' returns a single value indicating the active
%% multitexture unit. The initial value is `?GL_TEXTURE0'. See {@link gl:activeTexture/1} .
%%
%%
%% `?GL_ALIASED_LINE_WIDTH_RANGE': `Params' returns a pair of values indicating
%% the range of widths supported for aliased lines. See {@link gl:lineWidth/1} .
%%
%% `?GL_ARRAY_BUFFER_BINDING': `Params' returns a single value, the name of the
%% buffer object currently bound to the target `?GL_ARRAY_BUFFER'. If no buffer object
%% is bound to this target, 0 is returned. The initial value is 0. See {@link gl:bindBuffer/2} .
%%
%%
%% `?GL_BLEND': `Params' returns a single boolean value indicating whether blending
%% is enabled. The initial value is `?GL_FALSE'. See {@link gl:blendFunc/2} .
%%
%% `?GL_BLEND_COLOR': `Params' returns four values, the red, green, blue, and alpha
%% values which are the components of the blend color. See {@link gl:blendColor/4} .
%%
%% `?GL_BLEND_DST_ALPHA': `Params' returns one value, the symbolic constant identifying
%% the alpha destination blend function. The initial value is `?GL_ZERO'. See {@link gl:blendFunc/2}
%% and {@link gl:blendFuncSeparate/4} .
%%
%% `?GL_BLEND_DST_RGB': `Params' returns one value, the symbolic constant identifying
%% the RGB destination blend function. The initial value is `?GL_ZERO'. See {@link gl:blendFunc/2}
%% and {@link gl:blendFuncSeparate/4} .
%%
%% `?GL_BLEND_EQUATION_RGB': `Params' returns one value, a symbolic constant indicating
%% whether the RGB blend equation is `?GL_FUNC_ADD', `?GL_FUNC_SUBTRACT', `?GL_FUNC_REVERSE_SUBTRACT'
%% , `?GL_MIN' or `?GL_MAX'. See {@link gl:blendEquationSeparate/2} .
%%
%% `?GL_BLEND_EQUATION_ALPHA': `Params' returns one value, a symbolic constant
%% indicating whether the Alpha blend equation is `?GL_FUNC_ADD', `?GL_FUNC_SUBTRACT'
%% , `?GL_FUNC_REVERSE_SUBTRACT', `?GL_MIN' or `?GL_MAX'. See {@link gl:blendEquationSeparate/2}
%% .
%%
%% `?GL_BLEND_SRC_ALPHA': `Params' returns one value, the symbolic constant identifying
%% the alpha source blend function. The initial value is `?GL_ONE'. See {@link gl:blendFunc/2}
%% and {@link gl:blendFuncSeparate/4} .
%%
%% `?GL_BLEND_SRC_RGB': `Params' returns one value, the symbolic constant identifying
%% the RGB source blend function. The initial value is `?GL_ONE'. See {@link gl:blendFunc/2}
%% and {@link gl:blendFuncSeparate/4} .
%%
%% `?GL_COLOR_CLEAR_VALUE': `Params' returns four values: the red, green, blue,
%% and alpha values used to clear the color buffers. Integer values, if requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 returns the most
%% positive representable integer value, and -1.0 returns the most negative representable
%% integer value. The initial value is (0, 0, 0, 0). See {@link gl:clearColor/4} .
%%
%% `?GL_COLOR_LOGIC_OP': `Params' returns a single boolean value indicating whether
%% a fragment's RGBA color values are merged into the framebuffer using a logical operation.
%% The initial value is `?GL_FALSE'. See {@link gl:logicOp/1} .
%%
%% `?GL_COLOR_WRITEMASK': `Params' returns four boolean values: the red, green,
%% blue, and alpha write enables for the color buffers. The initial value is (`?GL_TRUE',
%% `?GL_TRUE', `?GL_TRUE', `?GL_TRUE'). See {@link gl:colorMask/4} .
%%
%% `?GL_COMPRESSED_TEXTURE_FORMATS': `Params' returns a list of symbolic constants
%% of length `?GL_NUM_COMPRESSED_TEXTURE_FORMATS' indicating which compressed texture
%% formats are available. See {@link gl:compressedTexImage2D/8} .
%%
%% `?GL_CONTEXT_FLAGS': `Params' returns one value, the flags with which the context
%% was created (such as debugging functionality).
%%
%% `?GL_CULL_FACE': `Params' returns a single boolean value indicating whether
%% polygon culling is enabled. The initial value is `?GL_FALSE'. See {@link gl:cullFace/1}
%% .
%%
%% `?GL_CURRENT_PROGRAM': `Params' returns one value, the name of the program object
%% that is currently active, or 0 if no program object is active. See {@link gl:useProgram/1} .
%%
%%
%% `?GL_DEPTH_CLEAR_VALUE': `Params' returns one value, the value that is used
%% to clear the depth buffer. Integer values, if requested, are linearly mapped from the
%% internal floating-point representation such that 1.0 returns the most positive representable
%% integer value, and -1.0 returns the most negative representable integer value. The initial
%% value is 1. See {@link gl:clearDepth/1} .
%%
%% `?GL_DEPTH_FUNC': `Params' returns one value, the symbolic constant that indicates
%% the depth comparison function. The initial value is `?GL_LESS'. See {@link gl:depthFunc/1}
%% .
%%
%% `?GL_DEPTH_RANGE': `Params' returns two values: the near and far mapping limits
%% for the depth buffer. Integer values, if requested, are linearly mapped from the internal
%% floating-point representation such that 1.0 returns the most positive representable integer
%% value, and -1.0 returns the most negative representable integer value. The initial value
%% is (0, 1). See {@link gl:depthRange/2} .
%%
%% `?GL_DEPTH_TEST': `Params' returns a single boolean value indicating whether
%% depth testing of fragments is enabled. The initial value is `?GL_FALSE'. See {@link gl:depthFunc/1}
%% and {@link gl:depthRange/2} .
%%
%% `?GL_DEPTH_WRITEMASK': `Params' returns a single boolean value indicating if
%% the depth buffer is enabled for writing. The initial value is `?GL_TRUE'. See {@link gl:depthMask/1}
%% .
%%
%% `?GL_DITHER': `Params' returns a single boolean value indicating whether dithering
%% of fragment colors and indices is enabled. The initial value is `?GL_TRUE'.
%%
%% `?GL_DOUBLEBUFFER': `Params' returns a single boolean value indicating whether
%% double buffering is supported.
%%
%% `?GL_DRAW_BUFFER': `Params' returns one value, a symbolic constant indicating
%% which buffers are being drawn to. See {@link gl:drawBuffer/1} . The initial value is `?GL_BACK'
%% if there are back buffers, otherwise it is `?GL_FRONT'.
%%
%% `?GL_DRAW_BUFFER'`i': `Params' returns one value, a symbolic constant indicating
%% which buffers are being drawn to by the corresponding output color. See {@link gl:drawBuffers/1}
%% . The initial value of `?GL_DRAW_BUFFER0' is `?GL_BACK' if there are back buffers,
%% otherwise it is `?GL_FRONT'. The initial values of draw buffers for all other output
%% colors is `?GL_NONE'.
%%
%% `?GL_DRAW_FRAMEBUFFER_BINDING': `Params' returns one value, the name of the
%% framebuffer object currently bound to the `?GL_DRAW_FRAMEBUFFER' target. If the default
%% framebuffer is bound, this value will be zero. The initial value is zero. See {@link gl:bindFramebuffer/2}
%% .
%%
%% `?GL_READ_FRAMEBUFFER_BINDING': `Params' returns one value, the name of the
%% framebuffer object currently bound to the `?GL_READ_FRAMEBUFFER' target. If the default
%% framebuffer is bound, this value will be zero. The initial value is zero. See {@link gl:bindFramebuffer/2}
%% .
%%
%% `?GL_ELEMENT_ARRAY_BUFFER_BINDING': `Params' returns a single value, the name
%% of the buffer object currently bound to the target `?GL_ELEMENT_ARRAY_BUFFER'. If
%% no buffer object is bound to this target, 0 is returned. The initial value is 0. See {@link gl:bindBuffer/2}
%% .
%%
%% `?GL_FRAGMENT_SHADER_DERIVATIVE_HINT': `Params' returns one value, a symbolic
%% constant indicating the mode of the derivative accuracy hint for fragment shaders. The
%% initial value is `?GL_DONT_CARE'. See {@link gl:hint/2} .
%%
%% `?GL_IMPLEMENTATION_COLOR_READ_FORMAT': `Params' returns a single GLenum value
%% indicating the implementation's preferred pixel data format. See {@link gl:readPixels/7} .
%%
%% `?GL_IMPLEMENTATION_COLOR_READ_TYPE': `Params' returns a single GLenum value
%% indicating the implementation's preferred pixel data type. See {@link gl:readPixels/7} .
%%
%% `?GL_LINE_SMOOTH': `Params' returns a single boolean value indicating whether
%% antialiasing of lines is enabled. The initial value is `?GL_FALSE'. See {@link gl:lineWidth/1}
%% .
%%
%% `?GL_LINE_SMOOTH_HINT': `Params' returns one value, a symbolic constant indicating
%% the mode of the line antialiasing hint. The initial value is `?GL_DONT_CARE'. See {@link gl:hint/2}
%% .
%%
%% `?GL_LINE_WIDTH': `Params' returns one value, the line width as specified with {@link gl:lineWidth/1}
%% . The initial value is 1.
%%
%% `?GL_LAYER_PROVOKING_VERTEX': `Params' returns one value, the implementation
%% dependent specifc vertex of a primitive that is used to select the rendering layer. If
%% the value returned is equivalent to `?GL_PROVOKING_VERTEX', then the vertex selection
%% follows the convention specified by {@link gl:provokingVertex/1} . If the value returned
%% is equivalent to `?GL_FIRST_VERTEX_CONVENTION', then the selection is always taken
%% from the first vertex in the primitive. If the value returned is equivalent to `?GL_LAST_VERTEX_CONVENTION'
%% , then the selection is always taken from the last vertex in the primitive. If the value
%% returned is equivalent to `?GL_UNDEFINED_VERTEX', then the selection is not guaranteed
%% to be taken from any specific vertex in the primitive.
%%
%% `?GL_LINE_WIDTH_GRANULARITY': `Params' returns one value, the width difference
%% between adjacent supported widths for antialiased lines. See {@link gl:lineWidth/1} .
%%
%% `?GL_LINE_WIDTH_RANGE': `Params' returns two values: the smallest and largest
%% supported widths for antialiased lines. See {@link gl:lineWidth/1} .
%%
%% `?GL_LOGIC_OP_MODE': `Params' returns one value, a symbolic constant indicating
%% the selected logic operation mode. The initial value is `?GL_COPY'. See {@link gl:logicOp/1}
%% .
%%
%% `?GL_MAJOR_VERSION': `Params' returns one value, the major version number of
%% the OpenGL API supported by the current context.
%%
%% `?GL_MAX_3D_TEXTURE_SIZE': `Params' returns one value, a rough estimate of the
%% largest 3D texture that the GL can handle. The value must be at least 64. Use `?GL_PROXY_TEXTURE_3D'
%% to determine if a texture is too large. See {@link gl:texImage3D/10} .
%%
%% `?GL_MAX_ARRAY_TEXTURE_LAYERS': `Params' returns one value. The value indicates
%% the maximum number of layers allowed in an array texture, and must be at least 256. See {@link gl:texImage2D/9}
%% .
%%
%% `?GL_MAX_CLIP_DISTANCES': `Params' returns one value, the maximum number of
%% application-defined clipping distances. The value must be at least 8.
%%
%% `?GL_MAX_COLOR_TEXTURE_SAMPLES': `Params' returns one value, the maximum number
%% of samples in a color multisample texture.
%%
%% `?GL_MAX_COMBINED_ATOMIC_COUNTERS': `Params' returns a single value, the maximum
%% number of atomic counters available to all active shaders.
%%
%% `?GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS': `Params' returns one value,
%% the number of words for fragment shader uniform variables in all uniform blocks (including
%% default). The value must be at least 1. See {@link gl:uniform1f/2} .
%%
%% `?GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS': `Params' returns one value,
%% the number of words for geometry shader uniform variables in all uniform blocks (including
%% default). The value must be at least 1. See {@link gl:uniform1f/2} .
%%
%% `?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS': `Params' returns one value, the maximum
%% supported texture image units that can be used to access texture maps from the vertex
%% shader and the fragment processor combined. If both the vertex shader and the fragment
%% processing stage access the same texture image unit, then that counts as using two texture
%% image units against this limit. The value must be at least 48. See {@link gl:activeTexture/1}
%% .
%%
%% `?GL_MAX_COMBINED_UNIFORM_BLOCKS': `Params' returns one value, the maximum number
%% of uniform blocks per program. The value must be at least 36. See {@link gl:uniformBlockBinding/3}
%% .
%%
%% `?GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS': `Params' returns one value, the
%% number of words for vertex shader uniform variables in all uniform blocks (including default).
%% The value must be at least 1. See {@link gl:uniform1f/2} .
%%
%% `?GL_MAX_CUBE_MAP_TEXTURE_SIZE': `Params' returns one value. The value gives
%% a rough estimate of the largest cube-map texture that the GL can handle. The value must
%% be at least 1024. Use `?GL_PROXY_TEXTURE_CUBE_MAP' to determine if a texture is too
%% large. See {@link gl:texImage2D/9} .
%%
%% `?GL_MAX_DEPTH_TEXTURE_SAMPLES': `Params' returns one value, the maximum number
%% of samples in a multisample depth or depth-stencil texture.
%%
%% `?GL_MAX_DRAW_BUFFERS': `Params' returns one value, the maximum number of simultaneous
%% outputs that may be written in a fragment shader. The value must be at least 8. See {@link gl:drawBuffers/1}
%% .
%%
%% `?GL_MAX_DUALSOURCE_DRAW_BUFFERS': `Params' returns one value, the maximum number
%% of active draw buffers when using dual-source blending. The value must be at least 1.
%% See {@link gl:blendFunc/2} and {@link gl:blendFuncSeparate/4} .
%%
%% `?GL_MAX_ELEMENTS_INDICES': `Params' returns one value, the recommended maximum
%% number of vertex array indices. See {@link gl:drawRangeElements/6} .
%%
%% `?GL_MAX_ELEMENTS_VERTICES': `Params' returns one value, the recommended maximum
%% number of vertex array vertices. See {@link gl:drawRangeElements/6} .
%%
%% `?GL_MAX_FRAGMENT_ATOMIC_COUNTERS': `Params' returns a single value, the maximum
%% number of atomic counters available to fragment shaders.
%%
%% `?GL_MAX_FRAGMENT_INPUT_COMPONENTS': `Params' returns one value, the maximum
%% number of components of the inputs read by the fragment shader, which must be at least
%% 128.
%%
%% `?GL_MAX_FRAGMENT_UNIFORM_COMPONENTS': `Params' returns one value, the maximum
%% number of individual floating-point, integer, or boolean values that can be held in uniform
%% variable storage for a fragment shader. The value must be at least 1024. See {@link gl:uniform1f/2}
%% .
%%
%% `?GL_MAX_FRAGMENT_UNIFORM_VECTORS': `Params' returns one value, the maximum
%% number of individual 4-vectors of floating-point, integer, or boolean values that can
%% be held in uniform variable storage for a fragment shader. The value is equal to the value
%% of `?GL_MAX_FRAGMENT_UNIFORM_COMPONENTS' divided by 4 and must be at least 256. See {@link gl:uniform1f/2}
%% .
%%
%% `?GL_MAX_FRAGMENT_UNIFORM_BLOCKS': `Params' returns one value, the maximum number
%% of uniform blocks per fragment shader. The value must be at least 12. See {@link gl:uniformBlockBinding/3}
%% .
%%
%% `?GL_MAX_GEOMETRY_ATOMIC_COUNTERS': `Params' returns a single value, the maximum
%% number of atomic counters available to geometry shaders.
%%
%% `?GL_MAX_GEOMETRY_INPUT_COMPONENTS': `Params' returns one value, the maximum
%% number of components of inputs read by a geometry shader, which must be at least 64.
%%
%% `?GL_MAX_GEOMETRY_OUTPUT_COMPONENTS': `Params' returns one value, the maximum
%% number of components of outputs written by a geometry shader, which must be at least 128.
%%
%%
%% `?GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS': `Params' returns one value, the maximum
%% supported texture image units that can be used to access texture maps from the geometry
%% shader. The value must be at least 16. See {@link gl:activeTexture/1} .
%%
%% `?GL_MAX_GEOMETRY_UNIFORM_BLOCKS': `Params' returns one value, the maximum number
%% of uniform blocks per geometry shader. The value must be at least 12. See {@link gl:uniformBlockBinding/3}
%% .
%%
%% `?GL_MAX_GEOMETRY_UNIFORM_COMPONENTS': `Params' returns one value, the maximum
%% number of individual floating-point, integer, or boolean values that can be held in uniform
%% variable storage for a geometry shader. The value must be at least 1024. See {@link gl:uniform1f/2}
%% .
%%
%% `?GL_MAX_INTEGER_SAMPLES': `Params' returns one value, the maximum number of
%% samples supported in integer format multisample buffers.
%%
%% `?GL_MIN_MAP_BUFFER_ALIGNMENT': `Params' returns one value, the minimum alignment
%% in basic machine units of pointers returned fromsee `glMapBuffer' and see `glMapBufferRange'
%% . This value must be a power of two and must be at least 64.
%%
%% `?GL_MAX_PROGRAM_TEXEL_OFFSET': `Params' returns one value, the maximum texel
%% offset allowed in a texture lookup, which must be at least 7.
%%
%% `?GL_MIN_PROGRAM_TEXEL_OFFSET': `Params' returns one value, the minimum texel
%% offset allowed in a texture lookup, which must be at most -8.
%%
%% `?GL_MAX_RECTANGLE_TEXTURE_SIZE': `Params' returns one value. The value gives
%% a rough estimate of the largest rectangular texture that the GL can handle. The value
%% must be at least 1024. Use `?GL_PROXY_RECTANGLE_TEXTURE' to determine if a texture
%% is too large. See {@link gl:texImage2D/9} .
%%
%% `?GL_MAX_RENDERBUFFER_SIZE': `Params' returns one value. The value indicates
%% the maximum supported size for renderbuffers. See {@link gl:framebufferRenderbuffer/4} .
%%
%% `?GL_MAX_SAMPLE_MASK_WORDS': `Params' returns one value, the maximum number
%% of sample mask words.
%%
%% `?GL_MAX_SERVER_WAIT_TIMEOUT': `Params' returns one value, the maximum {@link gl:waitSync/3}
%% timeout interval.
%%
%% `?GL_MAX_TESS_CONTROL_ATOMIC_COUNTERS': `Params' returns a single value, the
%% maximum number of atomic counters available to tessellation control shaders.
%%
%% `?GL_MAX_TESS_EVALUATION_ATOMIC_COUNTERS': `Params' returns a single value,
%% the maximum number of atomic counters available to tessellation evaluation shaders.
%%
%% `?GL_MAX_TEXTURE_BUFFER_SIZE': `Params' returns one value. The value gives the
%% maximum number of texels allowed in the texel array of a texture buffer object. Value
%% must be at least 65536.
%%
%% `?GL_MAX_TEXTURE_IMAGE_UNITS': `Params' returns one value, the maximum supported
%% texture image units that can be used to access texture maps from the fragment shader.
%% The value must be at least 16. See {@link gl:activeTexture/1} .
%%
%% `?GL_MAX_TEXTURE_LOD_BIAS': `Params' returns one value, the maximum, absolute
%% value of the texture level-of-detail bias. The value must be at least 2.0.
%%
%% `?GL_MAX_TEXTURE_SIZE': `Params' returns one value. The value gives a rough
%% estimate of the largest texture that the GL can handle. The value must be at least 1024.
%% Use a proxy texture target such as `?GL_PROXY_TEXTURE_1D' or `?GL_PROXY_TEXTURE_2D'
%% to determine if a texture is too large. See {@link gl:texImage1D/8} and {@link gl:texImage2D/9}
%% .
%%
%% `?GL_MAX_UNIFORM_BUFFER_BINDINGS': `Params' returns one value, the maximum number
%% of uniform buffer binding points on the context, which must be at least 36.
%%
%% `?GL_MAX_UNIFORM_BLOCK_SIZE': `Params' returns one value, the maximum size in
%% basic machine units of a uniform block, which must be at least 16384.
%%
%% `?GL_MAX_VARYING_COMPONENTS': `Params' returns one value, the number components
%% for varying variables, which must be at least 60.
%%
%% `?GL_MAX_VARYING_VECTORS': `Params' returns one value, the number 4-vectors
%% for varying variables, which is equal to the value of `?GL_MAX_VARYING_COMPONENTS'
%% and must be at least 15.
%%
%% `?GL_MAX_VARYING_FLOATS': `Params' returns one value, the maximum number of
%% interpolators available for processing varying variables used by vertex and fragment shaders.
%% This value represents the number of individual floating-point values that can be interpolated;
%% varying variables declared as vectors, matrices, and arrays will all consume multiple
%% interpolators. The value must be at least 32.
%%
%% `?GL_MAX_VERTEX_ATOMIC_COUNTERS': `Params' returns a single value, the maximum
%% number of atomic counters available to vertex shaders.
%%
%% `?GL_MAX_VERTEX_ATTRIBS': `Params' returns one value, the maximum number of
%% 4-component generic vertex attributes accessible to a vertex shader. The value must be
%% at least 16. See {@link gl:vertexAttrib1d/2} .
%%
%% `?GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS': `Params' returns one value, the maximum
%% supported texture image units that can be used to access texture maps from the vertex
%% shader. The value may be at least 16. See {@link gl:activeTexture/1} .
%%
%% `?GL_MAX_VERTEX_UNIFORM_COMPONENTS': `Params' returns one value, the maximum
%% number of individual floating-point, integer, or boolean values that can be held in uniform
%% variable storage for a vertex shader. The value must be at least 1024. See {@link gl:uniform1f/2}
%% .
%%
%% `?GL_MAX_VERTEX_UNIFORM_VECTORS': `Params' returns one value, the maximum number
%% of 4-vectors that may be held in uniform variable storage for the vertex shader. The value
%% of `?GL_MAX_VERTEX_UNIFORM_VECTORS' is equal to the value of `?GL_MAX_VERTEX_UNIFORM_COMPONENTS'
%% and must be at least 256.
%%
%% `?GL_MAX_VERTEX_OUTPUT_COMPONENTS': `Params' returns one value, the maximum
%% number of components of output written by a vertex shader, which must be at least 64.
%%
%% `?GL_MAX_VERTEX_UNIFORM_BLOCKS': `Params' returns one value, the maximum number
%% of uniform blocks per vertex shader. The value must be at least 12. See {@link gl:uniformBlockBinding/3}
%% .
%%
%% `?GL_MAX_VIEWPORT_DIMS': `Params' returns two values: the maximum supported
%% width and height of the viewport. These must be at least as large as the visible dimensions
%% of the display being rendered to. See {@link gl:viewport/4} .
%%
%% `?GL_MAX_VIEWPORTS': `Params' returns one value, the maximum number of simultaneous
%% viewports that are supported. The value must be at least 16. See {@link gl:viewportIndexedf/5}
%% .
%%
%% `?GL_MINOR_VERSION': `Params' returns one value, the minor version number of
%% the OpenGL API supported by the current context.
%%
%% `?GL_NUM_COMPRESSED_TEXTURE_FORMATS': `Params' returns a single integer value
%% indicating the number of available compressed texture formats. The minimum value is 4.
%% See {@link gl:compressedTexImage2D/8} .
%%
%% `?GL_NUM_EXTENSIONS': `Params' returns one value, the number of extensions supported
%% by the GL implementation for the current context. See {@link gl:getString/1} .
%%
%% `?GL_NUM_PROGRAM_BINARY_FORMATS': `Params' returns one value, the number of
%% program binary formats supported by the implementation.
%%
%% `?GL_NUM_SHADER_BINARY_FORMATS': `Params' returns one value, the number of binary
%% shader formats supported by the implementation. If this value is greater than zero, then
%% the implementation supports loading binary shaders. If it is zero, then the loading of
%% binary shaders by the implementation is not supported.
%%
%% `?GL_PACK_ALIGNMENT': `Params' returns one value, the byte alignment used for
%% writing pixel data to memory. The initial value is 4. See {@link gl:pixelStoref/2} .
%%
%% `?GL_PACK_IMAGE_HEIGHT': `Params' returns one value, the image height used for
%% writing pixel data to memory. The initial value is 0. See {@link gl:pixelStoref/2} .
%%
%% `?GL_PACK_LSB_FIRST': `Params' returns a single boolean value indicating whether
%% single-bit pixels being written to memory are written first to the least significant bit
%% of each unsigned byte. The initial value is `?GL_FALSE'. See {@link gl:pixelStoref/2} .
%%
%%
%% `?GL_PACK_ROW_LENGTH': `Params' returns one value, the row length used for writing
%% pixel data to memory. The initial value is 0. See {@link gl:pixelStoref/2} .
%%
%% `?GL_PACK_SKIP_IMAGES': `Params' returns one value, the number of pixel images
%% skipped before the first pixel is written into memory. The initial value is 0. See {@link gl:pixelStoref/2}
%% .
%%
%% `?GL_PACK_SKIP_PIXELS': `Params' returns one value, the number of pixel locations
%% skipped before the first pixel is written into memory. The initial value is 0. See {@link gl:pixelStoref/2}
%% .
%%
%% `?GL_PACK_SKIP_ROWS': `Params' returns one value, the number of rows of pixel
%% locations skipped before the first pixel is written into memory. The initial value is
%% 0. See {@link gl:pixelStoref/2} .
%%
%% `?GL_PACK_SWAP_BYTES': `Params' returns a single boolean value indicating whether
%% the bytes of two-byte and four-byte pixel indices and components are swapped before being
%% written to memory. The initial value is `?GL_FALSE'. See {@link gl:pixelStoref/2} .
%%
%% `?GL_PIXEL_PACK_BUFFER_BINDING': `Params' returns a single value, the name of
%% the buffer object currently bound to the target `?GL_PIXEL_PACK_BUFFER'. If no buffer
%% object is bound to this target, 0 is returned. The initial value is 0. See {@link gl:bindBuffer/2}
%% .
%%
%% `?GL_PIXEL_UNPACK_BUFFER_BINDING': `Params' returns a single value, the name
%% of the buffer object currently bound to the target `?GL_PIXEL_UNPACK_BUFFER'. If
%% no buffer object is bound to this target, 0 is returned. The initial value is 0. See {@link gl:bindBuffer/2}
%% .
%%
%% `?GL_POINT_FADE_THRESHOLD_SIZE': `Params' returns one value, the point size
%% threshold for determining the point size. See {@link gl:pointParameterf/2} .
%%
%% `?GL_PRIMITIVE_RESTART_INDEX': `Params' returns one value, the current primitive
%% restart index. The initial value is 0. See {@link gl:primitiveRestartIndex/1} .
%%
%% `?GL_PROGRAM_BINARY_FORMATS': `Params' an array of `?GL_NUM_PROGRAM_BINARY_FORMATS'
%% values, indicating the proram binary formats supported by the implementation.
%%
%% `?GL_PROGRAM_PIPELINE_BINDING': `Params' a single value, the name of the currently
%% bound program pipeline object, or zero if no program pipeline object is bound. See {@link gl:bindProgramPipeline/1}
%% .
%%
%% `?GL_PROVOKING_VERTEX': `Params' returns one value, the currently selected provoking
%% vertex convention. The initial value is `?GL_LAST_VERTEX_CONVENTION'. See {@link gl:provokingVertex/1}
%% .
%%
%% `?GL_POINT_SIZE': `Params' returns one value, the point size as specified by {@link gl:pointSize/1}
%% . The initial value is 1.
%%
%% `?GL_POINT_SIZE_GRANULARITY': `Params' returns one value, the size difference
%% between adjacent supported sizes for antialiased points. See {@link gl:pointSize/1} .
%%
%% `?GL_POINT_SIZE_RANGE': `Params' returns two values: the smallest and largest
%% supported sizes for antialiased points. The smallest size must be at most 1, and the largest
%% size must be at least 1. See {@link gl:pointSize/1} .
%%
%% `?GL_POLYGON_OFFSET_FACTOR': `Params' returns one value, the scaling factor
%% used to determine the variable offset that is added to the depth value of each fragment
%% generated when a polygon is rasterized. The initial value is 0. See {@link gl:polygonOffset/2}
%% .
%%
%% `?GL_POLYGON_OFFSET_UNITS': `Params' returns one value. This value is multiplied
%% by an implementation-specific value and then added to the depth value of each fragment
%% generated when a polygon is rasterized. The initial value is 0. See {@link gl:polygonOffset/2}
%% .
%%
%% `?GL_POLYGON_OFFSET_FILL': `Params' returns a single boolean value indicating
%% whether polygon offset is enabled for polygons in fill mode. The initial value is `?GL_FALSE'
%% . See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_OFFSET_LINE': `Params' returns a single boolean value indicating
%% whether polygon offset is enabled for polygons in line mode. The initial value is `?GL_FALSE'
%% . See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_OFFSET_POINT': `Params' returns a single boolean value indicating
%% whether polygon offset is enabled for polygons in point mode. The initial value is `?GL_FALSE'
%% . See {@link gl:polygonOffset/2} .
%%
%% `?GL_POLYGON_SMOOTH': `Params' returns a single boolean value indicating whether
%% antialiasing of polygons is enabled. The initial value is `?GL_FALSE'. See {@link gl:polygonMode/2}
%% .
%%
%% `?GL_POLYGON_SMOOTH_HINT': `Params' returns one value, a symbolic constant indicating
%% the mode of the polygon antialiasing hint. The initial value is `?GL_DONT_CARE'.
%% See {@link gl:hint/2} .
%%
%% `?GL_READ_BUFFER': `Params' returns one value, a symbolic constant indicating
%% which color buffer is selected for reading. The initial value is `?GL_BACK' if there
%% is a back buffer, otherwise it is `?GL_FRONT'. See {@link gl:readPixels/7} .
%%
%% `?GL_RENDERBUFFER_BINDING': `Params' returns a single value, the name of the
%% renderbuffer object currently bound to the target `?GL_RENDERBUFFER'. If no renderbuffer
%% object is bound to this target, 0 is returned. The initial value is 0. See {@link gl:bindRenderbuffer/2}
%% .
%%
%% `?GL_SAMPLE_BUFFERS': `Params' returns a single integer value indicating the
%% number of sample buffers associated with the framebuffer. See {@link gl:sampleCoverage/2} .
%%
%%
%% `?GL_SAMPLE_COVERAGE_VALUE': `Params' returns a single positive floating-point
%% value indicating the current sample coverage value. See {@link gl:sampleCoverage/2} .
%%
%% `?GL_SAMPLE_COVERAGE_INVERT': `Params' returns a single boolean value indicating
%% if the temporary coverage value should be inverted. See {@link gl:sampleCoverage/2} .
%%
%% `?GL_SAMPLER_BINDING': `Params' returns a single value, the name of the sampler
%% object currently bound to the active texture unit. The initial value is 0. See {@link gl:bindSampler/2}
%% .
%%
%% `?GL_SAMPLES': `Params' returns a single integer value indicating the coverage
%% mask size. See {@link gl:sampleCoverage/2} .
%%
%% `?GL_SCISSOR_BOX': `Params' returns four values: the x and y window coordinates
%% of the scissor box, followed by its width and height. Initially the x and y window
%% coordinates are both 0 and the width and height are set to the size of the window. See {@link gl:scissor/4}
%% .
%%
%% `?GL_SCISSOR_TEST': `Params' returns a single boolean value indicating whether
%% scissoring is enabled. The initial value is `?GL_FALSE'. See {@link gl:scissor/4} .
%%
%% `?GL_SHADER_COMPILER': `Params' returns a single boolean value indicating whether
%% an online shader compiler is present in the implementation. All desktop OpenGL implementations
%% must support online shader compilations, and therefore the value of `?GL_SHADER_COMPILER'
%% will always be `?GL_TRUE'.
%%
%% `?GL_SMOOTH_LINE_WIDTH_RANGE': `Params' returns a pair of values indicating
%% the range of widths supported for smooth (antialiased) lines. See {@link gl:lineWidth/1} .
%%
%% `?GL_SMOOTH_LINE_WIDTH_GRANULARITY': `Params' returns a single value indicating
%% the level of quantization applied to smooth line width parameters.
%%
%% `?GL_STENCIL_BACK_FAIL': `Params' returns one value, a symbolic constant indicating
%% what action is taken for back-facing polygons when the stencil test fails. The initial
%% value is `?GL_KEEP'. See {@link gl:stencilOpSeparate/4} .
%%
%% `?GL_STENCIL_BACK_FUNC': `Params' returns one value, a symbolic constant indicating
%% what function is used for back-facing polygons to compare the stencil reference value
%% with the stencil buffer value. The initial value is `?GL_ALWAYS'. See {@link gl:stencilFuncSeparate/4}
%% .
%%
%% `?GL_STENCIL_BACK_PASS_DEPTH_FAIL': `Params' returns one value, a symbolic constant
%% indicating what action is taken for back-facing polygons when the stencil test passes,
%% but the depth test fails. The initial value is `?GL_KEEP'. See {@link gl:stencilOpSeparate/4}
%% .
%%
%% `?GL_STENCIL_BACK_PASS_DEPTH_PASS': `Params' returns one value, a symbolic constant
%% indicating what action is taken for back-facing polygons when the stencil test passes
%% and the depth test passes. The initial value is `?GL_KEEP'. See {@link gl:stencilOpSeparate/4}
%% .
%%
%% `?GL_STENCIL_BACK_REF': `Params' returns one value, the reference value that
%% is compared with the contents of the stencil buffer for back-facing polygons. The initial
%% value is 0. See {@link gl:stencilFuncSeparate/4} .
%%
%% `?GL_STENCIL_BACK_VALUE_MASK': `Params' returns one value, the mask that is
%% used for back-facing polygons to mask both the stencil reference value and the stencil
%% buffer value before they are compared. The initial value is all 1's. See {@link gl:stencilFuncSeparate/4}
%% .
%%
%% `?GL_STENCIL_BACK_WRITEMASK': `Params' returns one value, the mask that controls
%% writing of the stencil bitplanes for back-facing polygons. The initial value is all 1's.
%% See {@link gl:stencilMaskSeparate/2} .
%%
%% `?GL_STENCIL_CLEAR_VALUE': `Params' returns one value, the index to which the
%% stencil bitplanes are cleared. The initial value is 0. See {@link gl:clearStencil/1} .
%%
%% `?GL_STENCIL_FAIL': `Params' returns one value, a symbolic constant indicating
%% what action is taken when the stencil test fails. The initial value is `?GL_KEEP'.
%% See {@link gl:stencilOp/3} . This stencil state only affects non-polygons and front-facing
%% polygons. Back-facing polygons use separate stencil state. See {@link gl:stencilOpSeparate/4}
%% .
%%
%% `?GL_STENCIL_FUNC': `Params' returns one value, a symbolic constant indicating
%% what function is used to compare the stencil reference value with the stencil buffer value.
%% The initial value is `?GL_ALWAYS'. See {@link gl:stencilFunc/3} . This stencil state
%% only affects non-polygons and front-facing polygons. Back-facing polygons use separate
%% stencil state. See {@link gl:stencilFuncSeparate/4} .
%%
%% `?GL_STENCIL_PASS_DEPTH_FAIL': `Params' returns one value, a symbolic constant
%% indicating what action is taken when the stencil test passes, but the depth test fails.
%% The initial value is `?GL_KEEP'. See {@link gl:stencilOp/3} . This stencil state only
%% affects non-polygons and front-facing polygons. Back-facing polygons use separate stencil
%% state. See {@link gl:stencilOpSeparate/4} .
%%
%% `?GL_STENCIL_PASS_DEPTH_PASS': `Params' returns one value, a symbolic constant
%% indicating what action is taken when the stencil test passes and the depth test passes.
%% The initial value is `?GL_KEEP'. See {@link gl:stencilOp/3} . This stencil state only
%% affects non-polygons and front-facing polygons. Back-facing polygons use separate stencil
%% state. See {@link gl:stencilOpSeparate/4} .
%%
%% `?GL_STENCIL_REF': `Params' returns one value, the reference value that is compared
%% with the contents of the stencil buffer. The initial value is 0. See {@link gl:stencilFunc/3}
%% . This stencil state only affects non-polygons and front-facing polygons. Back-facing
%% polygons use separate stencil state. See {@link gl:stencilFuncSeparate/4} .
%%
%% `?GL_STENCIL_TEST': `Params' returns a single boolean value indicating whether
%% stencil testing of fragments is enabled. The initial value is `?GL_FALSE'. See {@link gl:stencilFunc/3}
%% and {@link gl:stencilOp/3} .
%%
%% `?GL_STENCIL_VALUE_MASK': `Params' returns one value, the mask that is used
%% to mask both the stencil reference value and the stencil buffer value before they are
%% compared. The initial value is all 1's. See {@link gl:stencilFunc/3} . This stencil state
%% only affects non-polygons and front-facing polygons. Back-facing polygons use separate
%% stencil state. See {@link gl:stencilFuncSeparate/4} .
%%
%% `?GL_STENCIL_WRITEMASK': `Params' returns one value, the mask that controls
%% writing of the stencil bitplanes. The initial value is all 1's. See {@link gl:stencilMask/1}
%% . This stencil state only affects non-polygons and front-facing polygons. Back-facing
%% polygons use separate stencil state. See {@link gl:stencilMaskSeparate/2} .
%%
%% `?GL_STEREO': `Params' returns a single boolean value indicating whether stereo
%% buffers (left and right) are supported.
%%
%% `?GL_SUBPIXEL_BITS': `Params' returns one value, an estimate of the number of
%% bits of subpixel resolution that are used to position rasterized geometry in window coordinates.
%% The value must be at least 4.
%%
%% `?GL_TEXTURE_BINDING_1D': `Params' returns a single value, the name of the texture
%% currently bound to the target `?GL_TEXTURE_1D'. The initial value is 0. See {@link gl:bindTexture/2}
%% .
%%
%% `?GL_TEXTURE_BINDING_1D_ARRAY': `Params' returns a single value, the name of
%% the texture currently bound to the target `?GL_TEXTURE_1D_ARRAY'. The initial value
%% is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_2D': `Params' returns a single value, the name of the texture
%% currently bound to the target `?GL_TEXTURE_2D'. The initial value is 0. See {@link gl:bindTexture/2}
%% .
%%
%% `?GL_TEXTURE_BINDING_2D_ARRAY': `Params' returns a single value, the name of
%% the texture currently bound to the target `?GL_TEXTURE_2D_ARRAY'. The initial value
%% is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_2D_MULTISAMPLE': `Params' returns a single value, the name
%% of the texture currently bound to the target `?GL_TEXTURE_2D_MULTISAMPLE'. The initial
%% value is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY': `Params' returns a single value,
%% the name of the texture currently bound to the target `?GL_TEXTURE_2D_MULTISAMPLE_ARRAY'
%% . The initial value is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_3D': `Params' returns a single value, the name of the texture
%% currently bound to the target `?GL_TEXTURE_3D'. The initial value is 0. See {@link gl:bindTexture/2}
%% .
%%
%% `?GL_TEXTURE_BINDING_BUFFER': `Params' returns a single value, the name of the
%% texture currently bound to the target `?GL_TEXTURE_BUFFER'. The initial value is
%% 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_CUBE_MAP': `Params' returns a single value, the name of
%% the texture currently bound to the target `?GL_TEXTURE_CUBE_MAP'. The initial value
%% is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_BINDING_RECTANGLE': `Params' returns a single value, the name of
%% the texture currently bound to the target `?GL_TEXTURE_RECTANGLE'. The initial value
%% is 0. See {@link gl:bindTexture/2} .
%%
%% `?GL_TEXTURE_COMPRESSION_HINT': `Params' returns a single value indicating the
%% mode of the texture compression hint. The initial value is `?GL_DONT_CARE'.
%%
%% `?GL_TEXTURE_BUFFER_BINDING': `Params' returns a single value, the name of the
%% texture buffer object currently bound. The initial value is 0. See {@link gl:bindBuffer/2} .
%%
%%
%% `?GL_TIMESTAMP': `Params' returns a single value, the 64-bit value of the current
%% GL time. See {@link gl:queryCounter/2} .
%%
%% `?GL_TRANSFORM_FEEDBACK_BUFFER_BINDING': When used with non-indexed variants of ``gl:get''
%% (such as ``gl:getIntegerv''), `Params' returns a single value, the name of the
%% buffer object currently bound to the target `?GL_TRANSFORM_FEEDBACK_BUFFER'. If no
%% buffer object is bound to this target, 0 is returned. When used with indexed variants of ``gl:get''
%% (such as ``gl:getIntegeri_v''), `Params' returns a single value, the name of the
%% buffer object bound to the indexed transform feedback attribute stream. The initial value
%% is 0 for all targets. See {@link gl:bindBuffer/2} , {@link gl:bindBufferBase/3} , and {@link gl:bindBufferRange/5}
%% .
%%
%% `?GL_TRANSFORM_FEEDBACK_BUFFER_START': When used with indexed variants of ``gl:get''
%% (such as ``gl:getInteger64i_v''), `Params' returns a single value, the start offset
%% of the binding range for each transform feedback attribute stream. The initial value is
%% 0 for all streams. See {@link gl:bindBufferRange/5} .
%%
%% `?GL_TRANSFORM_FEEDBACK_BUFFER_SIZE': When used with indexed variants of ``gl:get''
%% (such as ``gl:getInteger64i_v''), `Params' returns a single value, the size of
%% the binding range for each transform feedback attribute stream. The initial value is 0
%% for all streams. See {@link gl:bindBufferRange/5} .
%%
%% `?GL_UNIFORM_BUFFER_BINDING': When used with non-indexed variants of ``gl:get''
%% (such as ``gl:getIntegerv''), `Params' returns a single value, the name of the
%% buffer object currently bound to the target `?GL_UNIFORM_BUFFER'. If no buffer object
%% is bound to this target, 0 is returned. When used with indexed variants of ``gl:get''
%% (such as ``gl:getIntegeri_v''), `Params' returns a single value, the name of the
%% buffer object bound to the indexed uniform buffer binding point. The initial value is
%% 0 for all targets. See {@link gl:bindBuffer/2} , {@link gl:bindBufferBase/3} , and {@link gl:bindBufferRange/5}
%% .
%%
%% `?GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT': `Params' returns a single value, the
%% minimum required alignment for uniform buffer sizes and offset. The initial value is 1.
%% See {@link gl:uniformBlockBinding/3} .
%%
%% `?GL_UNIFORM_BUFFER_SIZE': When used with indexed variants of ``gl:get'' (such
%% as ``gl:getInteger64i_v''), `Params' returns a single value, the size of the binding
%% range for each indexed uniform buffer binding. The initial value is 0 for all bindings.
%% See {@link gl:bindBufferRange/5} .
%%
%% `?GL_UNIFORM_BUFFER_START': When used with indexed variants of ``gl:get'' (such
%% as ``gl:getInteger64i_v''), `Params' returns a single value, the start offset of
%% the binding range for each indexed uniform buffer binding. The initial value is 0 for
%% all bindings. See {@link gl:bindBufferRange/5} .
%%
%% `?GL_UNPACK_ALIGNMENT': `Params' returns one value, the byte alignment used
%% for reading pixel data from memory. The initial value is 4. See {@link gl:pixelStoref/2} .
%%
%% `?GL_UNPACK_IMAGE_HEIGHT': `Params' returns one value, the image height used
%% for reading pixel data from memory. The initial is 0. See {@link gl:pixelStoref/2} .
%%
%% `?GL_UNPACK_LSB_FIRST': `Params' returns a single boolean value indicating whether
%% single-bit pixels being read from memory are read first from the least significant bit
%% of each unsigned byte. The initial value is `?GL_FALSE'. See {@link gl:pixelStoref/2} .
%%
%%
%% `?GL_UNPACK_ROW_LENGTH': `Params' returns one value, the row length used for
%% reading pixel data from memory. The initial value is 0. See {@link gl:pixelStoref/2} .
%%
%% `?GL_UNPACK_SKIP_IMAGES': `Params' returns one value, the number of pixel images
%% skipped before the first pixel is read from memory. The initial value is 0. See {@link gl:pixelStoref/2}
%% .
%%
%% `?GL_UNPACK_SKIP_PIXELS': `Params' returns one value, the number of pixel locations
%% skipped before the first pixel is read from memory. The initial value is 0. See {@link gl:pixelStoref/2}
%% .
%%
%% `?GL_UNPACK_SKIP_ROWS': `Params' returns one value, the number of rows of pixel
%% locations skipped before the first pixel is read from memory. The initial value is 0.
%% See {@link gl:pixelStoref/2} .
%%
%% `?GL_UNPACK_SWAP_BYTES': `Params' returns a single boolean value indicating
%% whether the bytes of two-byte and four-byte pixel indices and components are swapped after
%% being read from memory. The initial value is `?GL_FALSE'. See {@link gl:pixelStoref/2} .
%%
%%
%% `?GL_VERTEX_PROGRAM_POINT_SIZE': `Params' returns a single boolean value indicating
%% whether vertex program point size mode is enabled. If enabled, and a vertex shader is
%% active, then the point size is taken from the shader built-in gl_PointSize. If disabled,
%% and a vertex shader is active, then the point size is taken from the point state as specified
%% by {@link gl:pointSize/1} . The initial value is `?GL_FALSE'.
%%
%% `?GL_VIEWPORT': When used with non-indexed variants of ``gl:get'' (such as ``gl:getIntegerv''
%% ), `Params' returns four values: the x and y window coordinates of the viewport,
%% followed by its width and height. Initially the x and y window coordinates are both
%% set to 0, and the width and height are set to the width and height of the window into
%% which the GL will do its rendering. See {@link gl:viewport/4} . When used with indexed
%% variants of ``gl:get'' (such as ``gl:getIntegeri_v''), `Params' returns four
%% values: the x and y window coordinates of the indexed viewport, followed by its width
%% and height. Initially the x and y window coordinates are both set to 0, and the width
%% and height are set to the width and height of the window into which the GL will do its
%% rendering. See {@link gl:viewportIndexedf/5} .
%%
%% `?GL_VIEWPORT_BOUNDS_RANGE': `Params' returns two values, the minimum and maximum
%% viewport bounds range. The minimum range should be at least [-32768, 32767].
%%
%% `?GL_VIEWPORT_INDEX_PROVOKING_VERTEX': `Params' returns one value, the implementation
%% dependent specifc vertex of a primitive that is used to select the viewport index. If
%% the value returned is equivalent to `?GL_PROVOKING_VERTEX', then the vertex selection
%% follows the convention specified by {@link gl:provokingVertex/1} . If the value returned
%% is equivalent to `?GL_FIRST_VERTEX_CONVENTION', then the selection is always taken
%% from the first vertex in the primitive. If the value returned is equivalent to `?GL_LAST_VERTEX_CONVENTION'
%% , then the selection is always taken from the last vertex in the primitive. If the value
%% returned is equivalent to `?GL_UNDEFINED_VERTEX', then the selection is not guaranteed
%% to be taken from any specific vertex in the primitive.
%%
%% `?GL_VIEWPORT_SUBPIXEL_BITS': `Params' returns a single value, the number of
%% bits of sub-pixel precision which the GL uses to interpret the floating point viewport
%% bounds. The minimum value is 0.
%%
%% Many of the boolean parameters can also be queried more easily using {@link gl:isEnabled/1}
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGet.xml">external</a> documentation.
-spec getBooleanv(Pname) -> [0|1] when Pname :: enum().
getBooleanv(Pname) ->
call(5065, <<Pname:?GLenum>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getDoublev(Pname) -> [float()] when Pname :: enum().
getDoublev(Pname) ->
call(5066, <<Pname:?GLenum>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getFloatv(Pname) -> [float()] when Pname :: enum().
getFloatv(Pname) ->
call(5067, <<Pname:?GLenum>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getIntegerv(Pname) -> [integer()] when Pname :: enum().
getIntegerv(Pname) ->
call(5068, <<Pname:?GLenum>>).
%% @doc Push and pop the server attribute stack
%%
%% ``gl:pushAttrib'' takes one argument, a mask that indicates which groups of state variables
%% to save on the attribute stack. Symbolic constants are used to set bits in the mask. `Mask'
%% is typically constructed by specifying the bitwise-or of several of these constants
%% together. The special mask `?GL_ALL_ATTRIB_BITS' can be used to save all stackable
%% states.
%%
%% The symbolic mask constants and their associated GL state are as follows (the second
%% column lists which attributes are saved):
%%
%% <table><tbody><tr><td>`?GL_ACCUM_BUFFER_BIT'</td><td> Accumulation buffer clear value
%% </td></tr><tr><td>`?GL_COLOR_BUFFER_BIT'</td><td>`?GL_ALPHA_TEST' enable bit </td>
%% </tr><tr><td></td><td> Alpha test function and reference value </td></tr><tr><td></td><td>
%% `?GL_BLEND' enable bit </td></tr><tr><td></td><td> Blending source and destination
%% functions </td></tr><tr><td></td><td> Constant blend color </td></tr><tr><td></td><td>
%% Blending equation </td></tr><tr><td></td><td>`?GL_DITHER' enable bit </td></tr><tr><td>
%% </td><td>`?GL_DRAW_BUFFER' setting </td></tr><tr><td></td><td>`?GL_COLOR_LOGIC_OP'
%% enable bit </td></tr><tr><td></td><td>`?GL_INDEX_LOGIC_OP' enable bit </td></tr><tr>
%% <td></td><td> Logic op function </td></tr><tr><td></td><td> Color mode and index mode
%% clear values </td></tr><tr><td></td><td> Color mode and index mode writemasks </td></tr><tr>
%% <td>`?GL_CURRENT_BIT'</td><td> Current RGBA color </td></tr><tr><td></td><td> Current
%% color index </td></tr><tr><td></td><td> Current normal vector </td></tr><tr><td></td><td>
%% Current texture coordinates </td></tr><tr><td></td><td> Current raster position </td></tr>
%% <tr><td></td><td>`?GL_CURRENT_RASTER_POSITION_VALID' flag </td></tr><tr><td></td><td>
%% RGBA color associated with current raster position </td></tr><tr><td></td><td> Color
%% index associated with current raster position </td></tr><tr><td></td><td> Texture coordinates
%% associated with current raster position </td></tr><tr><td></td><td>`?GL_EDGE_FLAG'
%% flag </td></tr><tr><td>`?GL_DEPTH_BUFFER_BIT'</td><td>`?GL_DEPTH_TEST' enable
%% bit </td></tr><tr><td></td><td> Depth buffer test function </td></tr><tr><td></td><td>
%% Depth buffer clear value </td></tr><tr><td></td><td>`?GL_DEPTH_WRITEMASK' enable
%% bit </td></tr><tr><td>`?GL_ENABLE_BIT'</td><td>`?GL_ALPHA_TEST' flag </td></tr><tr>
%% <td></td><td>`?GL_AUTO_NORMAL' flag </td></tr><tr><td></td><td>`?GL_BLEND' flag
%% </td></tr><tr><td></td><td> Enable bits for the user-definable clipping planes </td></tr><tr>
%% <td></td><td>`?GL_COLOR_MATERIAL'</td></tr><tr><td></td><td>`?GL_CULL_FACE'
%% flag </td></tr><tr><td></td><td>`?GL_DEPTH_TEST' flag </td></tr><tr><td></td><td>`?GL_DITHER'
%% flag </td></tr><tr><td></td><td>`?GL_FOG' flag </td></tr><tr><td></td><td>`?GL_LIGHT'
%% `i' where `?0' <= `i' < `?GL_MAX_LIGHTS'</td></tr>
%% <tr><td></td><td>`?GL_LIGHTING' flag </td></tr><tr><td></td><td>`?GL_LINE_SMOOTH'
%% flag </td></tr><tr><td></td><td>`?GL_LINE_STIPPLE' flag </td></tr><tr><td></td><td>`?GL_COLOR_LOGIC_OP'
%% flag </td></tr><tr><td></td><td>`?GL_INDEX_LOGIC_OP' flag </td></tr><tr><td></td><td>
%% `?GL_MAP1_'`x' where `x' is a map type </td></tr><tr><td></td><td>`?GL_MAP2_'
%% `x' where `x' is a map type </td></tr><tr><td></td><td>`?GL_MULTISAMPLE'
%% flag </td></tr><tr><td></td><td>`?GL_NORMALIZE' flag </td></tr><tr><td></td><td>`?GL_POINT_SMOOTH'
%% flag </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_LINE' flag </td></tr><tr><td></td>
%% <td>`?GL_POLYGON_OFFSET_FILL' flag </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_POINT'
%% flag </td></tr><tr><td></td><td>`?GL_POLYGON_SMOOTH' flag </td></tr><tr><td></td><td>
%% `?GL_POLYGON_STIPPLE' flag </td></tr><tr><td></td><td>`?GL_SAMPLE_ALPHA_TO_COVERAGE'
%% flag </td></tr><tr><td></td><td>`?GL_SAMPLE_ALPHA_TO_ONE' flag </td></tr><tr><td></td>
%% <td>`?GL_SAMPLE_COVERAGE' flag </td></tr><tr><td></td><td>`?GL_SCISSOR_TEST'
%% flag </td></tr><tr><td></td><td>`?GL_STENCIL_TEST' flag </td></tr><tr><td></td><td>`?GL_TEXTURE_1D'
%% flag </td></tr><tr><td></td><td>`?GL_TEXTURE_2D' flag </td></tr><tr><td></td><td>`?GL_TEXTURE_3D'
%% flag </td></tr><tr><td></td><td> Flags `?GL_TEXTURE_GEN_'`x' where `x'
%% is S, T, R, or Q </td></tr><tr><td>`?GL_EVAL_BIT'</td><td>`?GL_MAP1_'`x'
%% enable bits, where `x' is a map type </td></tr><tr><td></td><td>`?GL_MAP2_'`x'
%% enable bits, where `x' is a map type </td></tr><tr><td></td><td> 1D grid endpoints
%% and divisions </td></tr><tr><td></td><td> 2D grid endpoints and divisions </td></tr><tr><td>
%% </td><td>`?GL_AUTO_NORMAL' enable bit </td></tr><tr><td>`?GL_FOG_BIT'</td><td>`?GL_FOG'
%% enable bit </td></tr><tr><td></td><td> Fog color </td></tr><tr><td></td><td> Fog density
%% </td></tr><tr><td></td><td> Linear fog start </td></tr><tr><td></td><td> Linear fog end </td>
%% </tr><tr><td></td><td> Fog index </td></tr><tr><td></td><td>`?GL_FOG_MODE' value </td>
%% </tr><tr><td>`?GL_HINT_BIT'</td><td>`?GL_PERSPECTIVE_CORRECTION_HINT' setting </td>
%% </tr><tr><td></td><td>`?GL_POINT_SMOOTH_HINT' setting </td></tr><tr><td></td><td>`?GL_LINE_SMOOTH_HINT'
%% setting </td></tr><tr><td></td><td>`?GL_POLYGON_SMOOTH_HINT' setting </td></tr><tr><td>
%% </td><td>`?GL_FOG_HINT' setting </td></tr><tr><td></td><td>`?GL_GENERATE_MIPMAP_HINT'
%% setting </td></tr><tr><td></td><td>`?GL_TEXTURE_COMPRESSION_HINT' setting </td></tr>
%% <tr><td>`?GL_LIGHTING_BIT'</td><td>`?GL_COLOR_MATERIAL' enable bit </td></tr><tr>
%% <td></td><td>`?GL_COLOR_MATERIAL_FACE' value </td></tr><tr><td></td><td> Color material
%% parameters that are tracking the current color </td></tr><tr><td></td><td> Ambient scene
%% color </td></tr><tr><td></td><td>`?GL_LIGHT_MODEL_LOCAL_VIEWER' value </td></tr><tr><td>
%% </td><td>`?GL_LIGHT_MODEL_TWO_SIDE' setting </td></tr><tr><td></td><td>`?GL_LIGHTING'
%% enable bit </td></tr><tr><td></td><td> Enable bit for each light </td></tr><tr><td></td><td>
%% Ambient, diffuse, and specular intensity for each light </td></tr><tr><td></td><td> Direction,
%% position, exponent, and cutoff angle for each light </td></tr><tr><td></td><td> Constant,
%% linear, and quadratic attenuation factors for each light </td></tr><tr><td></td><td> Ambient,
%% diffuse, specular, and emissive color for each material </td></tr><tr><td></td><td> Ambient,
%% diffuse, and specular color indices for each material </td></tr><tr><td></td><td> Specular
%% exponent for each material </td></tr><tr><td></td><td>`?GL_SHADE_MODEL' setting </td>
%% </tr><tr><td>`?GL_LINE_BIT'</td><td>`?GL_LINE_SMOOTH' flag </td></tr><tr><td></td>
%% <td>`?GL_LINE_STIPPLE' enable bit </td></tr><tr><td></td><td> Line stipple pattern
%% and repeat counter </td></tr><tr><td></td><td> Line width </td></tr><tr><td>`?GL_LIST_BIT'
%% </td><td>`?GL_LIST_BASE' setting </td></tr><tr><td>`?GL_MULTISAMPLE_BIT'</td><td>
%% `?GL_MULTISAMPLE' flag </td></tr><tr><td></td><td>`?GL_SAMPLE_ALPHA_TO_COVERAGE'
%% flag </td></tr><tr><td></td><td>`?GL_SAMPLE_ALPHA_TO_ONE' flag </td></tr><tr><td></td>
%% <td>`?GL_SAMPLE_COVERAGE' flag </td></tr><tr><td></td><td>`?GL_SAMPLE_COVERAGE_VALUE'
%% value </td></tr><tr><td></td><td>`?GL_SAMPLE_COVERAGE_INVERT' value </td></tr><tr><td>
%% `?GL_PIXEL_MODE_BIT'</td><td>`?GL_RED_BIAS' and `?GL_RED_SCALE' settings </td>
%% </tr><tr><td></td><td>`?GL_GREEN_BIAS' and `?GL_GREEN_SCALE' values </td></tr><tr>
%% <td></td><td>`?GL_BLUE_BIAS' and `?GL_BLUE_SCALE'</td></tr><tr><td></td><td>`?GL_ALPHA_BIAS'
%% and `?GL_ALPHA_SCALE'</td></tr><tr><td></td><td>`?GL_DEPTH_BIAS' and `?GL_DEPTH_SCALE'
%% </td></tr><tr><td></td><td>`?GL_INDEX_OFFSET' and `?GL_INDEX_SHIFT' values </td>
%% </tr><tr><td></td><td>`?GL_MAP_COLOR' and `?GL_MAP_STENCIL' flags </td></tr><tr>
%% <td></td><td>`?GL_ZOOM_X' and `?GL_ZOOM_Y' factors </td></tr><tr><td></td><td>`?GL_READ_BUFFER'
%% setting </td></tr><tr><td>`?GL_POINT_BIT'</td><td>`?GL_POINT_SMOOTH' flag </td>
%% </tr><tr><td></td><td> Point size </td></tr><tr><td>`?GL_POLYGON_BIT'</td><td>`?GL_CULL_FACE'
%% enable bit </td></tr><tr><td></td><td>`?GL_CULL_FACE_MODE' value </td></tr><tr><td></td>
%% <td>`?GL_FRONT_FACE' indicator </td></tr><tr><td></td><td>`?GL_POLYGON_MODE'
%% setting </td></tr><tr><td></td><td>`?GL_POLYGON_SMOOTH' flag </td></tr><tr><td></td><td>
%% `?GL_POLYGON_STIPPLE' enable bit </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_FILL'
%% flag </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_LINE' flag </td></tr><tr><td></td>
%% <td>`?GL_POLYGON_OFFSET_POINT' flag </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_FACTOR'
%% </td></tr><tr><td></td><td>`?GL_POLYGON_OFFSET_UNITS'</td></tr><tr><td>`?GL_POLYGON_STIPPLE_BIT'
%% </td><td> Polygon stipple image </td></tr><tr><td>`?GL_SCISSOR_BIT'</td><td>`?GL_SCISSOR_TEST'
%% flag </td></tr><tr><td></td><td> Scissor box </td></tr><tr><td>`?GL_STENCIL_BUFFER_BIT'
%% </td><td>`?GL_STENCIL_TEST' enable bit </td></tr><tr><td></td><td> Stencil function
%% and reference value </td></tr><tr><td></td><td> Stencil value mask </td></tr><tr><td></td>
%% <td> Stencil fail, pass, and depth buffer pass actions </td></tr><tr><td></td><td> Stencil
%% buffer clear value </td></tr><tr><td></td><td> Stencil buffer writemask </td></tr><tr><td>
%% `?GL_TEXTURE_BIT'</td><td> Enable bits for the four texture coordinates </td></tr><tr>
%% <td></td><td> Border color for each texture image </td></tr><tr><td></td><td> Minification
%% function for each texture image </td></tr><tr><td></td><td> Magnification function for
%% each texture image </td></tr><tr><td></td><td> Texture coordinates and wrap mode for each
%% texture image </td></tr><tr><td></td><td> Color and mode for each texture environment </td>
%% </tr><tr><td></td><td> Enable bits `?GL_TEXTURE_GEN_'`x', `x' is S, T,
%% R, and Q </td></tr><tr><td></td><td>`?GL_TEXTURE_GEN_MODE' setting for S, T, R, and
%% Q </td></tr><tr><td></td><td> {@link gl:texGend/3} plane equations for S, T, R, and Q </td></tr>
%% <tr><td></td><td> Current texture bindings (for example, `?GL_TEXTURE_BINDING_2D') </td>
%% </tr><tr><td>`?GL_TRANSFORM_BIT'</td><td> Coefficients of the six clipping planes </td>
%% </tr><tr><td></td><td> Enable bits for the user-definable clipping planes </td></tr><tr><td>
%% </td><td>`?GL_MATRIX_MODE' value </td></tr><tr><td></td><td>`?GL_NORMALIZE'
%% flag </td></tr><tr><td></td><td>`?GL_RESCALE_NORMAL' flag </td></tr><tr><td>`?GL_VIEWPORT_BIT'
%% </td><td> Depth range (near and far) </td></tr><tr><td></td><td> Viewport origin and extent
%% </td></tr></tbody></table>
%%
%% {@link gl:pushAttrib/1} restores the values of the state variables saved with the last ``gl:pushAttrib''
%% command. Those not saved are left unchanged.
%%
%% It is an error to push attributes onto a full stack or to pop attributes off an empty
%% stack. In either case, the error flag is set and no other change is made to GL state.
%%
%% Initially, the attribute stack is empty.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPushAttrib.xml">external</a> documentation.
-spec pushAttrib(Mask) -> 'ok' when Mask :: integer().
pushAttrib(Mask) ->
cast(5069, <<Mask:?GLbitfield>>).
%% @doc
%% See {@link pushAttrib/1}
-spec popAttrib() -> 'ok'.
popAttrib() ->
cast(5070, <<>>).
%% @doc Push and pop the client attribute stack
%%
%% ``gl:pushClientAttrib'' takes one argument, a mask that indicates which groups of client-state
%% variables to save on the client attribute stack. Symbolic constants are used to set bits
%% in the mask. `Mask' is typically constructed by specifying the bitwise-or of several
%% of these constants together. The special mask `?GL_CLIENT_ALL_ATTRIB_BITS' can
%% be used to save all stackable client state.
%%
%% The symbolic mask constants and their associated GL client state are as follows (the
%% second column lists which attributes are saved):
%%
%% `?GL_CLIENT_PIXEL_STORE_BIT' Pixel storage modes `?GL_CLIENT_VERTEX_ARRAY_BIT'
%% Vertex arrays (and enables)
%%
%% {@link gl:pushClientAttrib/1} restores the values of the client-state variables saved with
%% the last ``gl:pushClientAttrib''. Those not saved are left unchanged.
%%
%% It is an error to push attributes onto a full client attribute stack or to pop attributes
%% off an empty stack. In either case, the error flag is set, and no other change is made
%% to GL state.
%%
%% Initially, the client attribute stack is empty.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPushClientAttrib.xml">external</a> documentation.
-spec pushClientAttrib(Mask) -> 'ok' when Mask :: integer().
pushClientAttrib(Mask) ->
cast(5071, <<Mask:?GLbitfield>>).
%% @doc
%% See {@link pushClientAttrib/1}
-spec popClientAttrib() -> 'ok'.
popClientAttrib() ->
cast(5072, <<>>).
%% @doc Set rasterization mode
%%
%% ``gl:renderMode'' sets the rasterization mode. It takes one argument, `Mode' , which
%% can assume one of three predefined values:
%%
%% `?GL_RENDER': Render mode. Primitives are rasterized, producing pixel fragments,
%% which are written into the frame buffer. This is the normal mode and also the default
%% mode.
%%
%% `?GL_SELECT': Selection mode. No pixel fragments are produced, and no change to
%% the frame buffer contents is made. Instead, a record of the names of primitives that would
%% have been drawn if the render mode had been `?GL_RENDER' is returned in a select
%% buffer, which must be created (see {@link gl:selectBuffer/2} ) before selection mode is
%% entered.
%%
%% `?GL_FEEDBACK': Feedback mode. No pixel fragments are produced, and no change to
%% the frame buffer contents is made. Instead, the coordinates and attributes of vertices
%% that would have been drawn if the render mode had been `?GL_RENDER' is returned in
%% a feedback buffer, which must be created (see {@link gl:feedbackBuffer/3} ) before feedback
%% mode is entered.
%%
%% The return value of ``gl:renderMode'' is determined by the render mode at the time ``gl:renderMode''
%% is called, rather than by `Mode' . The values returned for the three render modes
%% are as follows:
%%
%% `?GL_RENDER': 0.
%%
%% `?GL_SELECT': The number of hit records transferred to the select buffer.
%%
%% `?GL_FEEDBACK': The number of values (not vertices) transferred to the feedback
%% buffer.
%%
%% See the {@link gl:selectBuffer/2} and {@link gl:feedbackBuffer/3} reference pages for more
%% details concerning selection and feedback operation.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRenderMode.xml">external</a> documentation.
-spec renderMode(Mode) -> integer() when Mode :: enum().
renderMode(Mode) ->
call(5073, <<Mode:?GLenum>>).
%% @doc Return error information
%%
%% ``gl:getError'' returns the value of the error flag. Each detectable error is assigned
%% a numeric code and symbolic name. When an error occurs, the error flag is set to the appropriate
%% error code value. No other errors are recorded until ``gl:getError'' is called, the
%% error code is returned, and the flag is reset to `?GL_NO_ERROR'. If a call to ``gl:getError''
%% returns `?GL_NO_ERROR', there has been no detectable error since the last call to ``gl:getError''
%% , or since the GL was initialized.
%%
%% To allow for distributed implementations, there may be several error flags. If any single
%% error flag has recorded an error, the value of that flag is returned and that flag is
%% reset to `?GL_NO_ERROR' when ``gl:getError'' is called. If more than one flag has
%% recorded an error, ``gl:getError'' returns and clears an arbitrary error flag value.
%% Thus, ``gl:getError'' should always be called in a loop, until it returns `?GL_NO_ERROR'
%% , if all error flags are to be reset.
%%
%% Initially, all error flags are set to `?GL_NO_ERROR'.
%%
%% The following errors are currently defined:
%%
%% `?GL_NO_ERROR': No error has been recorded. The value of this symbolic constant
%% is guaranteed to be 0.
%%
%% `?GL_INVALID_ENUM': An unacceptable value is specified for an enumerated argument.
%% The offending command is ignored and has no other side effect than to set the error flag.
%%
%%
%% `?GL_INVALID_VALUE': A numeric argument is out of range. The offending command is
%% ignored and has no other side effect than to set the error flag.
%%
%% `?GL_INVALID_OPERATION': The specified operation is not allowed in the current state.
%% The offending command is ignored and has no other side effect than to set the error flag.
%%
%%
%% `?GL_INVALID_FRAMEBUFFER_OPERATION': The framebuffer object is not complete. The
%% offending command is ignored and has no other side effect than to set the error flag.
%%
%% `?GL_OUT_OF_MEMORY': There is not enough memory left to execute the command. The
%% state of the GL is undefined, except for the state of the error flags, after this error
%% is recorded.
%%
%% When an error flag is set, results of a GL operation are undefined only if `?GL_OUT_OF_MEMORY'
%% has occurred. In all other cases, the command generating the error is ignored and has
%% no effect on the GL state or frame buffer contents. If the generating command returns
%% a value, it returns 0. If ``gl:getError'' itself generates an error, it returns 0.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetError.xml">external</a> documentation.
-spec getError() -> enum().
getError() ->
call(5074, <<>>).
%% @doc Return a string describing the current GL connection
%%
%% ``gl:getString'' returns a pointer to a static string describing some aspect of the
%% current GL connection. `Name' can be one of the following:
%%
%% `?GL_VENDOR': Returns the company responsible for this GL implementation. This name
%% does not change from release to release.
%%
%% `?GL_RENDERER': Returns the name of the renderer. This name is typically specific
%% to a particular configuration of a hardware platform. It does not change from release
%% to release.
%%
%% `?GL_VERSION': Returns a version or release number.
%%
%% `?GL_SHADING_LANGUAGE_VERSION': Returns a version or release number for the shading
%% language.
%%
%% ``gl:getStringi'' returns a pointer to a static string indexed by `Index' . `Name'
%% can be one of the following:
%%
%% `?GL_EXTENSIONS': For ``gl:getStringi'' only, returns the extension string supported
%% by the implementation at `Index' .
%%
%% Strings `?GL_VENDOR' and `?GL_RENDERER' together uniquely specify a platform.
%% They do not change from release to release and should be used by platform-recognition
%% algorithms.
%%
%% The `?GL_VERSION' and `?GL_SHADING_LANGUAGE_VERSION' strings begin with a version
%% number. The version number uses one of these forms:
%%
%% `major_number.minor_number'`major_number.minor_number.release_number'
%%
%% Vendor-specific information may follow the version number. Its format depends on the
%% implementation, but a space always separates the version number and the vendor-specific
%% information.
%%
%% All strings are null-terminated.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetString.xml">external</a> documentation.
-spec getString(Name) -> string() when Name :: enum().
getString(Name) ->
call(5075, <<Name:?GLenum>>).
%% @doc Block until all GL execution is complete
%%
%% ``gl:finish'' does not return until the effects of all previously called GL commands
%% are complete. Such effects include all changes to GL state, all changes to connection
%% state, and all changes to the frame buffer contents.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFinish.xml">external</a> documentation.
-spec finish() -> 'ok'.
finish() ->
cast(5076, <<>>).
%% @doc Force execution of GL commands in finite time
%%
%% Different GL implementations buffer commands in several different locations, including
%% network buffers and the graphics accelerator itself. ``gl:flush'' empties all of these
%% buffers, causing all issued commands to be executed as quickly as they are accepted by
%% the actual rendering engine. Though this execution may not be completed in any particular
%% time period, it does complete in finite time.
%%
%% Because any GL program might be executed over a network, or on an accelerator that buffers
%% commands, all programs should call ``gl:flush'' whenever they count on having all of
%% their previously issued commands completed. For example, call ``gl:flush'' before waiting
%% for user input that depends on the generated image.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFlush.xml">external</a> documentation.
-spec flush() -> 'ok'.
flush() ->
cast(5077, <<>>).
%% @doc Specify implementation-specific hints
%%
%% Certain aspects of GL behavior, when there is room for interpretation, can be controlled
%% with hints. A hint is specified with two arguments. `Target' is a symbolic constant
%% indicating the behavior to be controlled, and `Mode' is another symbolic constant
%% indicating the desired behavior. The initial value for each `Target' is `?GL_DONT_CARE'
%% . `Mode' can be one of the following:
%%
%% `?GL_FASTEST': The most efficient option should be chosen.
%%
%% `?GL_NICEST': The most correct, or highest quality, option should be chosen.
%%
%% `?GL_DONT_CARE': No preference.
%%
%% Though the implementation aspects that can be hinted are well defined, the interpretation
%% of the hints depends on the implementation. The hint aspects that can be specified with `Target'
%% , along with suggested semantics, are as follows:
%%
%% `?GL_FRAGMENT_SHADER_DERIVATIVE_HINT': Indicates the accuracy of the derivative
%% calculation for the GL shading language fragment processing built-in functions: `?dFdx'
%% , `?dFdy', and `?fwidth'.
%%
%% `?GL_LINE_SMOOTH_HINT': Indicates the sampling quality of antialiased lines. If
%% a larger filter function is applied, hinting `?GL_NICEST' can result in more pixel
%% fragments being generated during rasterization.
%%
%% `?GL_POLYGON_SMOOTH_HINT': Indicates the sampling quality of antialiased polygons.
%% Hinting `?GL_NICEST' can result in more pixel fragments being generated during rasterization,
%% if a larger filter function is applied.
%%
%% `?GL_TEXTURE_COMPRESSION_HINT': Indicates the quality and performance of the compressing
%% texture images. Hinting `?GL_FASTEST' indicates that texture images should be compressed
%% as quickly as possible, while `?GL_NICEST' indicates that texture images should be
%% compressed with as little image quality loss as possible. `?GL_NICEST' should be
%% selected if the texture is to be retrieved by {@link gl:getCompressedTexImage/3} for reuse.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glHint.xml">external</a> documentation.
-spec hint(Target, Mode) -> 'ok' when Target :: enum(),Mode :: enum().
hint(Target,Mode) ->
cast(5078, <<Target:?GLenum,Mode:?GLenum>>).
%% @doc Specify the clear value for the depth buffer
%%
%% ``gl:clearDepth'' specifies the depth value used by {@link gl:clear/1} to clear the depth
%% buffer. Values specified by ``gl:clearDepth'' are clamped to the range [0 1].
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearDepth.xml">external</a> documentation.
-spec clearDepth(Depth) -> 'ok' when Depth :: clamp().
clearDepth(Depth) ->
cast(5079, <<Depth:?GLclampd>>).
%% @doc Specify the value used for depth buffer comparisons
%%
%% ``gl:depthFunc'' specifies the function used to compare each incoming pixel depth value
%% with the depth value present in the depth buffer. The comparison is performed only if
%% depth testing is enabled. (See {@link gl:enable/1} and {@link gl:enable/1} of `?GL_DEPTH_TEST'
%% .)
%%
%% `Func' specifies the conditions under which the pixel will be drawn. The comparison
%% functions are as follows:
%%
%% `?GL_NEVER': Never passes.
%%
%% `?GL_LESS': Passes if the incoming depth value is less than the stored depth value.
%%
%%
%% `?GL_EQUAL': Passes if the incoming depth value is equal to the stored depth value.
%%
%%
%% `?GL_LEQUAL': Passes if the incoming depth value is less than or equal to the stored
%% depth value.
%%
%% `?GL_GREATER': Passes if the incoming depth value is greater than the stored depth
%% value.
%%
%% `?GL_NOTEQUAL': Passes if the incoming depth value is not equal to the stored depth
%% value.
%%
%% `?GL_GEQUAL': Passes if the incoming depth value is greater than or equal to the
%% stored depth value.
%%
%% `?GL_ALWAYS': Always passes.
%%
%% The initial value of `Func' is `?GL_LESS'. Initially, depth testing is disabled.
%% If depth testing is disabled or if no depth buffer exists, it is as if the depth test
%% always passes.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthFunc.xml">external</a> documentation.
-spec depthFunc(Func) -> 'ok' when Func :: enum().
depthFunc(Func) ->
cast(5080, <<Func:?GLenum>>).
%% @doc Enable or disable writing into the depth buffer
%%
%% ``gl:depthMask'' specifies whether the depth buffer is enabled for writing. If `Flag'
%% is `?GL_FALSE', depth buffer writing is disabled. Otherwise, it is enabled. Initially,
%% depth buffer writing is enabled.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthMask.xml">external</a> documentation.
-spec depthMask(Flag) -> 'ok' when Flag :: 0|1.
depthMask(Flag) ->
cast(5081, <<Flag:?GLboolean>>).
%% @doc Specify mapping of depth values from normalized device coordinates to window coordinates
%%
%% After clipping and division by `w', depth coordinates range from -1 to 1, corresponding
%% to the near and far clipping planes. ``gl:depthRange'' specifies a linear mapping of
%% the normalized depth coordinates in this range to window depth coordinates. Regardless
%% of the actual depth buffer implementation, window coordinate depth values are treated
%% as though they range from 0 through 1 (like color components). Thus, the values accepted
%% by ``gl:depthRange'' are both clamped to this range before they are accepted.
%%
%% The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping,
%% the depth buffer range is fully utilized.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthRange.xml">external</a> documentation.
-spec depthRange(Near_val, Far_val) -> 'ok' when Near_val :: clamp(),Far_val :: clamp().
depthRange(Near_val,Far_val) ->
cast(5082, <<Near_val:?GLclampd,Far_val:?GLclampd>>).
%% @doc Specify clear values for the accumulation buffer
%%
%% ``gl:clearAccum'' specifies the red, green, blue, and alpha values used by {@link gl:clear/1}
%% to clear the accumulation buffer.
%%
%% Values specified by ``gl:clearAccum'' are clamped to the range [-1 1].
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearAccum.xml">external</a> documentation.
-spec clearAccum(Red, Green, Blue, Alpha) -> 'ok' when Red :: float(),Green :: float(),Blue :: float(),Alpha :: float().
clearAccum(Red,Green,Blue,Alpha) ->
cast(5083, <<Red:?GLfloat,Green:?GLfloat,Blue:?GLfloat,Alpha:?GLfloat>>).
%% @doc Operate on the accumulation buffer
%%
%% The accumulation buffer is an extended-range color buffer. Images are not rendered into
%% it. Rather, images rendered into one of the color buffers are added to the contents of
%% the accumulation buffer after rendering. Effects such as antialiasing (of points, lines,
%% and polygons), motion blur, and depth of field can be created by accumulating images generated
%% with different transformation matrices.
%%
%% Each pixel in the accumulation buffer consists of red, green, blue, and alpha values.
%% The number of bits per component in the accumulation buffer depends on the implementation.
%% You can examine this number by calling {@link gl:getBooleanv/1} four times, with arguments
%% `?GL_ACCUM_RED_BITS', `?GL_ACCUM_GREEN_BITS', `?GL_ACCUM_BLUE_BITS', and `?GL_ACCUM_ALPHA_BITS'
%% . Regardless of the number of bits per component, the range of values stored by each component
%% is [-1 1]. The accumulation buffer pixels are mapped one-to-one with frame buffer pixels.
%%
%% ``gl:accum'' operates on the accumulation buffer. The first argument, `Op' , is
%% a symbolic constant that selects an accumulation buffer operation. The second argument, `Value'
%% , is a floating-point value to be used in that operation. Five operations are specified: `?GL_ACCUM'
%% , `?GL_LOAD', `?GL_ADD', `?GL_MULT', and `?GL_RETURN'.
%%
%% All accumulation buffer operations are limited to the area of the current scissor box
%% and applied identically to the red, green, blue, and alpha components of each pixel. If
%% a ``gl:accum'' operation results in a value outside the range [-1 1], the contents of an
%% accumulation buffer pixel component are undefined.
%%
%% The operations are as follows:
%%
%% `?GL_ACCUM': Obtains R, G, B, and A values from the buffer currently selected for
%% reading (see {@link gl:readBuffer/1} ). Each component value is divided by 2 n-1, where
%% n is the number of bits allocated to each color component in the currently selected buffer.
%% The result is a floating-point value in the range [0 1], which is multiplied by `Value'
%% and added to the corresponding pixel component in the accumulation buffer, thereby updating
%% the accumulation buffer.
%%
%% `?GL_LOAD': Similar to `?GL_ACCUM', except that the current value in the accumulation
%% buffer is not used in the calculation of the new value. That is, the R, G, B, and A values
%% from the currently selected buffer are divided by 2 n-1, multiplied by `Value' ,
%% and then stored in the corresponding accumulation buffer cell, overwriting the current
%% value.
%%
%% `?GL_ADD': Adds `Value' to each R, G, B, and A in the accumulation buffer.
%%
%% `?GL_MULT': Multiplies each R, G, B, and A in the accumulation buffer by `Value'
%% and returns the scaled component to its corresponding accumulation buffer location.
%%
%% `?GL_RETURN': Transfers accumulation buffer values to the color buffer or buffers
%% currently selected for writing. Each R, G, B, and A component is multiplied by `Value'
%% , then multiplied by 2 n-1, clamped to the range [0 2 n-1], and stored in the corresponding
%% display buffer cell. The only fragment operations that are applied to this transfer are
%% pixel ownership, scissor, dithering, and color writemasks.
%%
%% To clear the accumulation buffer, call {@link gl:clearAccum/4} with R, G, B, and A values
%% to set it to, then call {@link gl:clear/1} with the accumulation buffer enabled.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glAccum.xml">external</a> documentation.
-spec accum(Op, Value) -> 'ok' when Op :: enum(),Value :: float().
accum(Op,Value) ->
cast(5084, <<Op:?GLenum,Value:?GLfloat>>).
%% @doc Specify which matrix is the current matrix
%%
%% ``gl:matrixMode'' sets the current matrix mode. `Mode' can assume one of four values:
%%
%%
%% `?GL_MODELVIEW': Applies subsequent matrix operations to the modelview matrix stack.
%%
%%
%% `?GL_PROJECTION': Applies subsequent matrix operations to the projection matrix
%% stack.
%%
%% `?GL_TEXTURE': Applies subsequent matrix operations to the texture matrix stack.
%%
%% `?GL_COLOR': Applies subsequent matrix operations to the color matrix stack.
%%
%% To find out which matrix stack is currently the target of all matrix operations, call {@link gl:getBooleanv/1}
%% with argument `?GL_MATRIX_MODE'. The initial value is `?GL_MODELVIEW'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMatrixMode.xml">external</a> documentation.
-spec matrixMode(Mode) -> 'ok' when Mode :: enum().
matrixMode(Mode) ->
cast(5085, <<Mode:?GLenum>>).
%% @doc Multiply the current matrix with an orthographic matrix
%%
%% ``gl:ortho'' describes a transformation that produces a parallel projection. The current
%% matrix (see {@link gl:matrixMode/1} ) is multiplied by this matrix and the result replaces
%% the current matrix, as if {@link gl:multMatrixd/1} were called with the following matrix
%% as its argument:
%%
%% ((2/(right-left)) 0 0(t x) 0(2/(top-bottom)) 0(t y) 0 0(-2/(farVal-nearVal))(t z) 0 0 0 1)
%%
%% where t x=-((right+left)/(right-left)) t y=-((top+bottom)/(top-bottom)) t z=-((farVal+nearVal)/(farVal-nearVal))
%%
%% Typically, the matrix mode is `?GL_PROJECTION', and (left bottom-nearVal) and (right top-nearVal) specify the points on
%% the near clipping plane that are mapped to the lower left and upper right corners of the
%% window, respectively, assuming that the eye is located at (0, 0, 0). -farVal specifies
%% the location of the far clipping plane. Both `NearVal' and `FarVal' can be either
%% positive or negative.
%%
%% Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0} to save and restore the current
%% matrix stack.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glOrtho.xml">external</a> documentation.
-spec ortho(Left, Right, Bottom, Top, Near_val, Far_val) -> 'ok' when Left :: float(),Right :: float(),Bottom :: float(),Top :: float(),Near_val :: float(),Far_val :: float().
ortho(Left,Right,Bottom,Top,Near_val,Far_val) ->
cast(5086, <<Left:?GLdouble,Right:?GLdouble,Bottom:?GLdouble,Top:?GLdouble,Near_val:?GLdouble,Far_val:?GLdouble>>).
%% @doc Multiply the current matrix by a perspective matrix
%%
%% ``gl:frustum'' describes a perspective matrix that produces a perspective projection.
%% The current matrix (see {@link gl:matrixMode/1} ) is multiplied by this matrix and the result
%% replaces the current matrix, as if {@link gl:multMatrixd/1} were called with the following
%% matrix as its argument:
%%
%% [((2 nearVal)/(right-left)) 0 A 0 0((2 nearVal)/(top-bottom)) B 0 0 0 C D 0 0 -1 0]
%%
%% A=(right+left)/(right-left)
%%
%% B=(top+bottom)/(top-bottom)
%%
%% C=-((farVal+nearVal)/(farVal-nearVal))
%%
%% D=-((2 farVal nearVal)/(farVal-nearVal))
%%
%% Typically, the matrix mode is `?GL_PROJECTION', and (left bottom-nearVal) and (right top-nearVal) specify the points on
%% the near clipping plane that are mapped to the lower left and upper right corners of the
%% window, assuming that the eye is located at (0, 0, 0). -farVal specifies the location
%% of the far clipping plane. Both `NearVal' and `FarVal' must be positive.
%%
%% Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0} to save and restore the current
%% matrix stack.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFrustum.xml">external</a> documentation.
-spec frustum(Left, Right, Bottom, Top, Near_val, Far_val) -> 'ok' when Left :: float(),Right :: float(),Bottom :: float(),Top :: float(),Near_val :: float(),Far_val :: float().
frustum(Left,Right,Bottom,Top,Near_val,Far_val) ->
cast(5087, <<Left:?GLdouble,Right:?GLdouble,Bottom:?GLdouble,Top:?GLdouble,Near_val:?GLdouble,Far_val:?GLdouble>>).
%% @doc Set the viewport
%%
%% ``gl:viewport'' specifies the affine transformation of x and y from normalized device
%% coordinates to window coordinates. Let (x nd y nd) be normalized device coordinates. Then the window
%% coordinates (x w y w) are computed as follows:
%%
%% x w=(x nd+1) (width/2)+x
%%
%% y w=(y nd+1) (height/2)+y
%%
%% Viewport width and height are silently clamped to a range that depends on the implementation.
%% To query this range, call {@link gl:getBooleanv/1} with argument `?GL_MAX_VIEWPORT_DIMS'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glViewport.xml">external</a> documentation.
-spec viewport(X, Y, Width, Height) -> 'ok' when X :: integer(),Y :: integer(),Width :: integer(),Height :: integer().
viewport(X,Y,Width,Height) ->
cast(5088, <<X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Push and pop the current matrix stack
%%
%% There is a stack of matrices for each of the matrix modes. In `?GL_MODELVIEW' mode,
%% the stack depth is at least 32. In the other modes, `?GL_COLOR', `?GL_PROJECTION'
%% , and `?GL_TEXTURE', the depth is at least 2. The current matrix in any mode is the
%% matrix on the top of the stack for that mode.
%%
%% ``gl:pushMatrix'' pushes the current matrix stack down by one, duplicating the current
%% matrix. That is, after a ``gl:pushMatrix'' call, the matrix on top of the stack is identical
%% to the one below it.
%%
%% {@link gl:pushMatrix/0} pops the current matrix stack, replacing the current matrix with
%% the one below it on the stack.
%%
%% Initially, each of the stacks contains one matrix, an identity matrix.
%%
%% It is an error to push a full matrix stack or to pop a matrix stack that contains only
%% a single matrix. In either case, the error flag is set and no other change is made to
%% GL state.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPushMatrix.xml">external</a> documentation.
-spec pushMatrix() -> 'ok'.
pushMatrix() ->
cast(5089, <<>>).
%% @doc
%% See {@link pushMatrix/0}
-spec popMatrix() -> 'ok'.
popMatrix() ->
cast(5090, <<>>).
%% @doc Replace the current matrix with the identity matrix
%%
%% ``gl:loadIdentity'' replaces the current matrix with the identity matrix. It is semantically
%% equivalent to calling {@link gl:loadMatrixd/1} with the identity matrix
%%
%% ((1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1))
%%
%% but in some cases it is more efficient.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadIdentity.xml">external</a> documentation.
-spec loadIdentity() -> 'ok'.
loadIdentity() ->
cast(5091, <<>>).
%% @doc Replace the current matrix with the specified matrix
%%
%% ``gl:loadMatrix'' replaces the current matrix with the one whose elements are specified
%% by `M' . The current matrix is the projection matrix, modelview matrix, or texture
%% matrix, depending on the current matrix mode (see {@link gl:matrixMode/1} ).
%%
%% The current matrix, M, defines a transformation of coordinates. For instance, assume
%% M refers to the modelview matrix. If v=(v[0] v[1] v[2] v[3]) is the set of object coordinates of a vertex,
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
%% M(v)=(m[0] m[4] m[8] m[12] m[1] m[5] m[9] m[13] m[2] m[6] m[10] m[14] m[3] m[7] m[11] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadMatrix.xml">external</a> documentation.
-spec loadMatrixd(M) -> 'ok' when M :: matrix().
loadMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5092, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
loadMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5092, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc
%% See {@link loadMatrixd/1}
-spec loadMatrixf(M) -> 'ok' when M :: matrix().
loadMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5093, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
loadMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5093, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc Multiply the current matrix with the specified matrix
%%
%% ``gl:multMatrix'' multiplies the current matrix with the one specified using `M' ,
%% and replaces the current matrix with the product.
%%
%% The current matrix is determined by the current matrix mode (see {@link gl:matrixMode/1} ).
%% It is either the projection matrix, modelview matrix, or the texture matrix.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultMatrix.xml">external</a> documentation.
-spec multMatrixd(M) -> 'ok' when M :: matrix().
multMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5094, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
multMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5094, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc
%% See {@link multMatrixd/1}
-spec multMatrixf(M) -> 'ok' when M :: matrix().
multMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5095, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
multMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5095, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc Multiply the current matrix by a rotation matrix
%%
%% ``gl:rotate'' produces a rotation of `Angle' degrees around the vector (x y z). The current
%% matrix (see {@link gl:matrixMode/1} ) is multiplied by a rotation matrix with the product
%% replacing the current matrix, as if {@link gl:multMatrixd/1} were called with the following
%% matrix as its argument:
%%
%% (x 2(1-c)+c x y(1-c)-z s x z(1-c)+y s 0 y x(1-c)+z s y 2(1-c)+c y z(1-c)-x s 0 x z(1-c)-y s y z(1-c)+x s z 2(1-c)+c 0 0 0 0
%% 1)
%%
%% Where c=cos(angle), s=sin(angle), and ||(x y z)||=1 (if not, the GL will normalize this vector).
%%
%% If the matrix mode is either `?GL_MODELVIEW' or `?GL_PROJECTION', all objects
%% drawn after ``gl:rotate'' is called are rotated. Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0}
%% to save and restore the unrotated coordinate system.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRotate.xml">external</a> documentation.
-spec rotated(Angle, X, Y, Z) -> 'ok' when Angle :: float(),X :: float(),Y :: float(),Z :: float().
rotated(Angle,X,Y,Z) ->
cast(5096, <<Angle:?GLdouble,X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link rotated/4}
-spec rotatef(Angle, X, Y, Z) -> 'ok' when Angle :: float(),X :: float(),Y :: float(),Z :: float().
rotatef(Angle,X,Y,Z) ->
cast(5097, <<Angle:?GLfloat,X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @doc Multiply the current matrix by a general scaling matrix
%%
%% ``gl:scale'' produces a nonuniform scaling along the `x', `y', and `z'
%% axes. The three parameters indicate the desired scale factor along each of the three axes.
%%
%%
%% The current matrix (see {@link gl:matrixMode/1} ) is multiplied by this scale matrix, and
%% the product replaces the current matrix as if {@link gl:multMatrixd/1} were called with
%% the following matrix as its argument:
%%
%% (x 0 0 0 0 y 0 0 0 0 z 0 0 0 0 1)
%%
%% If the matrix mode is either `?GL_MODELVIEW' or `?GL_PROJECTION', all objects
%% drawn after ``gl:scale'' is called are scaled.
%%
%% Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0} to save and restore the unscaled
%% coordinate system.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glScale.xml">external</a> documentation.
-spec scaled(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
scaled(X,Y,Z) ->
cast(5098, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link scaled/3}
-spec scalef(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
scalef(X,Y,Z) ->
cast(5099, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @doc Multiply the current matrix by a translation matrix
%%
%% ``gl:translate'' produces a translation by (x y z). The current matrix (see {@link gl:matrixMode/1}
%% ) is multiplied by this translation matrix, with the product replacing the current matrix,
%% as if {@link gl:multMatrixd/1} were called with the following matrix for its argument:
%%
%% (1 0 0 x 0 1 0 y 0 0 1 z 0 0 0 1)
%%
%% If the matrix mode is either `?GL_MODELVIEW' or `?GL_PROJECTION', all objects
%% drawn after a call to ``gl:translate'' are translated.
%%
%% Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0} to save and restore the untranslated
%% coordinate system.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTranslate.xml">external</a> documentation.
-spec translated(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
translated(X,Y,Z) ->
cast(5100, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link translated/3}
-spec translatef(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
translatef(X,Y,Z) ->
cast(5101, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @doc Determine if a name corresponds to a display list
%%
%% ``gl:isList'' returns `?GL_TRUE' if `List' is the name of a display list and
%% returns `?GL_FALSE' if it is not, or if an error occurs.
%%
%% A name returned by {@link gl:genLists/1} , but not yet associated with a display list by
%% calling {@link gl:newList/2} , is not the name of a display list.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsList.xml">external</a> documentation.
-spec isList(List) -> 0|1 when List :: integer().
isList(List) ->
call(5102, <<List:?GLuint>>).
%% @doc Delete a contiguous group of display lists
%%
%% ``gl:deleteLists'' causes a contiguous group of display lists to be deleted. `List'
%% is the name of the first display list to be deleted, and `Range' is the number of
%% display lists to delete. All display lists d with list<= d<= list+range-1 are
%% deleted.
%%
%% All storage locations allocated to the specified display lists are freed, and the names
%% are available for reuse at a later time. Names within the range that do not have an associated
%% display list are ignored. If `Range' is 0, nothing happens.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteLists.xml">external</a> documentation.
-spec deleteLists(List, Range) -> 'ok' when List :: integer(),Range :: integer().
deleteLists(List,Range) ->
cast(5103, <<List:?GLuint,Range:?GLsizei>>).
%% @doc Generate a contiguous set of empty display lists
%%
%% ``gl:genLists'' has one argument, `Range' . It returns an integer `n' such
%% that `Range' contiguous empty display lists, named n, n+1, ..., n+range-1,
%% are created. If `Range' is 0, if there is no group of `Range' contiguous names
%% available, or if any error is generated, no display lists are generated, and 0 is returned.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenLists.xml">external</a> documentation.
-spec genLists(Range) -> integer() when Range :: integer().
genLists(Range) ->
call(5104, <<Range:?GLsizei>>).
%% @doc Create or replace a display list
%%
%% Display lists are groups of GL commands that have been stored for subsequent execution.
%% Display lists are created with ``gl:newList''. All subsequent commands are placed in
%% the display list, in the order issued, until {@link gl:endList/0} is called.
%%
%% ``gl:newList'' has two arguments. The first argument, `List' , is a positive integer
%% that becomes the unique name for the display list. Names can be created and reserved with
%% {@link gl:genLists/1} and tested for uniqueness with {@link gl:isList/1} . The second argument,
%% `Mode' , is a symbolic constant that can assume one of two values:
%%
%% `?GL_COMPILE': Commands are merely compiled.
%%
%% `?GL_COMPILE_AND_EXECUTE': Commands are executed as they are compiled into the display
%% list.
%%
%% Certain commands are not compiled into the display list but are executed immediately,
%% regardless of the display-list mode. These commands are {@link gl:areTexturesResident/1} , {@link gl:colorPointer/4}
%% , {@link gl:deleteLists/2} , {@link gl:deleteTextures/1} , {@link gl:enableClientState/1} , {@link gl:edgeFlagPointer/2}
%% , {@link gl:enableClientState/1} , {@link gl:feedbackBuffer/3} , {@link gl:finish/0} , {@link gl:flush/0}
%% , {@link gl:genLists/1} , {@link gl:genTextures/1} , {@link gl:indexPointer/3} , {@link gl:interleavedArrays/3}
%% , {@link gl:isEnabled/1} , {@link gl:isList/1} , {@link gl:isTexture/1} , {@link gl:normalPointer/3}
%% , {@link gl:pushClientAttrib/1} , {@link gl:pixelStoref/2} , {@link gl:pushClientAttrib/1} , {@link gl:readPixels/7}
%% , {@link gl:renderMode/1} , {@link gl:selectBuffer/2} , {@link gl:texCoordPointer/4} , {@link gl:vertexPointer/4}
%% , and all of the {@link gl:getBooleanv/1} commands.
%%
%% Similarly, {@link gl:texImage1D/8} , {@link gl:texImage2D/9} , and {@link gl:texImage3D/10}
%% are executed immediately and not compiled into the display list when their first argument
%% is `?GL_PROXY_TEXTURE_1D', `?GL_PROXY_TEXTURE_1D', or `?GL_PROXY_TEXTURE_3D'
%% , respectively.
%%
%% When the ARB_imaging extension is supported, {@link gl:histogram/4} executes immediately
%% when its argument is `?GL_PROXY_HISTOGRAM'. Similarly, {@link gl:colorTable/6} executes
%% immediately when its first argument is `?GL_PROXY_COLOR_TABLE', `?GL_PROXY_POST_CONVOLUTION_COLOR_TABLE'
%% , or `?GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE'.
%%
%% For OpenGL versions 1.3 and greater, or when the ARB_multitexture extension is supported,
%% {@link gl:clientActiveTexture/1} is not compiled into display lists, but executed immediately.
%%
%%
%% When {@link gl:endList/0} is encountered, the display-list definition is completed by
%% associating the list with the unique name `List' (specified in the ``gl:newList''
%% command). If a display list with name `List' already exists, it is replaced only
%% when {@link gl:endList/0} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glNewList.xml">external</a> documentation.
-spec newList(List, Mode) -> 'ok' when List :: integer(),Mode :: enum().
newList(List,Mode) ->
cast(5105, <<List:?GLuint,Mode:?GLenum>>).
%% @doc glBeginList
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginList.xml">external</a> documentation.
-spec endList() -> 'ok'.
endList() ->
cast(5106, <<>>).
%% @doc Execute a display list
%%
%% ``gl:callList'' causes the named display list to be executed. The commands saved in
%% the display list are executed in order, just as if they were called without using a display
%% list. If `List' has not been defined as a display list, ``gl:callList'' is ignored.
%%
%%
%% ``gl:callList'' can appear inside a display list. To avoid the possibility of infinite
%% recursion resulting from display lists calling one another, a limit is placed on the nesting
%% level of display lists during display-list execution. This limit is at least 64, and it
%% depends on the implementation.
%%
%% GL state is not saved and restored across a call to ``gl:callList''. Thus, changes
%% made to GL state during the execution of a display list remain after execution of the
%% display list is completed. Use {@link gl:pushAttrib/1} , {@link gl:pushAttrib/1} , {@link gl:pushMatrix/0}
%% , and {@link gl:pushMatrix/0} to preserve GL state across ``gl:callList'' calls.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCallList.xml">external</a> documentation.
-spec callList(List) -> 'ok' when List :: integer().
callList(List) ->
cast(5107, <<List:?GLuint>>).
%% @doc Execute a list of display lists
%%
%% ``gl:callLists'' causes each display list in the list of names passed as `Lists'
%% to be executed. As a result, the commands saved in each display list are executed in order,
%% just as if they were called without using a display list. Names of display lists that
%% have not been defined are ignored.
%%
%% ``gl:callLists'' provides an efficient means for executing more than one display list. `Type'
%% allows lists with various name formats to be accepted. The formats are as follows:
%%
%% `?GL_BYTE': `Lists' is treated as an array of signed bytes, each in the range
%% -128 through 127.
%%
%% `?GL_UNSIGNED_BYTE': `Lists' is treated as an array of unsigned bytes, each
%% in the range 0 through 255.
%%
%% `?GL_SHORT': `Lists' is treated as an array of signed two-byte integers, each
%% in the range -32768 through 32767.
%%
%% `?GL_UNSIGNED_SHORT': `Lists' is treated as an array of unsigned two-byte integers,
%% each in the range 0 through 65535.
%%
%% `?GL_INT': `Lists' is treated as an array of signed four-byte integers.
%%
%% `?GL_UNSIGNED_INT': `Lists' is treated as an array of unsigned four-byte integers.
%%
%%
%% `?GL_FLOAT': `Lists' is treated as an array of four-byte floating-point values.
%%
%%
%% `?GL_2_BYTES': `Lists' is treated as an array of unsigned bytes. Each pair of
%% bytes specifies a single display-list name. The value of the pair is computed as 256 times
%% the unsigned value of the first byte plus the unsigned value of the second byte.
%%
%% `?GL_3_BYTES': `Lists' is treated as an array of unsigned bytes. Each triplet
%% of bytes specifies a single display-list name. The value of the triplet is computed as
%% 65536 times the unsigned value of the first byte, plus 256 times the unsigned value of
%% the second byte, plus the unsigned value of the third byte.
%%
%% `?GL_4_BYTES': `Lists' is treated as an array of unsigned bytes. Each quadruplet
%% of bytes specifies a single display-list name. The value of the quadruplet is computed
%% as 16777216 times the unsigned value of the first byte, plus 65536 times the unsigned
%% value of the second byte, plus 256 times the unsigned value of the third byte, plus the
%% unsigned value of the fourth byte.
%%
%% The list of display-list names is not null-terminated. Rather, `N' specifies how
%% many names are to be taken from `Lists' .
%%
%% An additional level of indirection is made available with the {@link gl:listBase/1} command,
%% which specifies an unsigned offset that is added to each display-list name specified in `Lists'
%% before that display list is executed.
%%
%% ``gl:callLists'' can appear inside a display list. To avoid the possibility of infinite
%% recursion resulting from display lists calling one another, a limit is placed on the nesting
%% level of display lists during display-list execution. This limit must be at least 64,
%% and it depends on the implementation.
%%
%% GL state is not saved and restored across a call to ``gl:callLists''. Thus, changes
%% made to GL state during the execution of the display lists remain after execution is completed.
%% Use {@link gl:pushAttrib/1} , {@link gl:pushAttrib/1} , {@link gl:pushMatrix/0} , and {@link gl:pushMatrix/0}
%% to preserve GL state across ``gl:callLists'' calls.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCallLists.xml">external</a> documentation.
-spec callLists(Lists) -> 'ok' when Lists :: [integer()].
callLists(Lists) ->
cast(5108, <<(length(Lists)):?GLuint,
(<< <<C:?GLuint>> || C <- Lists>>)/binary,0:(((1+length(Lists)) rem 2)*32)>>).
%% @doc set the display-list base for
%%
%% {@link gl:callLists/1}
%%
%% {@link gl:callLists/1} specifies an array of offsets. Display-list names are generated
%% by adding `Base' to each offset. Names that reference valid display lists are executed;
%% the others are ignored.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glListBase.xml">external</a> documentation.
-spec listBase(Base) -> 'ok' when Base :: integer().
listBase(Base) ->
cast(5109, <<Base:?GLuint>>).
%% @doc Delimit the vertices of a primitive or a group of like primitives
%%
%% ``gl:'begin''' and {@link gl:'begin'/1} delimit the vertices that define a primitive or a group
%% of like primitives. ``gl:'begin''' accepts a single argument that specifies in which of
%% ten ways the vertices are interpreted. Taking n as an integer count starting at one,
%% and N as the total number of vertices specified, the interpretations are as follows:
%%
%% `?GL_POINTS': Treats each vertex as a single point. Vertex n defines point n.
%% N points are drawn.
%%
%% `?GL_LINES': Treats each pair of vertices as an independent line segment. Vertices
%% 2 n-1 and 2 n define line n. N/2 lines are drawn.
%%
%% `?GL_LINE_STRIP': Draws a connected group of line segments from the first vertex
%% to the last. Vertices n and n+1 define line n. N-1 lines are drawn.
%%
%% `?GL_LINE_LOOP': Draws a connected group of line segments from the first vertex
%% to the last, then back to the first. Vertices n and n+1 define line n. The last
%% line, however, is defined by vertices N and 1. N lines are drawn.
%%
%% `?GL_TRIANGLES': Treats each triplet of vertices as an independent triangle. Vertices
%% 3 n-2, 3 n-1, and 3 n define triangle n. N/3 triangles are drawn.
%%
%% `?GL_TRIANGLE_STRIP': Draws a connected group of triangles. One triangle is defined
%% for each vertex presented after the first two vertices. For odd n, vertices n, n+1,
%% and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define triangle
%% n. N-2 triangles are drawn.
%%
%% `?GL_TRIANGLE_FAN': Draws a connected group of triangles. One triangle is defined
%% for each vertex presented after the first two vertices. Vertices 1, n+1, and n+2
%% define triangle n. N-2 triangles are drawn.
%%
%% `?GL_QUADS': Treats each group of four vertices as an independent quadrilateral.
%% Vertices 4 n-3, 4 n-2, 4 n-1, and 4 n define quadrilateral n. N/4 quadrilaterals
%% are drawn.
%%
%% `?GL_QUAD_STRIP': Draws a connected group of quadrilaterals. One quadrilateral is
%% defined for each pair of vertices presented after the first pair. Vertices 2 n-1, 2
%% n, 2 n+2, and 2 n+1 define quadrilateral n. N/2-1 quadrilaterals are drawn. Note
%% that the order in which vertices are used to construct a quadrilateral from strip data
%% is different from that used with independent data.
%%
%% `?GL_POLYGON': Draws a single, convex polygon. Vertices 1 through N define this
%% polygon.
%%
%% Only a subset of GL commands can be used between ``gl:'begin''' and {@link gl:'begin'/1} .
%% The commands are {@link gl:vertex2d/2} , {@link gl:color3b/3} , {@link gl:secondaryColor3b/3} , {@link gl:indexd/1}
%% , {@link gl:normal3b/3} , {@link gl:fogCoordf/1} , {@link gl:texCoord1d/1} , {@link gl:multiTexCoord1d/2}
%% , {@link gl:vertexAttrib1d/2} , {@link gl:evalCoord1d/1} , {@link gl:evalPoint1/1} , {@link gl:arrayElement/1}
%% , {@link gl:materialf/3} , and {@link gl:edgeFlag/1} . Also, it is acceptable to use {@link gl:callList/1}
%% or {@link gl:callLists/1} to execute display lists that include only the preceding commands.
%% If any other GL command is executed between ``gl:'begin''' and {@link gl:'begin'/1} , the error
%% flag is set and the command is ignored.
%%
%% Regardless of the value chosen for `Mode' , there is no limit to the number of vertices
%% that can be defined between ``gl:'begin''' and {@link gl:'begin'/1} . Lines, triangles, quadrilaterals,
%% and polygons that are incompletely specified are not drawn. Incomplete specification results
%% when either too few vertices are provided to specify even a single primitive or when an
%% incorrect multiple of vertices is specified. The incomplete primitive is ignored; the
%% rest are drawn.
%%
%% The minimum specification of vertices for each primitive is as follows: 1 for a point,
%% 2 for a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that
%% require a certain multiple of vertices are `?GL_LINES' (2), `?GL_TRIANGLES'
%% (3), `?GL_QUADS' (4), and `?GL_QUAD_STRIP' (2).
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBegin.xml">external</a> documentation.
-spec 'begin'(Mode) -> 'ok' when Mode :: enum().
'begin'(Mode) ->
cast(5110, <<Mode:?GLenum>>).
%% @doc
%% See {@link 'begin'/1}
-spec 'end'() -> 'ok'.
'end'() ->
cast(5111, <<>>).
%% @doc Specify a vertex
%%
%% ``gl:vertex'' commands are used within {@link gl:'begin'/1} / {@link gl:'begin'/1} pairs to specify
%% point, line, and polygon vertices. The current color, normal, texture coordinates, and
%% fog coordinate are associated with the vertex when ``gl:vertex'' is called.
%%
%% When only x and y are specified, z defaults to 0 and w defaults to 1. When x,
%% y, and z are specified, w defaults to 1.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertex.xml">external</a> documentation.
-spec vertex2d(X, Y) -> 'ok' when X :: float(),Y :: float().
vertex2d(X,Y) ->
cast(5112, <<X:?GLdouble,Y:?GLdouble>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex2f(X, Y) -> 'ok' when X :: float(),Y :: float().
vertex2f(X,Y) ->
cast(5113, <<X:?GLfloat,Y:?GLfloat>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex2i(X, Y) -> 'ok' when X :: integer(),Y :: integer().
vertex2i(X,Y) ->
cast(5114, <<X:?GLint,Y:?GLint>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex2s(X, Y) -> 'ok' when X :: integer(),Y :: integer().
vertex2s(X,Y) ->
cast(5115, <<X:?GLshort,Y:?GLshort>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex3d(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
vertex3d(X,Y,Z) ->
cast(5116, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex3f(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
vertex3f(X,Y,Z) ->
cast(5117, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex3i(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
vertex3i(X,Y,Z) ->
cast(5118, <<X:?GLint,Y:?GLint,Z:?GLint>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex3s(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
vertex3s(X,Y,Z) ->
cast(5119, <<X:?GLshort,Y:?GLshort,Z:?GLshort>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex4d(X, Y, Z, W) -> 'ok' when X :: float(),Y :: float(),Z :: float(),W :: float().
vertex4d(X,Y,Z,W) ->
cast(5120, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex4f(X, Y, Z, W) -> 'ok' when X :: float(),Y :: float(),Z :: float(),W :: float().
vertex4f(X,Y,Z,W) ->
cast(5121, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat,W:?GLfloat>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex4i(X, Y, Z, W) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertex4i(X,Y,Z,W) ->
cast(5122, <<X:?GLint,Y:?GLint,Z:?GLint,W:?GLint>>).
%% @doc
%% See {@link vertex2d/2}
-spec vertex4s(X, Y, Z, W) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertex4s(X,Y,Z,W) ->
cast(5123, <<X:?GLshort,Y:?GLshort,Z:?GLshort,W:?GLshort>>).
%% @equiv vertex2d(X,Y)
-spec vertex2dv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
vertex2dv({X,Y}) -> vertex2d(X,Y).
%% @equiv vertex2f(X,Y)
-spec vertex2fv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
vertex2fv({X,Y}) -> vertex2f(X,Y).
%% @equiv vertex2i(X,Y)
-spec vertex2iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
vertex2iv({X,Y}) -> vertex2i(X,Y).
%% @equiv vertex2s(X,Y)
-spec vertex2sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
vertex2sv({X,Y}) -> vertex2s(X,Y).
%% @equiv vertex3d(X,Y,Z)
-spec vertex3dv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
vertex3dv({X,Y,Z}) -> vertex3d(X,Y,Z).
%% @equiv vertex3f(X,Y,Z)
-spec vertex3fv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
vertex3fv({X,Y,Z}) -> vertex3f(X,Y,Z).
%% @equiv vertex3i(X,Y,Z)
-spec vertex3iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
vertex3iv({X,Y,Z}) -> vertex3i(X,Y,Z).
%% @equiv vertex3s(X,Y,Z)
-spec vertex3sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
vertex3sv({X,Y,Z}) -> vertex3s(X,Y,Z).
%% @equiv vertex4d(X,Y,Z,W)
-spec vertex4dv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
vertex4dv({X,Y,Z,W}) -> vertex4d(X,Y,Z,W).
%% @equiv vertex4f(X,Y,Z,W)
-spec vertex4fv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
vertex4fv({X,Y,Z,W}) -> vertex4f(X,Y,Z,W).
%% @equiv vertex4i(X,Y,Z,W)
-spec vertex4iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertex4iv({X,Y,Z,W}) -> vertex4i(X,Y,Z,W).
%% @equiv vertex4s(X,Y,Z,W)
-spec vertex4sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertex4sv({X,Y,Z,W}) -> vertex4s(X,Y,Z,W).
%% @doc Set the current normal vector
%%
%% The current normal is set to the given coordinates whenever ``gl:normal'' is issued.
%% Byte, short, or integer arguments are converted to floating-point format with a linear
%% mapping that maps the most positive representable integer value to 1.0 and the most negative
%% representable integer value to -1.0.
%%
%% Normals specified with ``gl:normal'' need not have unit length. If `?GL_NORMALIZE'
%% is enabled, then normals of any length specified with ``gl:normal'' are normalized after
%% transformation. If `?GL_RESCALE_NORMAL' is enabled, normals are scaled by a scaling
%% factor derived from the modelview matrix. `?GL_RESCALE_NORMAL' requires that the
%% originally specified normals were of unit length, and that the modelview matrix contain
%% only uniform scales for proper results. To enable and disable normalization, call {@link gl:enable/1}
%% and {@link gl:enable/1} with either `?GL_NORMALIZE' or `?GL_RESCALE_NORMAL'.
%% Normalization is initially disabled.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glNormal.xml">external</a> documentation.
-spec normal3b(Nx, Ny, Nz) -> 'ok' when Nx :: integer(),Ny :: integer(),Nz :: integer().
normal3b(Nx,Ny,Nz) ->
cast(5124, <<Nx:?GLbyte,Ny:?GLbyte,Nz:?GLbyte>>).
%% @doc
%% See {@link normal3b/3}
-spec normal3d(Nx, Ny, Nz) -> 'ok' when Nx :: float(),Ny :: float(),Nz :: float().
normal3d(Nx,Ny,Nz) ->
cast(5125, <<Nx:?GLdouble,Ny:?GLdouble,Nz:?GLdouble>>).
%% @doc
%% See {@link normal3b/3}
-spec normal3f(Nx, Ny, Nz) -> 'ok' when Nx :: float(),Ny :: float(),Nz :: float().
normal3f(Nx,Ny,Nz) ->
cast(5126, <<Nx:?GLfloat,Ny:?GLfloat,Nz:?GLfloat>>).
%% @doc
%% See {@link normal3b/3}
-spec normal3i(Nx, Ny, Nz) -> 'ok' when Nx :: integer(),Ny :: integer(),Nz :: integer().
normal3i(Nx,Ny,Nz) ->
cast(5127, <<Nx:?GLint,Ny:?GLint,Nz:?GLint>>).
%% @doc
%% See {@link normal3b/3}
-spec normal3s(Nx, Ny, Nz) -> 'ok' when Nx :: integer(),Ny :: integer(),Nz :: integer().
normal3s(Nx,Ny,Nz) ->
cast(5128, <<Nx:?GLshort,Ny:?GLshort,Nz:?GLshort>>).
%% @equiv normal3b(Nx,Ny,Nz)
-spec normal3bv(V) -> 'ok' when V :: {Nx :: integer(),Ny :: integer(),Nz :: integer()}.
normal3bv({Nx,Ny,Nz}) -> normal3b(Nx,Ny,Nz).
%% @equiv normal3d(Nx,Ny,Nz)
-spec normal3dv(V) -> 'ok' when V :: {Nx :: float(),Ny :: float(),Nz :: float()}.
normal3dv({Nx,Ny,Nz}) -> normal3d(Nx,Ny,Nz).
%% @equiv normal3f(Nx,Ny,Nz)
-spec normal3fv(V) -> 'ok' when V :: {Nx :: float(),Ny :: float(),Nz :: float()}.
normal3fv({Nx,Ny,Nz}) -> normal3f(Nx,Ny,Nz).
%% @equiv normal3i(Nx,Ny,Nz)
-spec normal3iv(V) -> 'ok' when V :: {Nx :: integer(),Ny :: integer(),Nz :: integer()}.
normal3iv({Nx,Ny,Nz}) -> normal3i(Nx,Ny,Nz).
%% @equiv normal3s(Nx,Ny,Nz)
-spec normal3sv(V) -> 'ok' when V :: {Nx :: integer(),Ny :: integer(),Nz :: integer()}.
normal3sv({Nx,Ny,Nz}) -> normal3s(Nx,Ny,Nz).
%% @doc Set the current color index
%%
%% ``gl:index'' updates the current (single-valued) color index. It takes one argument,
%% the new value for the current color index.
%%
%% The current index is stored as a floating-point value. Integer values are converted directly
%% to floating-point values, with no special mapping. The initial value is 1.
%%
%% Index values outside the representable range of the color index buffer are not clamped.
%% However, before an index is dithered (if enabled) and written to the frame buffer, it
%% is converted to fixed-point format. Any bits in the integer portion of the resulting fixed-point
%% value that do not correspond to bits in the frame buffer are masked out.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIndex.xml">external</a> documentation.
-spec indexd(C) -> 'ok' when C :: float().
indexd(C) ->
cast(5129, <<C:?GLdouble>>).
%% @doc
%% See {@link indexd/1}
-spec indexf(C) -> 'ok' when C :: float().
indexf(C) ->
cast(5130, <<C:?GLfloat>>).
%% @doc
%% See {@link indexd/1}
-spec indexi(C) -> 'ok' when C :: integer().
indexi(C) ->
cast(5131, <<C:?GLint>>).
%% @doc
%% See {@link indexd/1}
-spec indexs(C) -> 'ok' when C :: integer().
indexs(C) ->
cast(5132, <<C:?GLshort>>).
%% @doc
%% See {@link indexd/1}
-spec indexub(C) -> 'ok' when C :: integer().
indexub(C) ->
cast(5133, <<C:?GLubyte>>).
%% @equiv indexd(C)
-spec indexdv(C) -> 'ok' when C :: {C :: float()}.
indexdv({C}) -> indexd(C).
%% @equiv indexf(C)
-spec indexfv(C) -> 'ok' when C :: {C :: float()}.
indexfv({C}) -> indexf(C).
%% @equiv indexi(C)
-spec indexiv(C) -> 'ok' when C :: {C :: integer()}.
indexiv({C}) -> indexi(C).
%% @equiv indexs(C)
-spec indexsv(C) -> 'ok' when C :: {C :: integer()}.
indexsv({C}) -> indexs(C).
%% @equiv indexub(C)
-spec indexubv(C) -> 'ok' when C :: {C :: integer()}.
indexubv({C}) -> indexub(C).
%% @doc Set the current color
%%
%% The GL stores both a current single-valued color index and a current four-valued RGBA
%% color. ``gl:color'' sets a new four-valued RGBA color. ``gl:color'' has two major
%% variants: ``gl:color3'' and ``gl:color4''. ``gl:color3'' variants specify new red,
%% green, and blue values explicitly and set the current alpha value to 1.0 (full intensity)
%% implicitly. ``gl:color4'' variants specify all four color components explicitly.
%%
%% ``gl:color3b'', ``gl:color4b'', ``gl:color3s'', ``gl:color4s'', ``gl:color3i'',
%% and ``gl:color4i'' take three or four signed byte, short, or long integers as arguments.
%% When `v' is appended to the name, the color commands can take a pointer to an array
%% of such values.
%%
%% Current color values are stored in floating-point format, with unspecified mantissa and
%% exponent sizes. Unsigned integer color components, when specified, are linearly mapped
%% to floating-point values such that the largest representable value maps to 1.0 (full intensity),
%% and 0 maps to 0.0 (zero intensity). Signed integer color components, when specified, are
%% linearly mapped to floating-point values such that the most positive representable value
%% maps to 1.0, and the most negative representable value maps to -1.0. (Note that this
%% mapping does not convert 0 precisely to 0.0.) Floating-point values are mapped directly.
%%
%% Neither floating-point nor signed integer values are clamped to the range [0 1] before the
%% current color is updated. However, color components are clamped to this range before they
%% are interpolated or written into a color buffer.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColor.xml">external</a> documentation.
-spec color3b(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3b(Red,Green,Blue) ->
cast(5134, <<Red:?GLbyte,Green:?GLbyte,Blue:?GLbyte>>).
%% @doc
%% See {@link color3b/3}
-spec color3d(Red, Green, Blue) -> 'ok' when Red :: float(),Green :: float(),Blue :: float().
color3d(Red,Green,Blue) ->
cast(5135, <<Red:?GLdouble,Green:?GLdouble,Blue:?GLdouble>>).
%% @doc
%% See {@link color3b/3}
-spec color3f(Red, Green, Blue) -> 'ok' when Red :: float(),Green :: float(),Blue :: float().
color3f(Red,Green,Blue) ->
cast(5136, <<Red:?GLfloat,Green:?GLfloat,Blue:?GLfloat>>).
%% @doc
%% See {@link color3b/3}
-spec color3i(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3i(Red,Green,Blue) ->
cast(5137, <<Red:?GLint,Green:?GLint,Blue:?GLint>>).
%% @doc
%% See {@link color3b/3}
-spec color3s(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3s(Red,Green,Blue) ->
cast(5138, <<Red:?GLshort,Green:?GLshort,Blue:?GLshort>>).
%% @doc
%% See {@link color3b/3}
-spec color3ub(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3ub(Red,Green,Blue) ->
cast(5139, <<Red:?GLubyte,Green:?GLubyte,Blue:?GLubyte>>).
%% @doc
%% See {@link color3b/3}
-spec color3ui(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3ui(Red,Green,Blue) ->
cast(5140, <<Red:?GLuint,Green:?GLuint,Blue:?GLuint>>).
%% @doc
%% See {@link color3b/3}
-spec color3us(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
color3us(Red,Green,Blue) ->
cast(5141, <<Red:?GLushort,Green:?GLushort,Blue:?GLushort>>).
%% @doc
%% See {@link color3b/3}
-spec color4b(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4b(Red,Green,Blue,Alpha) ->
cast(5142, <<Red:?GLbyte,Green:?GLbyte,Blue:?GLbyte,Alpha:?GLbyte>>).
%% @doc
%% See {@link color3b/3}
-spec color4d(Red, Green, Blue, Alpha) -> 'ok' when Red :: float(),Green :: float(),Blue :: float(),Alpha :: float().
color4d(Red,Green,Blue,Alpha) ->
cast(5143, <<Red:?GLdouble,Green:?GLdouble,Blue:?GLdouble,Alpha:?GLdouble>>).
%% @doc
%% See {@link color3b/3}
-spec color4f(Red, Green, Blue, Alpha) -> 'ok' when Red :: float(),Green :: float(),Blue :: float(),Alpha :: float().
color4f(Red,Green,Blue,Alpha) ->
cast(5144, <<Red:?GLfloat,Green:?GLfloat,Blue:?GLfloat,Alpha:?GLfloat>>).
%% @doc
%% See {@link color3b/3}
-spec color4i(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4i(Red,Green,Blue,Alpha) ->
cast(5145, <<Red:?GLint,Green:?GLint,Blue:?GLint,Alpha:?GLint>>).
%% @doc
%% See {@link color3b/3}
-spec color4s(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4s(Red,Green,Blue,Alpha) ->
cast(5146, <<Red:?GLshort,Green:?GLshort,Blue:?GLshort,Alpha:?GLshort>>).
%% @doc
%% See {@link color3b/3}
-spec color4ub(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4ub(Red,Green,Blue,Alpha) ->
cast(5147, <<Red:?GLubyte,Green:?GLubyte,Blue:?GLubyte,Alpha:?GLubyte>>).
%% @doc
%% See {@link color3b/3}
-spec color4ui(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4ui(Red,Green,Blue,Alpha) ->
cast(5148, <<Red:?GLuint,Green:?GLuint,Blue:?GLuint,Alpha:?GLuint>>).
%% @doc
%% See {@link color3b/3}
-spec color4us(Red, Green, Blue, Alpha) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer().
color4us(Red,Green,Blue,Alpha) ->
cast(5149, <<Red:?GLushort,Green:?GLushort,Blue:?GLushort,Alpha:?GLushort>>).
%% @equiv color3b(Red,Green,Blue)
-spec color3bv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3bv({Red,Green,Blue}) -> color3b(Red,Green,Blue).
%% @equiv color3d(Red,Green,Blue)
-spec color3dv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float()}.
color3dv({Red,Green,Blue}) -> color3d(Red,Green,Blue).
%% @equiv color3f(Red,Green,Blue)
-spec color3fv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float()}.
color3fv({Red,Green,Blue}) -> color3f(Red,Green,Blue).
%% @equiv color3i(Red,Green,Blue)
-spec color3iv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3iv({Red,Green,Blue}) -> color3i(Red,Green,Blue).
%% @equiv color3s(Red,Green,Blue)
-spec color3sv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3sv({Red,Green,Blue}) -> color3s(Red,Green,Blue).
%% @equiv color3ub(Red,Green,Blue)
-spec color3ubv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3ubv({Red,Green,Blue}) -> color3ub(Red,Green,Blue).
%% @equiv color3ui(Red,Green,Blue)
-spec color3uiv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3uiv({Red,Green,Blue}) -> color3ui(Red,Green,Blue).
%% @equiv color3us(Red,Green,Blue)
-spec color3usv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
color3usv({Red,Green,Blue}) -> color3us(Red,Green,Blue).
%% @equiv color4b(Red,Green,Blue,Alpha)
-spec color4bv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4bv({Red,Green,Blue,Alpha}) -> color4b(Red,Green,Blue,Alpha).
%% @equiv color4d(Red,Green,Blue,Alpha)
-spec color4dv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float(),Alpha :: float()}.
color4dv({Red,Green,Blue,Alpha}) -> color4d(Red,Green,Blue,Alpha).
%% @equiv color4f(Red,Green,Blue,Alpha)
-spec color4fv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float(),Alpha :: float()}.
color4fv({Red,Green,Blue,Alpha}) -> color4f(Red,Green,Blue,Alpha).
%% @equiv color4i(Red,Green,Blue,Alpha)
-spec color4iv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4iv({Red,Green,Blue,Alpha}) -> color4i(Red,Green,Blue,Alpha).
%% @equiv color4s(Red,Green,Blue,Alpha)
-spec color4sv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4sv({Red,Green,Blue,Alpha}) -> color4s(Red,Green,Blue,Alpha).
%% @equiv color4ub(Red,Green,Blue,Alpha)
-spec color4ubv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4ubv({Red,Green,Blue,Alpha}) -> color4ub(Red,Green,Blue,Alpha).
%% @equiv color4ui(Red,Green,Blue,Alpha)
-spec color4uiv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4uiv({Red,Green,Blue,Alpha}) -> color4ui(Red,Green,Blue,Alpha).
%% @equiv color4us(Red,Green,Blue,Alpha)
-spec color4usv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer(),Alpha :: integer()}.
color4usv({Red,Green,Blue,Alpha}) -> color4us(Red,Green,Blue,Alpha).
%% @doc Set the current texture coordinates
%%
%% ``gl:texCoord'' specifies texture coordinates in one, two, three, or four dimensions. ``gl:texCoord1''
%% sets the current texture coordinates to (s 0 0 1); a call to ``gl:texCoord2'' sets them to (s t
%% 0 1).
%% Similarly, ``gl:texCoord3'' specifies the texture coordinates as (s t r 1), and ``gl:texCoord4''
%% defines all four components explicitly as (s t r q).
%%
%% The current texture coordinates are part of the data that is associated with each vertex
%% and with the current raster position. Initially, the values for `s', `t', `r'
%% , and `q' are (0, 0, 0, 1).
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexCoord.xml">external</a> documentation.
-spec texCoord1d(S) -> 'ok' when S :: float().
texCoord1d(S) ->
cast(5150, <<S:?GLdouble>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord1f(S) -> 'ok' when S :: float().
texCoord1f(S) ->
cast(5151, <<S:?GLfloat>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord1i(S) -> 'ok' when S :: integer().
texCoord1i(S) ->
cast(5152, <<S:?GLint>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord1s(S) -> 'ok' when S :: integer().
texCoord1s(S) ->
cast(5153, <<S:?GLshort>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord2d(S, T) -> 'ok' when S :: float(),T :: float().
texCoord2d(S,T) ->
cast(5154, <<S:?GLdouble,T:?GLdouble>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord2f(S, T) -> 'ok' when S :: float(),T :: float().
texCoord2f(S,T) ->
cast(5155, <<S:?GLfloat,T:?GLfloat>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord2i(S, T) -> 'ok' when S :: integer(),T :: integer().
texCoord2i(S,T) ->
cast(5156, <<S:?GLint,T:?GLint>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord2s(S, T) -> 'ok' when S :: integer(),T :: integer().
texCoord2s(S,T) ->
cast(5157, <<S:?GLshort,T:?GLshort>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord3d(S, T, R) -> 'ok' when S :: float(),T :: float(),R :: float().
texCoord3d(S,T,R) ->
cast(5158, <<S:?GLdouble,T:?GLdouble,R:?GLdouble>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord3f(S, T, R) -> 'ok' when S :: float(),T :: float(),R :: float().
texCoord3f(S,T,R) ->
cast(5159, <<S:?GLfloat,T:?GLfloat,R:?GLfloat>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord3i(S, T, R) -> 'ok' when S :: integer(),T :: integer(),R :: integer().
texCoord3i(S,T,R) ->
cast(5160, <<S:?GLint,T:?GLint,R:?GLint>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord3s(S, T, R) -> 'ok' when S :: integer(),T :: integer(),R :: integer().
texCoord3s(S,T,R) ->
cast(5161, <<S:?GLshort,T:?GLshort,R:?GLshort>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord4d(S, T, R, Q) -> 'ok' when S :: float(),T :: float(),R :: float(),Q :: float().
texCoord4d(S,T,R,Q) ->
cast(5162, <<S:?GLdouble,T:?GLdouble,R:?GLdouble,Q:?GLdouble>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord4f(S, T, R, Q) -> 'ok' when S :: float(),T :: float(),R :: float(),Q :: float().
texCoord4f(S,T,R,Q) ->
cast(5163, <<S:?GLfloat,T:?GLfloat,R:?GLfloat,Q:?GLfloat>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord4i(S, T, R, Q) -> 'ok' when S :: integer(),T :: integer(),R :: integer(),Q :: integer().
texCoord4i(S,T,R,Q) ->
cast(5164, <<S:?GLint,T:?GLint,R:?GLint,Q:?GLint>>).
%% @doc
%% See {@link texCoord1d/1}
-spec texCoord4s(S, T, R, Q) -> 'ok' when S :: integer(),T :: integer(),R :: integer(),Q :: integer().
texCoord4s(S,T,R,Q) ->
cast(5165, <<S:?GLshort,T:?GLshort,R:?GLshort,Q:?GLshort>>).
%% @equiv texCoord1d(S)
-spec texCoord1dv(V) -> 'ok' when V :: {S :: float()}.
texCoord1dv({S}) -> texCoord1d(S).
%% @equiv texCoord1f(S)
-spec texCoord1fv(V) -> 'ok' when V :: {S :: float()}.
texCoord1fv({S}) -> texCoord1f(S).
%% @equiv texCoord1i(S)
-spec texCoord1iv(V) -> 'ok' when V :: {S :: integer()}.
texCoord1iv({S}) -> texCoord1i(S).
%% @equiv texCoord1s(S)
-spec texCoord1sv(V) -> 'ok' when V :: {S :: integer()}.
texCoord1sv({S}) -> texCoord1s(S).
%% @equiv texCoord2d(S,T)
-spec texCoord2dv(V) -> 'ok' when V :: {S :: float(),T :: float()}.
texCoord2dv({S,T}) -> texCoord2d(S,T).
%% @equiv texCoord2f(S,T)
-spec texCoord2fv(V) -> 'ok' when V :: {S :: float(),T :: float()}.
texCoord2fv({S,T}) -> texCoord2f(S,T).
%% @equiv texCoord2i(S,T)
-spec texCoord2iv(V) -> 'ok' when V :: {S :: integer(),T :: integer()}.
texCoord2iv({S,T}) -> texCoord2i(S,T).
%% @equiv texCoord2s(S,T)
-spec texCoord2sv(V) -> 'ok' when V :: {S :: integer(),T :: integer()}.
texCoord2sv({S,T}) -> texCoord2s(S,T).
%% @equiv texCoord3d(S,T,R)
-spec texCoord3dv(V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float()}.
texCoord3dv({S,T,R}) -> texCoord3d(S,T,R).
%% @equiv texCoord3f(S,T,R)
-spec texCoord3fv(V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float()}.
texCoord3fv({S,T,R}) -> texCoord3f(S,T,R).
%% @equiv texCoord3i(S,T,R)
-spec texCoord3iv(V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer()}.
texCoord3iv({S,T,R}) -> texCoord3i(S,T,R).
%% @equiv texCoord3s(S,T,R)
-spec texCoord3sv(V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer()}.
texCoord3sv({S,T,R}) -> texCoord3s(S,T,R).
%% @equiv texCoord4d(S,T,R,Q)
-spec texCoord4dv(V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float(),Q :: float()}.
texCoord4dv({S,T,R,Q}) -> texCoord4d(S,T,R,Q).
%% @equiv texCoord4f(S,T,R,Q)
-spec texCoord4fv(V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float(),Q :: float()}.
texCoord4fv({S,T,R,Q}) -> texCoord4f(S,T,R,Q).
%% @equiv texCoord4i(S,T,R,Q)
-spec texCoord4iv(V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer(),Q :: integer()}.
texCoord4iv({S,T,R,Q}) -> texCoord4i(S,T,R,Q).
%% @equiv texCoord4s(S,T,R,Q)
-spec texCoord4sv(V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer(),Q :: integer()}.
texCoord4sv({S,T,R,Q}) -> texCoord4s(S,T,R,Q).
%% @doc Specify the raster position for pixel operations
%%
%% The GL maintains a 3D position in window coordinates. This position, called the raster
%% position, is used to position pixel and bitmap write operations. It is maintained with
%% subpixel accuracy. See {@link gl:bitmap/7} , {@link gl:drawPixels/5} , and {@link gl:copyPixels/5}
%% .
%%
%% The current raster position consists of three window coordinates ( x, y, z), a clip
%% coordinate value ( w), an eye coordinate distance, a valid bit, and associated color
%% data and texture coordinates. The w coordinate is a clip coordinate, because w is
%% not projected to window coordinates. ``gl:rasterPos4'' specifies object coordinates x,
%% y, z, and w explicitly. ``gl:rasterPos3'' specifies object coordinate x, y, and
%% z explicitly, while w is implicitly set to 1. ``gl:rasterPos2'' uses the argument
%% values for x and y while implicitly setting z and w to 0 and 1.
%%
%% The object coordinates presented by ``gl:rasterPos'' are treated just like those of a {@link gl:vertex2d/2}
%% command: They are transformed by the current modelview and projection matrices and passed
%% to the clipping stage. If the vertex is not culled, then it is projected and scaled to
%% window coordinates, which become the new current raster position, and the `?GL_CURRENT_RASTER_POSITION_VALID'
%% flag is set. If the vertex `is' culled, then the valid bit is cleared and the current
%% raster position and associated color and texture coordinates are undefined.
%%
%% The current raster position also includes some associated color data and texture coordinates.
%% If lighting is enabled, then `?GL_CURRENT_RASTER_COLOR' (in RGBA mode) or `?GL_CURRENT_RASTER_INDEX'
%% (in color index mode) is set to the color produced by the lighting calculation (see {@link gl:lightf/3}
%% , {@link gl:lightModelf/2} , and {@link gl:shadeModel/1} ). If lighting is disabled, current
%% color (in RGBA mode, state variable `?GL_CURRENT_COLOR') or color index (in color
%% index mode, state variable `?GL_CURRENT_INDEX') is used to update the current raster
%% color. `?GL_CURRENT_RASTER_SECONDARY_COLOR' (in RGBA mode) is likewise updated.
%%
%% Likewise, `?GL_CURRENT_RASTER_TEXTURE_COORDS' is updated as a function of `?GL_CURRENT_TEXTURE_COORDS'
%% , based on the texture matrix and the texture generation functions (see {@link gl:texGend/3} ).
%% Finally, the distance from the origin of the eye coordinate system to the vertex as transformed
%% by only the modelview matrix replaces `?GL_CURRENT_RASTER_DISTANCE'.
%%
%% Initially, the current raster position is (0, 0, 0, 1), the current raster distance is
%% 0, the valid bit is set, the associated RGBA color is (1, 1, 1, 1), the associated color
%% index is 1, and the associated texture coordinates are (0, 0, 0, 1). In RGBA mode, `?GL_CURRENT_RASTER_INDEX'
%% is always 1; in color index mode, the current raster RGBA color always maintains its
%% initial value.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRasterPos.xml">external</a> documentation.
-spec rasterPos2d(X, Y) -> 'ok' when X :: float(),Y :: float().
rasterPos2d(X,Y) ->
cast(5166, <<X:?GLdouble,Y:?GLdouble>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos2f(X, Y) -> 'ok' when X :: float(),Y :: float().
rasterPos2f(X,Y) ->
cast(5167, <<X:?GLfloat,Y:?GLfloat>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos2i(X, Y) -> 'ok' when X :: integer(),Y :: integer().
rasterPos2i(X,Y) ->
cast(5168, <<X:?GLint,Y:?GLint>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos2s(X, Y) -> 'ok' when X :: integer(),Y :: integer().
rasterPos2s(X,Y) ->
cast(5169, <<X:?GLshort,Y:?GLshort>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos3d(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
rasterPos3d(X,Y,Z) ->
cast(5170, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos3f(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
rasterPos3f(X,Y,Z) ->
cast(5171, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos3i(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
rasterPos3i(X,Y,Z) ->
cast(5172, <<X:?GLint,Y:?GLint,Z:?GLint>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos3s(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
rasterPos3s(X,Y,Z) ->
cast(5173, <<X:?GLshort,Y:?GLshort,Z:?GLshort>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos4d(X, Y, Z, W) -> 'ok' when X :: float(),Y :: float(),Z :: float(),W :: float().
rasterPos4d(X,Y,Z,W) ->
cast(5174, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos4f(X, Y, Z, W) -> 'ok' when X :: float(),Y :: float(),Z :: float(),W :: float().
rasterPos4f(X,Y,Z,W) ->
cast(5175, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat,W:?GLfloat>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos4i(X, Y, Z, W) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
rasterPos4i(X,Y,Z,W) ->
cast(5176, <<X:?GLint,Y:?GLint,Z:?GLint,W:?GLint>>).
%% @doc
%% See {@link rasterPos2d/2}
-spec rasterPos4s(X, Y, Z, W) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
rasterPos4s(X,Y,Z,W) ->
cast(5177, <<X:?GLshort,Y:?GLshort,Z:?GLshort,W:?GLshort>>).
%% @equiv rasterPos2d(X,Y)
-spec rasterPos2dv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
rasterPos2dv({X,Y}) -> rasterPos2d(X,Y).
%% @equiv rasterPos2f(X,Y)
-spec rasterPos2fv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
rasterPos2fv({X,Y}) -> rasterPos2f(X,Y).
%% @equiv rasterPos2i(X,Y)
-spec rasterPos2iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
rasterPos2iv({X,Y}) -> rasterPos2i(X,Y).
%% @equiv rasterPos2s(X,Y)
-spec rasterPos2sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
rasterPos2sv({X,Y}) -> rasterPos2s(X,Y).
%% @equiv rasterPos3d(X,Y,Z)
-spec rasterPos3dv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
rasterPos3dv({X,Y,Z}) -> rasterPos3d(X,Y,Z).
%% @equiv rasterPos3f(X,Y,Z)
-spec rasterPos3fv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
rasterPos3fv({X,Y,Z}) -> rasterPos3f(X,Y,Z).
%% @equiv rasterPos3i(X,Y,Z)
-spec rasterPos3iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
rasterPos3iv({X,Y,Z}) -> rasterPos3i(X,Y,Z).
%% @equiv rasterPos3s(X,Y,Z)
-spec rasterPos3sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
rasterPos3sv({X,Y,Z}) -> rasterPos3s(X,Y,Z).
%% @equiv rasterPos4d(X,Y,Z,W)
-spec rasterPos4dv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
rasterPos4dv({X,Y,Z,W}) -> rasterPos4d(X,Y,Z,W).
%% @equiv rasterPos4f(X,Y,Z,W)
-spec rasterPos4fv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
rasterPos4fv({X,Y,Z,W}) -> rasterPos4f(X,Y,Z,W).
%% @equiv rasterPos4i(X,Y,Z,W)
-spec rasterPos4iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
rasterPos4iv({X,Y,Z,W}) -> rasterPos4i(X,Y,Z,W).
%% @equiv rasterPos4s(X,Y,Z,W)
-spec rasterPos4sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
rasterPos4sv({X,Y,Z,W}) -> rasterPos4s(X,Y,Z,W).
%% @doc Draw a rectangle
%%
%% ``gl:rect'' supports efficient specification of rectangles as two corner points. Each
%% rectangle command takes four arguments, organized either as two consecutive pairs of (x y)
%% coordinates or as two pointers to arrays, each containing an (x y) pair. The resulting rectangle
%% is defined in the z=0 plane.
%%
%% ``gl:rect''( `X1' , `Y1' , `X2' , `Y2' ) is exactly equivalent to the
%% following sequence: glBegin(`?GL_POLYGON'); glVertex2( `X1' , `Y1' ); glVertex2(
%% `X2' , `Y1' ); glVertex2( `X2' , `Y2' ); glVertex2( `X1' , `Y2' );
%% glEnd(); Note that if the second vertex is above and to the right of the first vertex,
%% the rectangle is constructed with a counterclockwise winding.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRect.xml">external</a> documentation.
-spec rectd(X1, Y1, X2, Y2) -> 'ok' when X1 :: float(),Y1 :: float(),X2 :: float(),Y2 :: float().
rectd(X1,Y1,X2,Y2) ->
cast(5178, <<X1:?GLdouble,Y1:?GLdouble,X2:?GLdouble,Y2:?GLdouble>>).
%% @doc
%% See {@link rectd/4}
-spec rectf(X1, Y1, X2, Y2) -> 'ok' when X1 :: float(),Y1 :: float(),X2 :: float(),Y2 :: float().
rectf(X1,Y1,X2,Y2) ->
cast(5179, <<X1:?GLfloat,Y1:?GLfloat,X2:?GLfloat,Y2:?GLfloat>>).
%% @doc
%% See {@link rectd/4}
-spec recti(X1, Y1, X2, Y2) -> 'ok' when X1 :: integer(),Y1 :: integer(),X2 :: integer(),Y2 :: integer().
recti(X1,Y1,X2,Y2) ->
cast(5180, <<X1:?GLint,Y1:?GLint,X2:?GLint,Y2:?GLint>>).
%% @doc
%% See {@link rectd/4}
-spec rects(X1, Y1, X2, Y2) -> 'ok' when X1 :: integer(),Y1 :: integer(),X2 :: integer(),Y2 :: integer().
rects(X1,Y1,X2,Y2) ->
cast(5181, <<X1:?GLshort,Y1:?GLshort,X2:?GLshort,Y2:?GLshort>>).
%% @doc
%% See {@link rectd/4}
-spec rectdv(V1, V2) -> 'ok' when V1 :: {float(),float()},V2 :: {float(),float()}.
rectdv({V1,V2},{V1,V2}) ->
cast(5182, <<V1:?GLdouble,V2:?GLdouble,V1:?GLdouble,V2:?GLdouble>>).
%% @doc
%% See {@link rectd/4}
-spec rectfv(V1, V2) -> 'ok' when V1 :: {float(),float()},V2 :: {float(),float()}.
rectfv({V1,V2},{V1,V2}) ->
cast(5183, <<V1:?GLfloat,V2:?GLfloat,V1:?GLfloat,V2:?GLfloat>>).
%% @doc
%% See {@link rectd/4}
-spec rectiv(V1, V2) -> 'ok' when V1 :: {integer(),integer()},V2 :: {integer(),integer()}.
rectiv({V1,V2},{V1,V2}) ->
cast(5184, <<V1:?GLint,V2:?GLint,V1:?GLint,V2:?GLint>>).
%% @doc
%% See {@link rectd/4}
-spec rectsv(V1, V2) -> 'ok' when V1 :: {integer(),integer()},V2 :: {integer(),integer()}.
rectsv({V1,V2},{V1,V2}) ->
cast(5185, <<V1:?GLshort,V2:?GLshort,V1:?GLshort,V2:?GLshort>>).
%% @doc Define an array of vertex data
%%
%% ``gl:vertexPointer'' specifies the location and data format of an array of vertex coordinates
%% to use when rendering. `Size' specifies the number of coordinates per vertex, and
%% must be 2, 3, or 4. `Type' specifies the data type of each coordinate, and `Stride'
%% specifies the byte stride from one vertex to the next, allowing vertices and attributes
%% to be packed into a single array or stored in separate arrays. (Single-array storage may
%% be more efficient on some implementations; see {@link gl:interleavedArrays/3} .)
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a vertex array is specified, `Pointer' is treated as a byte offset into the
%% buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as vertex array client-side state (`?GL_VERTEX_ARRAY_BUFFER_BINDING').
%%
%% When a vertex array is specified, `Size' , `Type' , `Stride' , and `Pointer'
%% are saved as client-side state, in addition to the current vertex array buffer object
%% binding.
%%
%% To enable and disable the vertex array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_VERTEX_ARRAY'. If enabled, the vertex array is used when {@link gl:arrayElement/1}
%% , {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements'
%% , or {@link gl:drawRangeElements/6} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml">external</a> documentation.
-spec vertexPointer(Size, Type, Stride, Ptr) -> 'ok' when Size :: integer(),Type :: enum(),Stride :: integer(),Ptr :: offset()|mem().
vertexPointer(Size,Type,Stride,Ptr) when is_integer(Ptr) ->
cast(5186, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei,Ptr:?GLuint>>);
vertexPointer(Size,Type,Stride,Ptr) ->
send_bin(Ptr),
cast(5187, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc Define an array of normals
%%
%% ``gl:normalPointer'' specifies the location and data format of an array of normals to
%% use when rendering. `Type' specifies the data type of each normal coordinate, and `Stride'
%% specifies the byte stride from one normal to the next, allowing vertices and attributes
%% to be packed into a single array or stored in separate arrays. (Single-array storage may
%% be more efficient on some implementations; see {@link gl:interleavedArrays/3} .)
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a normal array is specified, `Pointer' is treated as a byte offset into the
%% buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as normal vertex array client-side state (`?GL_NORMAL_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When a normal array is specified, `Type' , `Stride' , and `Pointer' are
%% saved as client-side state, in addition to the current vertex array buffer object binding.
%%
%%
%% To enable and disable the normal array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_NORMAL_ARRAY'. If enabled, the normal array is used when {@link gl:drawArrays/3}
%% , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements', {@link gl:drawRangeElements/6}
%% , or {@link gl:arrayElement/1} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glNormalPointer.xml">external</a> documentation.
-spec normalPointer(Type, Stride, Ptr) -> 'ok' when Type :: enum(),Stride :: integer(),Ptr :: offset()|mem().
normalPointer(Type,Stride,Ptr) when is_integer(Ptr) ->
cast(5188, <<Type:?GLenum,Stride:?GLsizei,Ptr:?GLuint>>);
normalPointer(Type,Stride,Ptr) ->
send_bin(Ptr),
cast(5189, <<Type:?GLenum,Stride:?GLsizei>>).
%% @doc Define an array of colors
%%
%% ``gl:colorPointer'' specifies the location and data format of an array of color components
%% to use when rendering. `Size' specifies the number of components per color, and must
%% be 3 or 4. `Type' specifies the data type of each color component, and `Stride'
%% specifies the byte stride from one color to the next, allowing vertices and attributes
%% to be packed into a single array or stored in separate arrays. (Single-array storage may
%% be more efficient on some implementations; see {@link gl:interleavedArrays/3} .)
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a color array is specified, `Pointer' is treated as a byte offset into the
%% buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as color vertex array client-side state (`?GL_COLOR_ARRAY_BUFFER_BINDING').
%%
%%
%% When a color array is specified, `Size' , `Type' , `Stride' , and `Pointer'
%% are saved as client-side state, in addition to the current vertex array buffer object
%% binding.
%%
%% To enable and disable the color array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_COLOR_ARRAY'. If enabled, the color array is used when {@link gl:drawArrays/3}
%% , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements', {@link gl:drawRangeElements/6}
%% , or {@link gl:arrayElement/1} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorPointer.xml">external</a> documentation.
-spec colorPointer(Size, Type, Stride, Ptr) -> 'ok' when Size :: integer(),Type :: enum(),Stride :: integer(),Ptr :: offset()|mem().
colorPointer(Size,Type,Stride,Ptr) when is_integer(Ptr) ->
cast(5190, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei,Ptr:?GLuint>>);
colorPointer(Size,Type,Stride,Ptr) ->
send_bin(Ptr),
cast(5191, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc Define an array of color indexes
%%
%% ``gl:indexPointer'' specifies the location and data format of an array of color indexes
%% to use when rendering. `Type' specifies the data type of each color index and `Stride'
%% specifies the byte stride from one color index to the next, allowing vertices and attributes
%% to be packed into a single array or stored in separate arrays.
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a color index array is specified, `Pointer' is treated as a byte offset into
%% the buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as color index vertex array client-side state (`?GL_INDEX_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When a color index array is specified, `Type' , `Stride' , and `Pointer'
%% are saved as client-side state, in addition to the current vertex array buffer object
%% binding.
%%
%% To enable and disable the color index array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_INDEX_ARRAY'. If enabled, the color index array is used when
%% {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements'
%% , {@link gl:drawRangeElements/6} , or {@link gl:arrayElement/1} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIndexPointer.xml">external</a> documentation.
-spec indexPointer(Type, Stride, Ptr) -> 'ok' when Type :: enum(),Stride :: integer(),Ptr :: offset()|mem().
indexPointer(Type,Stride,Ptr) when is_integer(Ptr) ->
cast(5192, <<Type:?GLenum,Stride:?GLsizei,Ptr:?GLuint>>);
indexPointer(Type,Stride,Ptr) ->
send_bin(Ptr),
cast(5193, <<Type:?GLenum,Stride:?GLsizei>>).
%% @doc Define an array of texture coordinates
%%
%% ``gl:texCoordPointer'' specifies the location and data format of an array of texture
%% coordinates to use when rendering. `Size' specifies the number of coordinates per
%% texture coordinate set, and must be 1, 2, 3, or 4. `Type' specifies the data type
%% of each texture coordinate, and `Stride' specifies the byte stride from one texture
%% coordinate set to the next, allowing vertices and attributes to be packed into a single
%% array or stored in separate arrays. (Single-array storage may be more efficient on some
%% implementations; see {@link gl:interleavedArrays/3} .)
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a texture coordinate array is specified, `Pointer' is treated as a byte offset
%% into the buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as texture coordinate vertex array client-side state (`?GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When a texture coordinate array is specified, `Size' , `Type' , `Stride' ,
%% and `Pointer' are saved as client-side state, in addition to the current vertex array
%% buffer object binding.
%%
%% To enable and disable a texture coordinate array, call {@link gl:enableClientState/1}
%% and {@link gl:enableClientState/1} with the argument `?GL_TEXTURE_COORD_ARRAY'. If
%% enabled, the texture coordinate array is used when {@link gl:arrayElement/1} , {@link gl:drawArrays/3}
%% , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements',
%% or {@link gl:drawRangeElements/6} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexCoordPointer.xml">external</a> documentation.
-spec texCoordPointer(Size, Type, Stride, Ptr) -> 'ok' when Size :: integer(),Type :: enum(),Stride :: integer(),Ptr :: offset()|mem().
texCoordPointer(Size,Type,Stride,Ptr) when is_integer(Ptr) ->
cast(5194, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei,Ptr:?GLuint>>);
texCoordPointer(Size,Type,Stride,Ptr) ->
send_bin(Ptr),
cast(5195, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc Define an array of edge flags
%%
%% ``gl:edgeFlagPointer'' specifies the location and data format of an array of boolean
%% edge flags to use when rendering. `Stride' specifies the byte stride from one edge
%% flag to the next, allowing vertices and attributes to be packed into a single array or
%% stored in separate arrays.
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while an edge flag array is specified, `Pointer' is treated as a byte offset into
%% the buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as edge flag vertex array client-side state (`?GL_EDGE_FLAG_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When an edge flag array is specified, `Stride' and `Pointer' are saved as client-side
%% state, in addition to the current vertex array buffer object binding.
%%
%% To enable and disable the edge flag array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_EDGE_FLAG_ARRAY'. If enabled, the edge flag array is used
%% when {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements'
%% , {@link gl:drawRangeElements/6} , or {@link gl:arrayElement/1} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEdgeFlagPointer.xml">external</a> documentation.
-spec edgeFlagPointer(Stride, Ptr) -> 'ok' when Stride :: integer(),Ptr :: offset()|mem().
edgeFlagPointer(Stride,Ptr) when is_integer(Ptr) ->
cast(5196, <<Stride:?GLsizei,Ptr:?GLuint>>);
edgeFlagPointer(Stride,Ptr) ->
send_bin(Ptr),
cast(5197, <<Stride:?GLsizei>>).
%% @doc Render a vertex using the specified vertex array element
%%
%% ``gl:arrayElement'' commands are used within {@link gl:'begin'/1} / {@link gl:'begin'/1} pairs
%% to specify vertex and attribute data for point, line, and polygon primitives. If `?GL_VERTEX_ARRAY'
%% is enabled when ``gl:arrayElement'' is called, a single vertex is drawn, using vertex
%% and attribute data taken from location `I' of the enabled arrays. If `?GL_VERTEX_ARRAY'
%% is not enabled, no drawing occurs but the attributes corresponding to the enabled arrays
%% are modified.
%%
%% Use ``gl:arrayElement'' to construct primitives by indexing vertex data, rather than
%% by streaming through arrays of data in first-to-last order. Because each call specifies
%% only a single vertex, it is possible to explicitly specify per-primitive attributes such
%% as a single normal for each triangle.
%%
%% Changes made to array data between the execution of {@link gl:'begin'/1} and the corresponding
%% execution of {@link gl:'begin'/1} may affect calls to ``gl:arrayElement'' that are made within
%% the same {@link gl:'begin'/1} / {@link gl:'begin'/1} period in nonsequential ways. That is, a call
%% to ``gl:arrayElement'' that precedes a change to array data may access the changed data,
%% and a call that follows a change to array data may access original data.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glArrayElement.xml">external</a> documentation.
-spec arrayElement(I) -> 'ok' when I :: integer().
arrayElement(I) ->
cast(5198, <<I:?GLint>>).
%% @doc Render primitives from array data
%%
%% ``gl:drawArrays'' specifies multiple geometric primitives with very few subroutine calls.
%% Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate,
%% edge flag, or color, you can prespecify separate arrays of vertices, normals, and colors
%% and use them to construct a sequence of primitives with a single call to ``gl:drawArrays''
%% .
%%
%% When ``gl:drawArrays'' is called, it uses `Count' sequential elements from each
%% enabled array to construct a sequence of geometric primitives, beginning with element `First'
%% . `Mode' specifies what kind of primitives are constructed and how the array elements
%% construct those primitives.
%%
%% Vertex attributes that are modified by ``gl:drawArrays'' have an unspecified value
%% after ``gl:drawArrays'' returns. Attributes that aren't modified remain well defined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawArrays.xml">external</a> documentation.
-spec drawArrays(Mode, First, Count) -> 'ok' when Mode :: enum(),First :: integer(),Count :: integer().
drawArrays(Mode,First,Count) ->
cast(5199, <<Mode:?GLenum,First:?GLint,Count:?GLsizei>>).
%% @doc Render primitives from array data
%%
%% ``gl:drawElements'' specifies multiple geometric primitives with very few subroutine
%% calls. Instead of calling a GL function to pass each individual vertex, normal, texture
%% coordinate, edge flag, or color, you can prespecify separate arrays of vertices, normals,
%% and so on, and use them to construct a sequence of primitives with a single call to ``gl:drawElements''
%% .
%%
%% When ``gl:drawElements'' is called, it uses `Count' sequential elements from an
%% enabled array, starting at `Indices' to construct a sequence of geometric primitives.
%% `Mode' specifies what kind of primitives are constructed and how the array elements
%% construct these primitives. If more than one array is enabled, each is used.
%%
%% Vertex attributes that are modified by ``gl:drawElements'' have an unspecified value
%% after ``gl:drawElements'' returns. Attributes that aren't modified maintain their previous
%% values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElements.xml">external</a> documentation.
-spec drawElements(Mode, Count, Type, Indices) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem().
drawElements(Mode,Count,Type,Indices) when is_integer(Indices) ->
cast(5200, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint>>);
drawElements(Mode,Count,Type,Indices) ->
send_bin(Indices),
cast(5201, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum>>).
%% @doc Simultaneously specify and enable several interleaved arrays
%%
%% ``gl:interleavedArrays'' lets you specify and enable individual color, normal, texture
%% and vertex arrays whose elements are part of a larger aggregate array element. For some
%% implementations, this is more efficient than specifying the arrays separately.
%%
%% If `Stride' is 0, the aggregate elements are stored consecutively. Otherwise, `Stride'
%% bytes occur between the beginning of one aggregate array element and the beginning of
%% the next aggregate array element.
%%
%% `Format' serves as a ``key'' describing the extraction of individual arrays from
%% the aggregate array. If `Format' contains a T, then texture coordinates are extracted
%% from the interleaved array. If C is present, color values are extracted. If N is present,
%% normal coordinates are extracted. Vertex coordinates are always extracted.
%%
%% The digits 2, 3, and 4 denote how many values are extracted. F indicates that values
%% are extracted as floating-point values. Colors may also be extracted as 4 unsigned bytes
%% if 4UB follows the C. If a color is extracted as 4 unsigned bytes, the vertex array element
%% which follows is located at the first possible floating-point aligned address.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glInterleavedArrays.xml">external</a> documentation.
-spec interleavedArrays(Format, Stride, Pointer) -> 'ok' when Format :: enum(),Stride :: integer(),Pointer :: offset()|mem().
interleavedArrays(Format,Stride,Pointer) when is_integer(Pointer) ->
cast(5202, <<Format:?GLenum,Stride:?GLsizei,Pointer:?GLuint>>);
interleavedArrays(Format,Stride,Pointer) ->
send_bin(Pointer),
cast(5203, <<Format:?GLenum,Stride:?GLsizei>>).
%% @doc Select flat or smooth shading
%%
%% GL primitives can have either flat or smooth shading. Smooth shading, the default, causes
%% the computed colors of vertices to be interpolated as the primitive is rasterized, typically
%% assigning different colors to each resulting pixel fragment. Flat shading selects the
%% computed color of just one vertex and assigns it to all the pixel fragments generated
%% by rasterizing a single primitive. In either case, the computed color of a vertex is the
%% result of lighting if lighting is enabled, or it is the current color at the time the
%% vertex was specified if lighting is disabled.
%%
%% Flat and smooth shading are indistinguishable for points. Starting when {@link gl:'begin'/1}
%% is issued and counting vertices and primitives from 1, the GL gives each flat-shaded line
%% segment i the computed color of vertex i+1, its second vertex. Counting similarly
%% from 1, the GL gives each flat-shaded polygon the computed color of the vertex listed
%% in the following table. This is the last vertex to specify the polygon in all cases except
%% single polygons, where the first vertex specifies the flat-shaded color.
%%
%% <table><tbody><tr><td>` Primitive Type of Polygon ' i</td><td>` Vertex '</td></tr>
%% </tbody><tbody><tr><td> Single polygon ( i== 1) </td><td> 1 </td></tr><tr><td> Triangle
%% strip </td><td> i+2</td></tr><tr><td> Triangle fan </td><td> i+2</td></tr><tr><td> Independent
%% triangle </td><td> 3 i</td></tr><tr><td> Quad strip </td><td> 2 i+2</td></tr><tr><td>
%% Independent quad </td><td> 4 i</td></tr></tbody></table>
%%
%% Flat and smooth shading are specified by ``gl:shadeModel'' with `Mode' set to `?GL_FLAT'
%% and `?GL_SMOOTH', respectively.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glShadeModel.xml">external</a> documentation.
-spec shadeModel(Mode) -> 'ok' when Mode :: enum().
shadeModel(Mode) ->
cast(5204, <<Mode:?GLenum>>).
%% @doc Set light source parameters
%%
%% ``gl:light'' sets the values of individual light source parameters. `Light' names
%% the light and is a symbolic name of the form `?GL_LIGHT' i, where i ranges from 0
%% to the value of `?GL_MAX_LIGHTS' - 1. `Pname' specifies one of ten light source
%% parameters, again by symbolic name. `Params' is either a single value or a pointer
%% to an array that contains the new values.
%%
%% To enable and disable lighting calculation, call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_LIGHTING'. Lighting is initially disabled. When it is enabled,
%% light sources that are enabled contribute to the lighting calculation. Light source i
%% is enabled and disabled using {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_LIGHT'
%% i.
%%
%% The ten light parameters are as follows:
%%
%% `?GL_AMBIENT': `Params' contains four integer or floating-point values that
%% specify the ambient RGBA intensity of the light. Integer values are mapped linearly such
%% that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial ambient light intensity is (0, 0, 0, 1).
%%
%% `?GL_DIFFUSE': `Params' contains four integer or floating-point values that
%% specify the diffuse RGBA intensity of the light. Integer values are mapped linearly such
%% that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial value for `?GL_LIGHT0' is (1, 1, 1, 1); for other
%% lights, the initial value is (0, 0, 0, 1).
%%
%% `?GL_SPECULAR': `Params' contains four integer or floating-point values that
%% specify the specular RGBA intensity of the light. Integer values are mapped linearly such
%% that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial value for `?GL_LIGHT0' is (1, 1, 1, 1); for other
%% lights, the initial value is (0, 0, 0, 1).
%%
%% `?GL_POSITION': `Params' contains four integer or floating-point values that
%% specify the position of the light in homogeneous object coordinates. Both integer and
%% floating-point values are mapped directly. Neither integer nor floating-point values are
%% clamped.
%%
%% The position is transformed by the modelview matrix when ``gl:light'' is called (just
%% as if it were a point), and it is stored in eye coordinates. If the w component of the
%% position is 0, the light is treated as a directional source. Diffuse and specular lighting
%% calculations take the light's direction, but not its actual position, into account, and
%% attenuation is disabled. Otherwise, diffuse and specular lighting calculations are based
%% on the actual location of the light in eye coordinates, and attenuation is enabled. The
%% initial position is (0, 0, 1, 0); thus, the initial light source is directional, parallel
%% to, and in the direction of the -z axis.
%%
%% `?GL_SPOT_DIRECTION': `Params' contains three integer or floating-point values
%% that specify the direction of the light in homogeneous object coordinates. Both integer
%% and floating-point values are mapped directly. Neither integer nor floating-point values
%% are clamped.
%%
%% The spot direction is transformed by the upper 3x3 of the modelview matrix when ``gl:light''
%% is called, and it is stored in eye coordinates. It is significant only when `?GL_SPOT_CUTOFF'
%% is not 180, which it is initially. The initial direction is (0 0 -1).
%%
%% `?GL_SPOT_EXPONENT': `Params' is a single integer or floating-point value that
%% specifies the intensity distribution of the light. Integer and floating-point values are
%% mapped directly. Only values in the range [0 128] are accepted.
%%
%% Effective light intensity is attenuated by the cosine of the angle between the direction
%% of the light and the direction from the light to the vertex being lighted, raised to the
%% power of the spot exponent. Thus, higher spot exponents result in a more focused light
%% source, regardless of the spot cutoff angle (see `?GL_SPOT_CUTOFF', next paragraph).
%% The initial spot exponent is 0, resulting in uniform light distribution.
%%
%% `?GL_SPOT_CUTOFF': `Params' is a single integer or floating-point value that
%% specifies the maximum spread angle of a light source. Integer and floating-point values
%% are mapped directly. Only values in the range [0 90] and the special value 180 are accepted.
%% If the angle between the direction of the light and the direction from the light to the
%% vertex being lighted is greater than the spot cutoff angle, the light is completely masked.
%% Otherwise, its intensity is controlled by the spot exponent and the attenuation factors.
%% The initial spot cutoff is 180, resulting in uniform light distribution.
%%
%% `?GL_CONSTANT_ATTENUATION'
%%
%% `?GL_LINEAR_ATTENUATION'
%%
%% `?GL_QUADRATIC_ATTENUATION': `Params' is a single integer or floating-point
%% value that specifies one of the three light attenuation factors. Integer and floating-point
%% values are mapped directly. Only nonnegative values are accepted. If the light is positional,
%% rather than directional, its intensity is attenuated by the reciprocal of the sum of the
%% constant factor, the linear factor times the distance between the light and the vertex
%% being lighted, and the quadratic factor times the square of the same distance. The initial
%% attenuation factors are (1, 0, 0), resulting in no attenuation.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLight.xml">external</a> documentation.
-spec lightf(Light, Pname, Param) -> 'ok' when Light :: enum(),Pname :: enum(),Param :: float().
lightf(Light,Pname,Param) ->
cast(5205, <<Light:?GLenum,Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link lightf/3}
-spec lighti(Light, Pname, Param) -> 'ok' when Light :: enum(),Pname :: enum(),Param :: integer().
lighti(Light,Pname,Param) ->
cast(5206, <<Light:?GLenum,Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link lightf/3}
-spec lightfv(Light, Pname, Params) -> 'ok' when Light :: enum(),Pname :: enum(),Params :: tuple().
lightfv(Light,Pname,Params) ->
cast(5207, <<Light:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link lightf/3}
-spec lightiv(Light, Pname, Params) -> 'ok' when Light :: enum(),Pname :: enum(),Params :: tuple().
lightiv(Light,Pname,Params) ->
cast(5208, <<Light:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc Return light source parameter values
%%
%% ``gl:getLight'' returns in `Params' the value or values of a light source parameter.
%% `Light' names the light and is a symbolic name of the form `?GL_LIGHT' i where
%% i ranges from 0 to the value of `?GL_MAX_LIGHTS' - 1. `?GL_MAX_LIGHTS' is an
%% implementation dependent constant that is greater than or equal to eight. `Pname'
%% specifies one of ten light source parameters, again by symbolic name.
%%
%% The following parameters are defined:
%%
%% `?GL_AMBIENT': `Params' returns four integer or floating-point values representing
%% the ambient intensity of the light source. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value is (0, 0, 0, 1).
%%
%% `?GL_DIFFUSE': `Params' returns four integer or floating-point values representing
%% the diffuse intensity of the light source. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value for `?GL_LIGHT0' is (1, 1, 1, 1); for
%% other lights, the initial value is (0, 0, 0, 0).
%%
%% `?GL_SPECULAR': `Params' returns four integer or floating-point values representing
%% the specular intensity of the light source. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value for `?GL_LIGHT0' is (1, 1, 1, 1); for
%% other lights, the initial value is (0, 0, 0, 0).
%%
%% `?GL_POSITION': `Params' returns four integer or floating-point values representing
%% the position of the light source. Integer values, when requested, are computed by rounding
%% the internal floating-point values to the nearest integer value. The returned values are
%% those maintained in eye coordinates. They will not be equal to the values specified using
%% {@link gl:lightf/3} , unless the modelview matrix was identity at the time {@link gl:lightf/3}
%% was called. The initial value is (0, 0, 1, 0).
%%
%% `?GL_SPOT_DIRECTION': `Params' returns three integer or floating-point values
%% representing the direction of the light source. Integer values, when requested, are computed
%% by rounding the internal floating-point values to the nearest integer value. The returned
%% values are those maintained in eye coordinates. They will not be equal to the values specified
%% using {@link gl:lightf/3} , unless the modelview matrix was identity at the time {@link gl:lightf/3}
%% was called. Although spot direction is normalized before being used in the lighting equation,
%% the returned values are the transformed versions of the specified values prior to normalization.
%% The initial value is (0 0 -1).
%%
%% `?GL_SPOT_EXPONENT': `Params' returns a single integer or floating-point value
%% representing the spot exponent of the light. An integer value, when requested, is computed
%% by rounding the internal floating-point representation to the nearest integer. The initial
%% value is 0.
%%
%% `?GL_SPOT_CUTOFF': `Params' returns a single integer or floating-point value
%% representing the spot cutoff angle of the light. An integer value, when requested, is
%% computed by rounding the internal floating-point representation to the nearest integer.
%% The initial value is 180.
%%
%% `?GL_CONSTANT_ATTENUATION': `Params' returns a single integer or floating-point
%% value representing the constant (not distance-related) attenuation of the light. An integer
%% value, when requested, is computed by rounding the internal floating-point representation
%% to the nearest integer. The initial value is 1.
%%
%% `?GL_LINEAR_ATTENUATION': `Params' returns a single integer or floating-point
%% value representing the linear attenuation of the light. An integer value, when requested,
%% is computed by rounding the internal floating-point representation to the nearest integer.
%% The initial value is 0.
%%
%% `?GL_QUADRATIC_ATTENUATION': `Params' returns a single integer or floating-point
%% value representing the quadratic attenuation of the light. An integer value, when requested,
%% is computed by rounding the internal floating-point representation to the nearest integer.
%% The initial value is 0.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetLight.xml">external</a> documentation.
-spec getLightfv(Light, Pname) -> {float(),float(),float(),float()} when Light :: enum(),Pname :: enum().
getLightfv(Light,Pname) ->
call(5209, <<Light:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getLightfv/2}
-spec getLightiv(Light, Pname) -> {integer(),integer(),integer(),integer()} when Light :: enum(),Pname :: enum().
getLightiv(Light,Pname) ->
call(5210, <<Light:?GLenum,Pname:?GLenum>>).
%% @doc Set the lighting model parameters
%%
%% ``gl:lightModel'' sets the lighting model parameter. `Pname' names a parameter
%% and `Params' gives the new value. There are three lighting model parameters:
%%
%% `?GL_LIGHT_MODEL_AMBIENT': `Params' contains four integer or floating-point
%% values that specify the ambient RGBA intensity of the entire scene. Integer values are
%% mapped linearly such that the most positive representable value maps to 1.0, and the most
%% negative representable value maps to -1.0. Floating-point values are mapped directly.
%% Neither integer nor floating-point values are clamped. The initial ambient scene intensity
%% is (0.2, 0.2, 0.2, 1.0).
%%
%% `?GL_LIGHT_MODEL_COLOR_CONTROL': `Params' must be either `?GL_SEPARATE_SPECULAR_COLOR'
%% or `?GL_SINGLE_COLOR'. `?GL_SINGLE_COLOR' specifies that a single color is
%% generated from the lighting computation for a vertex. `?GL_SEPARATE_SPECULAR_COLOR'
%% specifies that the specular color computation of lighting be stored separately from the
%% remainder of the lighting computation. The specular color is summed into the generated
%% fragment's color after the application of texture mapping (if enabled). The initial value
%% is `?GL_SINGLE_COLOR'.
%%
%% `?GL_LIGHT_MODEL_LOCAL_VIEWER': `Params' is a single integer or floating-point
%% value that specifies how specular reflection angles are computed. If `Params' is
%% 0 (or 0.0), specular reflection angles take the view direction to be parallel to and in
%% the direction of the -`z' axis, regardless of the location of the vertex in eye coordinates.
%% Otherwise, specular reflections are computed from the origin of the eye coordinate system.
%% The initial value is 0.
%%
%% `?GL_LIGHT_MODEL_TWO_SIDE': `Params' is a single integer or floating-point value
%% that specifies whether one- or two-sided lighting calculations are done for polygons.
%% It has no effect on the lighting calculations for points, lines, or bitmaps. If `Params'
%% is 0 (or 0.0), one-sided lighting is specified, and only the `front' material parameters
%% are used in the lighting equation. Otherwise, two-sided lighting is specified. In this
%% case, vertices of back-facing polygons are lighted using the `back' material parameters
%% and have their normals reversed before the lighting equation is evaluated. Vertices of
%% front-facing polygons are always lighted using the `front' material parameters, with
%% no change to their normals. The initial value is 0.
%%
%% In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity,
%% the product of the material ambient reflectance and the lighting model full-scene ambient
%% intensity, and the contribution of each enabled light source. Each light source contributes
%% the sum of three terms: ambient, diffuse, and specular. The ambient light source contribution
%% is the product of the material ambient reflectance and the light's ambient intensity.
%% The diffuse light source contribution is the product of the material diffuse reflectance,
%% the light's diffuse intensity, and the dot product of the vertex's normal with the normalized
%% vector from the vertex to the light source. The specular light source contribution is
%% the product of the material specular reflectance, the light's specular intensity, and
%% the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised to
%% the power of the shininess of the material. All three light source contributions are attenuated
%% equally based on the distance from the vertex to the light source and on light source
%% direction, spread exponent, and spread cutoff angle. All dot products are replaced with
%% 0 if they evaluate to a negative value.
%%
%% The alpha component of the resulting lighted color is set to the alpha value of the material
%% diffuse reflectance.
%%
%% In color index mode, the value of the lighted index of a vertex ranges from the ambient
%% to the specular values passed to {@link gl:materialf/3} using `?GL_COLOR_INDEXES'.
%% Diffuse and specular coefficients, computed with a (.30, .59, .11) weighting of the lights'
%% colors, the shininess of the material, and the same reflection and attenuation equations
%% as in the RGBA case, determine how much above ambient the resulting index is.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLightModel.xml">external</a> documentation.
-spec lightModelf(Pname, Param) -> 'ok' when Pname :: enum(),Param :: float().
lightModelf(Pname,Param) ->
cast(5211, <<Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link lightModelf/2}
-spec lightModeli(Pname, Param) -> 'ok' when Pname :: enum(),Param :: integer().
lightModeli(Pname,Param) ->
cast(5212, <<Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link lightModelf/2}
-spec lightModelfv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
lightModelfv(Pname,Params) ->
cast(5213, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link lightModelf/2}
-spec lightModeliv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
lightModeliv(Pname,Params) ->
cast(5214, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc Specify material parameters for the lighting model
%%
%% ``gl:material'' assigns values to material parameters. There are two matched sets of
%% material parameters. One, the `front-facing' set, is used to shade points, lines,
%% bitmaps, and all polygons (when two-sided lighting is disabled), or just front-facing
%% polygons (when two-sided lighting is enabled). The other set, `back-facing', is used
%% to shade back-facing polygons only when two-sided lighting is enabled. Refer to the {@link gl:lightModelf/2}
%% reference page for details concerning one- and two-sided lighting calculations.
%%
%% ``gl:material'' takes three arguments. The first, `Face' , specifies whether the `?GL_FRONT'
%% materials, the `?GL_BACK' materials, or both `?GL_FRONT_AND_BACK' materials
%% will be modified. The second, `Pname' , specifies which of several parameters in one
%% or both sets will be modified. The third, `Params' , specifies what value or values
%% will be assigned to the specified parameter.
%%
%% Material parameters are used in the lighting equation that is optionally applied to each
%% vertex. The equation is discussed in the {@link gl:lightModelf/2} reference page. The parameters
%% that can be specified using ``gl:material'', and their interpretations by the lighting
%% equation, are as follows:
%%
%% `?GL_AMBIENT': `Params' contains four integer or floating-point values that
%% specify the ambient RGBA reflectance of the material. Integer values are mapped linearly
%% such that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial ambient reflectance for both front- and back-facing materials
%% is (0.2, 0.2, 0.2, 1.0).
%%
%% `?GL_DIFFUSE': `Params' contains four integer or floating-point values that
%% specify the diffuse RGBA reflectance of the material. Integer values are mapped linearly
%% such that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial diffuse reflectance for both front- and back-facing materials
%% is (0.8, 0.8, 0.8, 1.0).
%%
%% `?GL_SPECULAR': `Params' contains four integer or floating-point values that
%% specify the specular RGBA reflectance of the material. Integer values are mapped linearly
%% such that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial specular reflectance for both front- and back-facing materials
%% is (0, 0, 0, 1).
%%
%% `?GL_EMISSION': `Params' contains four integer or floating-point values that
%% specify the RGBA emitted light intensity of the material. Integer values are mapped linearly
%% such that the most positive representable value maps to 1.0, and the most negative representable
%% value maps to -1.0. Floating-point values are mapped directly. Neither integer nor floating-point
%% values are clamped. The initial emission intensity for both front- and back-facing materials
%% is (0, 0, 0, 1).
%%
%% `?GL_SHININESS': `Params' is a single integer or floating-point value that specifies
%% the RGBA specular exponent of the material. Integer and floating-point values are mapped
%% directly. Only values in the range [0 128] are accepted. The initial specular exponent for both
%% front- and back-facing materials is 0.
%%
%% `?GL_AMBIENT_AND_DIFFUSE': Equivalent to calling ``gl:material'' twice with the
%% same parameter values, once with `?GL_AMBIENT' and once with `?GL_DIFFUSE'.
%%
%% `?GL_COLOR_INDEXES': `Params' contains three integer or floating-point values
%% specifying the color indices for ambient, diffuse, and specular lighting. These three
%% values, and `?GL_SHININESS', are the only material values used by the color index
%% mode lighting equation. Refer to the {@link gl:lightModelf/2} reference page for a discussion
%% of color index lighting.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMaterial.xml">external</a> documentation.
-spec materialf(Face, Pname, Param) -> 'ok' when Face :: enum(),Pname :: enum(),Param :: float().
materialf(Face,Pname,Param) ->
cast(5215, <<Face:?GLenum,Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link materialf/3}
-spec materiali(Face, Pname, Param) -> 'ok' when Face :: enum(),Pname :: enum(),Param :: integer().
materiali(Face,Pname,Param) ->
cast(5216, <<Face:?GLenum,Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link materialf/3}
-spec materialfv(Face, Pname, Params) -> 'ok' when Face :: enum(),Pname :: enum(),Params :: tuple().
materialfv(Face,Pname,Params) ->
cast(5217, <<Face:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link materialf/3}
-spec materialiv(Face, Pname, Params) -> 'ok' when Face :: enum(),Pname :: enum(),Params :: tuple().
materialiv(Face,Pname,Params) ->
cast(5218, <<Face:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc Return material parameters
%%
%% ``gl:getMaterial'' returns in `Params' the value or values of parameter `Pname'
%% of material `Face' . Six parameters are defined:
%%
%% `?GL_AMBIENT': `Params' returns four integer or floating-point values representing
%% the ambient reflectance of the material. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value is (0.2, 0.2, 0.2, 1.0)
%%
%% `?GL_DIFFUSE': `Params' returns four integer or floating-point values representing
%% the diffuse reflectance of the material. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value is (0.8, 0.8, 0.8, 1.0).
%%
%% `?GL_SPECULAR': `Params' returns four integer or floating-point values representing
%% the specular reflectance of the material. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value is (0, 0, 0, 1).
%%
%% `?GL_EMISSION': `Params' returns four integer or floating-point values representing
%% the emitted light intensity of the material. Integer values, when requested, are linearly
%% mapped from the internal floating-point representation such that 1.0 maps to the most
%% positive representable integer value, and -1.0 maps to the most negative representable
%% integer value. If the internal value is outside the range [-1 1], the corresponding integer
%% return value is undefined. The initial value is (0, 0, 0, 1).
%%
%% `?GL_SHININESS': `Params' returns one integer or floating-point value representing
%% the specular exponent of the material. Integer values, when requested, are computed by
%% rounding the internal floating-point value to the nearest integer value. The initial value
%% is 0.
%%
%% `?GL_COLOR_INDEXES': `Params' returns three integer or floating-point values
%% representing the ambient, diffuse, and specular indices of the material. These indices
%% are used only for color index lighting. (All the other parameters are used only for RGBA
%% lighting.) Integer values, when requested, are computed by rounding the internal floating-point
%% values to the nearest integer values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetMaterial.xml">external</a> documentation.
-spec getMaterialfv(Face, Pname) -> {float(),float(),float(),float()} when Face :: enum(),Pname :: enum().
getMaterialfv(Face,Pname) ->
call(5219, <<Face:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getMaterialfv/2}
-spec getMaterialiv(Face, Pname) -> {integer(),integer(),integer(),integer()} when Face :: enum(),Pname :: enum().
getMaterialiv(Face,Pname) ->
call(5220, <<Face:?GLenum,Pname:?GLenum>>).
%% @doc Cause a material color to track the current color
%%
%% ``gl:colorMaterial'' specifies which material parameters track the current color. When `?GL_COLOR_MATERIAL'
%% is enabled, the material parameter or parameters specified by `Mode' , of the material
%% or materials specified by `Face' , track the current color at all times.
%%
%% To enable and disable `?GL_COLOR_MATERIAL', call {@link gl:enable/1} and {@link gl:enable/1}
%% with argument `?GL_COLOR_MATERIAL'. `?GL_COLOR_MATERIAL' is initially disabled.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorMaterial.xml">external</a> documentation.
-spec colorMaterial(Face, Mode) -> 'ok' when Face :: enum(),Mode :: enum().
colorMaterial(Face,Mode) ->
cast(5221, <<Face:?GLenum,Mode:?GLenum>>).
%% @doc Specify the pixel zoom factors
%%
%% ``gl:pixelZoom'' specifies values for the x and y zoom factors. During the execution
%% of {@link gl:drawPixels/5} or {@link gl:copyPixels/5} , if ( xr, yr) is the current raster
%% position, and a given element is in the mth row and nth column of the pixel rectangle,
%% then pixels whose centers are in the rectangle with corners at
%%
%% ( xr+n. xfactor, yr+m. yfactor)
%%
%% ( xr+(n+1). xfactor, yr+(m+1). yfactor)
%%
%% are candidates for replacement. Any pixel whose center lies on the bottom or left edge
%% of this rectangular region is also modified.
%%
%% Pixel zoom factors are not limited to positive values. Negative zoom factors reflect
%% the resulting image about the current raster position.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPixelZoom.xml">external</a> documentation.
-spec pixelZoom(Xfactor, Yfactor) -> 'ok' when Xfactor :: float(),Yfactor :: float().
pixelZoom(Xfactor,Yfactor) ->
cast(5222, <<Xfactor:?GLfloat,Yfactor:?GLfloat>>).
%% @doc Set pixel storage modes
%%
%% ``gl:pixelStore'' sets pixel storage modes that affect the operation of subsequent {@link gl:readPixels/7}
%% as well as the unpacking of texture patterns (see {@link gl:texImage1D/8} , {@link gl:texImage2D/9}
%% , {@link gl:texImage3D/10} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7}
%% ), {@link gl:compressedTexImage1D/7} , {@link gl:compressedTexImage2D/8} , {@link gl:compressedTexImage3D/9}
%% , {@link gl:compressedTexSubImage1D/7} , {@link gl:compressedTexSubImage2D/9} or {@link gl:compressedTexSubImage1D/7}
%% .
%%
%% `Pname' is a symbolic constant indicating the parameter to be set, and `Param'
%% is the new value. Six of the twelve storage parameters affect how pixel data is returned
%% to client memory. They are as follows:
%%
%% `?GL_PACK_SWAP_BYTES': If true, byte ordering for multibyte color components, depth
%% components, or stencil indices is reversed. That is, if a four-byte component consists
%% of bytes b 0, b 1, b 2, b 3, it is stored in memory as b 3, b 2, b 1, b 0 if `?GL_PACK_SWAP_BYTES'
%% is true. `?GL_PACK_SWAP_BYTES' has no effect on the memory order of components within
%% a pixel, only on the order of bytes within components or indices. For example, the three
%% components of a `?GL_RGB' format pixel are always stored with red first, green second,
%% and blue third, regardless of the value of `?GL_PACK_SWAP_BYTES'.
%%
%% `?GL_PACK_LSB_FIRST': If true, bits are ordered within a byte from least significant
%% to most significant; otherwise, the first bit in each byte is the most significant one.
%%
%% `?GL_PACK_ROW_LENGTH': If greater than 0, `?GL_PACK_ROW_LENGTH' defines the
%% number of pixels in a row. If the first pixel of a row is placed at location p in memory,
%% then the location of the first pixel of the next row is obtained by skipping
%%
%% k={n l(a/s) |(s n l)/a| s>= a s< a)
%%
%% components or indices, where n is the number of components or indices in a pixel, l
%% is the number of pixels in a row (`?GL_PACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
%% per pixel: first red, then green, and finally blue.
%%
%% `?GL_PACK_IMAGE_HEIGHT': If greater than 0, `?GL_PACK_IMAGE_HEIGHT' defines
%% the number of pixels in an image three-dimensional texture volume, where ``image'' is
%% defined by all pixels sharing the same third dimension index. If the first pixel of a
%% row is placed at location p in memory, then the location of the first pixel of the next
%% row is obtained by skipping
%%
%% k={n l h(a/s) |(s n l h)/a| s>= a s< a)
%%
%% components or indices, where n is the number of components or indices in a pixel, l
%% is the number of pixels in a row (`?GL_PACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to {@link gl:texImage3D/10} otherwise), h is the number of rows in
%% a pixel image (`?GL_PACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to the {@link gl:texImage3D/10} routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if
%% a=s).
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
%% per pixel: first red, then green, and finally blue.
%%
%% `?GL_PACK_SKIP_PIXELS', `?GL_PACK_SKIP_ROWS', and `?GL_PACK_SKIP_IMAGES'
%%
%% These values are provided as a convenience to the programmer; they provide no functionality
%% that cannot be duplicated simply by incrementing the pointer passed to {@link gl:readPixels/7}
%% . Setting `?GL_PACK_SKIP_PIXELS' to i is equivalent to incrementing the pointer
%% by i n components or indices, where n is the number of components or indices in each
%% pixel. Setting `?GL_PACK_SKIP_ROWS' to j is equivalent to incrementing the pointer
%% by j m components or indices, where m is the number of components or indices per
%% row, as just computed in the `?GL_PACK_ROW_LENGTH' section. Setting `?GL_PACK_SKIP_IMAGES'
%% to k is equivalent to incrementing the pointer by k p, where p is the number of
%% components or indices per image, as computed in the `?GL_PACK_IMAGE_HEIGHT' section.
%%
%%
%% `?GL_PACK_ALIGNMENT': Specifies the alignment requirements for the start of each
%% pixel row in memory. The allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered
%% bytes), 4 (word-alignment), and 8 (rows start on double-word boundaries).
%%
%% The other six of the twelve storage parameters affect how pixel data is read from client
%% memory. These values are significant for {@link gl:texImage1D/8} , {@link gl:texImage2D/9} , {@link gl:texImage3D/10}
%% , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7} , and {@link gl:texSubImage1D/7}
%%
%% They are as follows:
%%
%% `?GL_UNPACK_SWAP_BYTES': If true, byte ordering for multibyte color components,
%% depth components, or stencil indices is reversed. That is, if a four-byte component consists
%% of bytes b 0, b 1, b 2, b 3, it is taken from memory as b 3, b 2, b 1, b 0 if `?GL_UNPACK_SWAP_BYTES'
%% is true. `?GL_UNPACK_SWAP_BYTES' has no effect on the memory order of components
%% within a pixel, only on the order of bytes within components or indices. For example,
%% the three components of a `?GL_RGB' format pixel are always stored with red first,
%% green second, and blue third, regardless of the value of `?GL_UNPACK_SWAP_BYTES'.
%%
%% `?GL_UNPACK_LSB_FIRST': If true, bits are ordered within a byte from least significant
%% to most significant; otherwise, the first bit in each byte is the most significant one.
%%
%% `?GL_UNPACK_ROW_LENGTH': If greater than 0, `?GL_UNPACK_ROW_LENGTH' defines
%% the number of pixels in a row. If the first pixel of a row is placed at location p in
%% memory, then the location of the first pixel of the next row is obtained by skipping
%%
%% k={n l(a/s) |(s n l)/a| s>= a s< a)
%%
%% components or indices, where n is the number of components or indices in a pixel, l
%% is the number of pixels in a row (`?GL_UNPACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_UNPACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
%% per pixel: first red, then green, and finally blue.
%%
%% `?GL_UNPACK_IMAGE_HEIGHT': If greater than 0, `?GL_UNPACK_IMAGE_HEIGHT' defines
%% the number of pixels in an image of a three-dimensional texture volume. Where ``image''
%% is defined by all pixel sharing the same third dimension index. If the first pixel of
%% a row is placed at location p in memory, then the location of the first pixel of the
%% next row is obtained by skipping
%%
%% k={n l h(a/s) |(s n l h)/a| s>= a s< a)
%%
%% components or indices, where n is the number of components or indices in a pixel, l
%% is the number of pixels in a row (`?GL_UNPACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to {@link gl:texImage3D/10} otherwise), h is the number of rows in
%% an image (`?GL_UNPACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to {@link gl:texImage3D/10} otherwise), a is the value of `?GL_UNPACK_ALIGNMENT',
%% and s is the size, in bytes, of a single component (if a< s, then it is as if a=s).
%%
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
%% per pixel: first red, then green, and finally blue.
%%
%% `?GL_UNPACK_SKIP_PIXELS' and `?GL_UNPACK_SKIP_ROWS'
%%
%% These values are provided as a convenience to the programmer; they provide no functionality
%% that cannot be duplicated by incrementing the pointer passed to {@link gl:texImage1D/8} , {@link gl:texImage2D/9}
%% , {@link gl:texSubImage1D/7} or {@link gl:texSubImage1D/7} . Setting `?GL_UNPACK_SKIP_PIXELS'
%% to i is equivalent to incrementing the pointer by i n components or indices, where
%% n is the number of components or indices in each pixel. Setting `?GL_UNPACK_SKIP_ROWS'
%% to j is equivalent to incrementing the pointer by j k components or indices, where
%% k is the number of components or indices per row, as just computed in the `?GL_UNPACK_ROW_LENGTH'
%% section.
%%
%% `?GL_UNPACK_ALIGNMENT': Specifies the alignment requirements for the start of each
%% pixel row in memory. The allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered
%% bytes), 4 (word-alignment), and 8 (rows start on double-word boundaries).
%%
%% The following table gives the type, initial value, and range of valid values for each
%% storage parameter that can be set with ``gl:pixelStore''.
%%
%% <table><tbody><tr><td> `Pname' </td><td>` Type '</td><td>` Initial Value '</td>
%% <td>` Valid Range '</td></tr></tbody><tbody><tr><td>`?GL_PACK_SWAP_BYTES'</td><td>
%% boolean </td><td> false </td><td> true or false </td></tr><tr><td>`?GL_PACK_LSB_FIRST'
%% </td><td> boolean </td><td> false </td><td> true or false </td></tr><tr><td>`?GL_PACK_ROW_LENGTH'
%% </td><td> integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_PACK_IMAGE_HEIGHT'</td>
%% <td> integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_PACK_SKIP_ROWS'</td><td>
%% integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_PACK_SKIP_PIXELS'</td><td> integer
%% </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_PACK_SKIP_IMAGES'</td><td> integer </td><td>
%% 0 </td><td>[0)</td></tr><tr><td>`?GL_PACK_ALIGNMENT'</td><td> integer </td><td> 4 </td>
%% <td> 1, 2, 4, or 8 </td></tr><tr><td>`?GL_UNPACK_SWAP_BYTES'</td><td> boolean </td><td>
%% false </td><td> true or false </td></tr><tr><td>`?GL_UNPACK_LSB_FIRST'</td><td>
%% boolean </td><td> false </td><td> true or false </td></tr><tr><td>`?GL_UNPACK_ROW_LENGTH'
%% </td><td> integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_UNPACK_IMAGE_HEIGHT'</td>
%% <td> integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_UNPACK_SKIP_ROWS'</td><td>
%% integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_UNPACK_SKIP_PIXELS'</td><td>
%% integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_UNPACK_SKIP_IMAGES'</td><td>
%% integer </td><td> 0 </td><td>[0)</td></tr><tr><td>`?GL_UNPACK_ALIGNMENT'</td><td> integer
%% </td><td> 4 </td><td> 1, 2, 4, or 8 </td></tr></tbody></table>
%%
%% ``gl:pixelStoref'' can be used to set any pixel store parameter. If the parameter type
%% is boolean, then if `Param' is 0, the parameter is false; otherwise it is set to
%% true. If `Pname' is a integer type parameter, `Param' is rounded to the nearest
%% integer.
%%
%% Likewise, ``gl:pixelStorei'' can also be used to set any of the pixel store parameters.
%% Boolean parameters are set to false if `Param' is 0 and true otherwise.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPixelStore.xml">external</a> documentation.
-spec pixelStoref(Pname, Param) -> 'ok' when Pname :: enum(),Param :: float().
pixelStoref(Pname,Param) ->
cast(5223, <<Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link pixelStoref/2}
-spec pixelStorei(Pname, Param) -> 'ok' when Pname :: enum(),Param :: integer().
pixelStorei(Pname,Param) ->
cast(5224, <<Pname:?GLenum,Param:?GLint>>).
%% @doc Set pixel transfer modes
%%
%% ``gl:pixelTransfer'' sets pixel transfer modes that affect the operation of subsequent {@link gl:copyPixels/5}
%% , {@link gl:copyTexImage1D/7} , {@link gl:copyTexImage2D/8} , {@link gl:copyTexSubImage1D/6} , {@link gl:copyTexSubImage2D/8}
%% , {@link gl:copyTexSubImage3D/9} , {@link gl:drawPixels/5} , {@link gl:readPixels/7} , {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7}
%% , and {@link gl:texSubImage1D/7} commands. Additionally, if the ARB_imaging subset is supported,
%% the routines {@link gl:colorTable/6} , {@link gl:colorSubTable/6} , {@link gl:convolutionFilter1D/6}
%% , {@link gl:convolutionFilter2D/7} , {@link gl:histogram/4} , {@link gl:minmax/3} , and {@link gl:separableFilter2D/8}
%% are also affected. The algorithms that are specified by pixel transfer modes operate
%% on pixels after they are read from the frame buffer ( {@link gl:copyPixels/5} {@link gl:copyTexImage1D/7}
%% , {@link gl:copyTexImage2D/8} , {@link gl:copyTexSubImage1D/6} , {@link gl:copyTexSubImage2D/8} ,
%% {@link gl:copyTexSubImage3D/9} , and {@link gl:readPixels/7} ), or unpacked from client memory
%% ( {@link gl:drawPixels/5} , {@link gl:texImage1D/8} , {@link gl:texImage2D/9} , {@link gl:texImage3D/10}
%% , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7} , and {@link gl:texSubImage1D/7} ).
%% Pixel transfer operations happen in the same order, and in the same manner, regardless
%% of the command that resulted in the pixel operation. Pixel storage modes (see {@link gl:pixelStoref/2}
%% ) control the unpacking of pixels being read from client memory and the packing of pixels
%% being written back into client memory.
%%
%% Pixel transfer operations handle four fundamental pixel types: `color', `color index'
%% , `depth', and `stencil'. `Color' pixels consist of four floating-point
%% values with unspecified mantissa and exponent sizes, scaled such that 0 represents zero
%% intensity and 1 represents full intensity. `Color indices' comprise a single fixed-point
%% value, with unspecified precision to the right of the binary point. `Depth' pixels
%% comprise a single floating-point value, with unspecified mantissa and exponent sizes,
%% scaled such that 0.0 represents the minimum depth buffer value, and 1.0 represents the
%% maximum depth buffer value. Finally, `stencil' pixels comprise a single fixed-point
%% value, with unspecified precision to the right of the binary point.
%%
%% The pixel transfer operations performed on the four basic pixel types are as follows:
%%
%% `Color': Each of the four color components is multiplied by a scale factor, then
%% added to a bias factor. That is, the red component is multiplied by `?GL_RED_SCALE',
%% then added to `?GL_RED_BIAS'; the green component is multiplied by `?GL_GREEN_SCALE'
%% , then added to `?GL_GREEN_BIAS'; the blue component is multiplied by `?GL_BLUE_SCALE'
%% , then added to `?GL_BLUE_BIAS'; and the alpha component is multiplied by `?GL_ALPHA_SCALE'
%% , then added to `?GL_ALPHA_BIAS'. After all four color components are scaled and
%% biased, each is clamped to the range [0 1]. All color, scale, and bias values are specified
%% with ``gl:pixelTransfer''.
%%
%% If `?GL_MAP_COLOR' is true, each color component is scaled by the size of the corresponding
%% color-to-color map, then replaced by the contents of that map indexed by the scaled component.
%% That is, the red component is scaled by `?GL_PIXEL_MAP_R_TO_R_SIZE', then replaced
%% by the contents of `?GL_PIXEL_MAP_R_TO_R' indexed by itself. The green component
%% is scaled by `?GL_PIXEL_MAP_G_TO_G_SIZE', then replaced by the contents of `?GL_PIXEL_MAP_G_TO_G'
%% indexed by itself. The blue component is scaled by `?GL_PIXEL_MAP_B_TO_B_SIZE',
%% then replaced by the contents of `?GL_PIXEL_MAP_B_TO_B' indexed by itself. And the
%% alpha component is scaled by `?GL_PIXEL_MAP_A_TO_A_SIZE', then replaced by the contents
%% of `?GL_PIXEL_MAP_A_TO_A' indexed by itself. All components taken from the maps are
%% then clamped to the range [0 1]. `?GL_MAP_COLOR' is specified with ``gl:pixelTransfer''.
%% The contents of the various maps are specified with {@link gl:pixelMapfv/3} .
%%
%% If the ARB_imaging extension is supported, each of the four color components may be scaled
%% and biased after transformation by the color matrix. That is, the red component is multiplied
%% by `?GL_POST_COLOR_MATRIX_RED_SCALE', then added to `?GL_POST_COLOR_MATRIX_RED_BIAS'
%% ; the green component is multiplied by `?GL_POST_COLOR_MATRIX_GREEN_SCALE', then
%% added to `?GL_POST_COLOR_MATRIX_GREEN_BIAS'; the blue component is multiplied by `?GL_POST_COLOR_MATRIX_BLUE_SCALE'
%% , then added to `?GL_POST_COLOR_MATRIX_BLUE_BIAS'; and the alpha component is multiplied
%% by `?GL_POST_COLOR_MATRIX_ALPHA_SCALE', then added to `?GL_POST_COLOR_MATRIX_ALPHA_BIAS'
%% . After all four color components are scaled and biased, each is clamped to the range [0
%% 1].
%%
%% Similarly, if the ARB_imaging extension is supported, each of the four color components
%% may be scaled and biased after processing by the enabled convolution filter. That is,
%% the red component is multiplied by `?GL_POST_CONVOLUTION_RED_SCALE', then added to `?GL_POST_CONVOLUTION_RED_BIAS'
%% ; the green component is multiplied by `?GL_POST_CONVOLUTION_GREEN_SCALE', then added
%% to `?GL_POST_CONVOLUTION_GREEN_BIAS'; the blue component is multiplied by `?GL_POST_CONVOLUTION_BLUE_SCALE'
%% , then added to `?GL_POST_CONVOLUTION_BLUE_BIAS'; and the alpha component is multiplied
%% by `?GL_POST_CONVOLUTION_ALPHA_SCALE', then added to `?GL_POST_CONVOLUTION_ALPHA_BIAS'
%% . After all four color components are scaled and biased, each is clamped to the range [0
%% 1].
%%
%% `Color index': Each color index is shifted left by `?GL_INDEX_SHIFT' bits;
%% any bits beyond the number of fraction bits carried by the fixed-point index are filled
%% with zeros. If `?GL_INDEX_SHIFT' is negative, the shift is to the right, again zero
%% filled. Then `?GL_INDEX_OFFSET' is added to the index. `?GL_INDEX_SHIFT' and `?GL_INDEX_OFFSET'
%% are specified with ``gl:pixelTransfer''.
%%
%% From this point, operation diverges depending on the required format of the resulting
%% pixels. If the resulting pixels are to be written to a color index buffer, or if they
%% are being read back to client memory in `?GL_COLOR_INDEX' format, the pixels continue
%% to be treated as indices. If `?GL_MAP_COLOR' is true, each index is masked by 2 n-1
%% , where n is `?GL_PIXEL_MAP_I_TO_I_SIZE', then replaced by the contents of `?GL_PIXEL_MAP_I_TO_I'
%% indexed by the masked value. `?GL_MAP_COLOR' is specified with ``gl:pixelTransfer''
%% . The contents of the index map is specified with {@link gl:pixelMapfv/3} .
%%
%% If the resulting pixels are to be written to an RGBA color buffer, or if they are read
%% back to client memory in a format other than `?GL_COLOR_INDEX', the pixels are converted
%% from indices to colors by referencing the four maps `?GL_PIXEL_MAP_I_TO_R', `?GL_PIXEL_MAP_I_TO_G'
%% , `?GL_PIXEL_MAP_I_TO_B', and `?GL_PIXEL_MAP_I_TO_A'. Before being dereferenced,
%% the index is masked by 2 n-1, where n is `?GL_PIXEL_MAP_I_TO_R_SIZE' for the
%% red map, `?GL_PIXEL_MAP_I_TO_G_SIZE' for the green map, `?GL_PIXEL_MAP_I_TO_B_SIZE'
%% for the blue map, and `?GL_PIXEL_MAP_I_TO_A_SIZE' for the alpha map. All components
%% taken from the maps are then clamped to the range [0 1]. The contents of the four maps is
%% specified with {@link gl:pixelMapfv/3} .
%%
%% `Depth': Each depth value is multiplied by `?GL_DEPTH_SCALE', added to `?GL_DEPTH_BIAS'
%% , then clamped to the range [0 1].
%%
%% `Stencil': Each index is shifted `?GL_INDEX_SHIFT' bits just as a color index
%% is, then added to `?GL_INDEX_OFFSET'. If `?GL_MAP_STENCIL' is true, each index
%% is masked by 2 n-1, where n is `?GL_PIXEL_MAP_S_TO_S_SIZE', then replaced by
%% the contents of `?GL_PIXEL_MAP_S_TO_S' indexed by the masked value.
%%
%% The following table gives the type, initial value, and range of valid values for each
%% of the pixel transfer parameters that are set with ``gl:pixelTransfer''.
%%
%% <table><tbody><tr><td> `Pname' </td><td>` Type '</td><td>` Initial Value '</td>
%% <td>` Valid Range '</td></tr></tbody><tbody><tr><td>`?GL_MAP_COLOR'</td><td>
%% boolean </td><td> false </td><td> true/false </td></tr><tr><td>`?GL_MAP_STENCIL'</td>
%% <td> boolean </td><td> false </td><td> true/false </td></tr><tr><td>`?GL_INDEX_SHIFT'</td>
%% <td> integer </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_INDEX_OFFSET'</td><td> integer
%% </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_RED_SCALE'</td><td> float </td><td> 1 </td>
%% <td>(-)</td></tr><tr><td>`?GL_GREEN_SCALE'</td><td> float </td><td> 1 </td><td>(-)</td></tr>
%% <tr><td>`?GL_BLUE_SCALE'</td><td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_ALPHA_SCALE'
%% </td><td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_DEPTH_SCALE'</td><td>
%% float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_RED_BIAS'</td><td> float </td><td>
%% 0 </td><td>(-)</td></tr><tr><td>`?GL_GREEN_BIAS'</td><td> float </td><td> 0 </td><td>(-)</td>
%% </tr><tr><td>`?GL_BLUE_BIAS'</td><td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_ALPHA_BIAS'
%% </td><td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_DEPTH_BIAS'</td><td>
%% float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_RED_SCALE'</td><td>
%% float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_GREEN_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_BLUE_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_ALPHA_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_RED_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_GREEN_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_BLUE_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_COLOR_MATRIX_ALPHA_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_RED_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_GREEN_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_BLUE_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_ALPHA_SCALE'</td>
%% <td> float </td><td> 1 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_RED_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_GREEN_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_BLUE_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr><tr><td>`?GL_POST_CONVOLUTION_ALPHA_BIAS'</td>
%% <td> float </td><td> 0 </td><td>(-)</td></tr></tbody></table>
%%
%% ``gl:pixelTransferf'' can be used to set any pixel transfer parameter. If the parameter
%% type is boolean, 0 implies false and any other value implies true. If `Pname' is
%% an integer parameter, `Param' is rounded to the nearest integer.
%%
%% Likewise, ``gl:pixelTransferi'' can be used to set any of the pixel transfer parameters.
%% Boolean parameters are set to false if `Param' is 0 and to true otherwise. `Param'
%% is converted to floating point before being assigned to real-valued parameters.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPixelTransfer.xml">external</a> documentation.
-spec pixelTransferf(Pname, Param) -> 'ok' when Pname :: enum(),Param :: float().
pixelTransferf(Pname,Param) ->
cast(5225, <<Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link pixelTransferf/2}
-spec pixelTransferi(Pname, Param) -> 'ok' when Pname :: enum(),Param :: integer().
pixelTransferi(Pname,Param) ->
cast(5226, <<Pname:?GLenum,Param:?GLint>>).
%% @doc Set up pixel transfer maps
%%
%% ``gl:pixelMap'' sets up translation tables, or `maps', used by {@link gl:copyPixels/5}
%% , {@link gl:copyTexImage1D/7} , {@link gl:copyTexImage2D/8} , {@link gl:copyTexSubImage1D/6} , {@link gl:copyTexSubImage2D/8}
%% , {@link gl:copyTexSubImage3D/9} , {@link gl:drawPixels/5} , {@link gl:readPixels/7} , {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7}
%% , and {@link gl:texSubImage1D/7} . Additionally, if the ARB_imaging subset is supported,
%% the routines {@link gl:colorTable/6} , {@link gl:colorSubTable/6} , {@link gl:convolutionFilter1D/6}
%% , {@link gl:convolutionFilter2D/7} , {@link gl:histogram/4} , {@link gl:minmax/3} , and {@link gl:separableFilter2D/8}
%% . Use of these maps is described completely in the {@link gl:pixelTransferf/2} reference
%% page, and partly in the reference pages for the pixel and texture image commands. Only
%% the specification of the maps is described in this reference page.
%%
%% `Map' is a symbolic map name, indicating one of ten maps to set. `Mapsize' specifies
%% the number of entries in the map, and `Values' is a pointer to an array of `Mapsize'
%% map values.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a pixel transfer map is specified, `Values' is
%% treated as a byte offset into the buffer object's data store.
%%
%% The ten maps are as follows:
%%
%% `?GL_PIXEL_MAP_I_TO_I': Maps color indices to color indices.
%%
%% `?GL_PIXEL_MAP_S_TO_S': Maps stencil indices to stencil indices.
%%
%% `?GL_PIXEL_MAP_I_TO_R': Maps color indices to red components.
%%
%% `?GL_PIXEL_MAP_I_TO_G': Maps color indices to green components.
%%
%% `?GL_PIXEL_MAP_I_TO_B': Maps color indices to blue components.
%%
%% `?GL_PIXEL_MAP_I_TO_A': Maps color indices to alpha components.
%%
%% `?GL_PIXEL_MAP_R_TO_R': Maps red components to red components.
%%
%% `?GL_PIXEL_MAP_G_TO_G': Maps green components to green components.
%%
%% `?GL_PIXEL_MAP_B_TO_B': Maps blue components to blue components.
%%
%% `?GL_PIXEL_MAP_A_TO_A': Maps alpha components to alpha components.
%%
%% The entries in a map can be specified as single-precision floating-point numbers, unsigned
%% short integers, or unsigned int integers. Maps that store color component values (all
%% but `?GL_PIXEL_MAP_I_TO_I' and `?GL_PIXEL_MAP_S_TO_S') retain their values in
%% floating-point format, with unspecified mantissa and exponent sizes. Floating-point values
%% specified by ``gl:pixelMapfv'' are converted directly to the internal floating-point
%% format of these maps, then clamped to the range [0,1]. Unsigned integer values specified
%% by ``gl:pixelMapusv'' and ``gl:pixelMapuiv'' are converted linearly such that the
%% largest representable integer maps to 1.0, and 0 maps to 0.0.
%%
%% Maps that store indices, `?GL_PIXEL_MAP_I_TO_I' and `?GL_PIXEL_MAP_S_TO_S',
%% retain their values in fixed-point format, with an unspecified number of bits to the right
%% of the binary point. Floating-point values specified by ``gl:pixelMapfv'' are converted
%% directly to the internal fixed-point format of these maps. Unsigned integer values specified
%% by ``gl:pixelMapusv'' and ``gl:pixelMapuiv'' specify integer values, with all 0's
%% to the right of the binary point.
%%
%% The following table shows the initial sizes and values for each of the maps. Maps that
%% are indexed by either color or stencil indices must have `Mapsize' = 2 n for some
%% n or the results are undefined. The maximum allowable size for each map depends on the
%% implementation and can be determined by calling {@link gl:getBooleanv/1} with argument `?GL_MAX_PIXEL_MAP_TABLE'
%% . The single maximum applies to all maps; it is at least 32. <table><tbody><tr><td> `Map'
%% </td><td>` Lookup Index '</td><td>` Lookup Value '</td><td>` Initial Size '</td>
%% <td>` Initial Value '</td></tr></tbody><tbody><tr><td>`?GL_PIXEL_MAP_I_TO_I'</td>
%% <td> color index </td><td> color index </td><td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_S_TO_S'
%% </td><td> stencil index </td><td> stencil index </td><td> 1 </td><td> 0 </td></tr><tr><td>
%% `?GL_PIXEL_MAP_I_TO_R'</td><td> color index </td><td> R </td><td> 1 </td><td> 0 </td>
%% </tr><tr><td>`?GL_PIXEL_MAP_I_TO_G'</td><td> color index </td><td> G </td><td> 1 </td>
%% <td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_I_TO_B'</td><td> color index </td><td> B </td>
%% <td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_I_TO_A'</td><td> color index </td>
%% <td> A </td><td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_R_TO_R'</td><td> R </td>
%% <td> R </td><td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_G_TO_G'</td><td> G </td>
%% <td> G </td><td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_B_TO_B'</td><td> B </td>
%% <td> B </td><td> 1 </td><td> 0 </td></tr><tr><td>`?GL_PIXEL_MAP_A_TO_A'</td><td> A </td>
%% <td> A </td><td> 1 </td><td> 0 </td></tr></tbody></table>
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPixelMap.xml">external</a> documentation.
-spec pixelMapfv(Map, Mapsize, Values) -> 'ok' when Map :: enum(),Mapsize :: integer(),Values :: binary().
pixelMapfv(Map,Mapsize,Values) ->
send_bin(Values),
cast(5227, <<Map:?GLenum,Mapsize:?GLsizei>>).
%% @doc
%% See {@link pixelMapfv/3}
-spec pixelMapuiv(Map, Mapsize, Values) -> 'ok' when Map :: enum(),Mapsize :: integer(),Values :: binary().
pixelMapuiv(Map,Mapsize,Values) ->
send_bin(Values),
cast(5228, <<Map:?GLenum,Mapsize:?GLsizei>>).
%% @doc
%% See {@link pixelMapfv/3}
-spec pixelMapusv(Map, Mapsize, Values) -> 'ok' when Map :: enum(),Mapsize :: integer(),Values :: binary().
pixelMapusv(Map,Mapsize,Values) ->
send_bin(Values),
cast(5229, <<Map:?GLenum,Mapsize:?GLsizei>>).
%% @doc Return the specified pixel map
%%
%% See the {@link gl:pixelMapfv/3} reference page for a description of the acceptable values
%% for the `Map' parameter. ``gl:getPixelMap'' returns in `Data' the contents
%% of the pixel map specified in `Map' . Pixel maps are used during the execution of {@link gl:readPixels/7}
%% , {@link gl:drawPixels/5} , {@link gl:copyPixels/5} , {@link gl:texImage1D/8} , {@link gl:texImage2D/9}
%% , {@link gl:texImage3D/10} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7}
%% , {@link gl:copyTexImage1D/7} , {@link gl:copyTexImage2D/8} , {@link gl:copyTexSubImage1D/6} , {@link gl:copyTexSubImage2D/8}
%% , and {@link gl:copyTexSubImage3D/9} . to map color indices, stencil indices, color components,
%% and depth components to other values.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a pixel map is requested, `Data' is treated as
%% a byte offset into the buffer object's data store.
%%
%% Unsigned integer values, if requested, are linearly mapped from the internal fixed or
%% floating-point representation such that 1.0 maps to the largest representable integer
%% value, and 0.0 maps to 0. Return unsigned integer values are undefined if the map value
%% was not in the range [0,1].
%%
%% To determine the required size of `Map' , call {@link gl:getBooleanv/1} with the appropriate
%% symbolic constant.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetPixelMap.xml">external</a> documentation.
-spec getPixelMapfv(Map, Values) -> 'ok' when Map :: enum(),Values :: mem().
getPixelMapfv(Map,Values) ->
send_bin(Values),
call(5230, <<Map:?GLenum>>).
%% @doc
%% See {@link getPixelMapfv/2}
-spec getPixelMapuiv(Map, Values) -> 'ok' when Map :: enum(),Values :: mem().
getPixelMapuiv(Map,Values) ->
send_bin(Values),
call(5231, <<Map:?GLenum>>).
%% @doc
%% See {@link getPixelMapfv/2}
-spec getPixelMapusv(Map, Values) -> 'ok' when Map :: enum(),Values :: mem().
getPixelMapusv(Map,Values) ->
send_bin(Values),
call(5232, <<Map:?GLenum>>).
%% @doc Draw a bitmap
%%
%% A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current
%% raster position, and frame buffer pixels corresponding to 1's in the bitmap are written
%% using the current raster color or index. Frame buffer pixels corresponding to 0's in the
%% bitmap are not modified.
%%
%% ``gl:bitmap'' takes seven arguments. The first pair specifies the width and height of
%% the bitmap image. The second pair specifies the location of the bitmap origin relative
%% to the lower left corner of the bitmap image. The third pair of arguments specifies `x'
%% and `y' offsets to be added to the current raster position after the bitmap has
%% been drawn. The final argument is a pointer to the bitmap image itself.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a bitmap image is specified, `Bitmap' is treated
%% as a byte offset into the buffer object's data store.
%%
%% The bitmap image is interpreted like image data for the {@link gl:drawPixels/5} command,
%% with `Width' and `Height' corresponding to the width and height arguments of
%% that command, and with `type' set to `?GL_BITMAP' and `format' set to `?GL_COLOR_INDEX'
%% . Modes specified using {@link gl:pixelStoref/2} affect the interpretation of bitmap image
%% data; modes specified using {@link gl:pixelTransferf/2} do not.
%%
%% If the current raster position is invalid, ``gl:bitmap'' is ignored. Otherwise, the
%% lower left corner of the bitmap image is positioned at the window coordinates
%%
%% x w=|x r-x o|
%%
%% y w=|y r-y o|
%%
%% where (x r y r) is the raster position and (x o y o) is the bitmap origin. Fragments are then generated
%% for each pixel corresponding to a 1 (one) in the bitmap image. These fragments are generated
%% using the current raster `z' coordinate, color or color index, and current raster
%% texture coordinates. They are then treated just as if they had been generated by a point,
%% line, or polygon, including texture mapping, fogging, and all per-fragment operations
%% such as alpha and depth testing.
%%
%% After the bitmap has been drawn, the `x' and `y' coordinates of the current
%% raster position are offset by `Xmove' and `Ymove' . No change is made to the `z'
%% coordinate of the current raster position, or to the current raster color, texture coordinates,
%% or index.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBitmap.xml">external</a> documentation.
-spec bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap) -> 'ok' when Width :: integer(),Height :: integer(),Xorig :: float(),Yorig :: float(),Xmove :: float(),Ymove :: float(),Bitmap :: offset()|mem().
bitmap(Width,Height,Xorig,Yorig,Xmove,Ymove,Bitmap) when is_integer(Bitmap) ->
cast(5233, <<Width:?GLsizei,Height:?GLsizei,Xorig:?GLfloat,Yorig:?GLfloat,Xmove:?GLfloat,Ymove:?GLfloat,Bitmap:?GLuint>>);
bitmap(Width,Height,Xorig,Yorig,Xmove,Ymove,Bitmap) ->
send_bin(Bitmap),
cast(5234, <<Width:?GLsizei,Height:?GLsizei,Xorig:?GLfloat,Yorig:?GLfloat,Xmove:?GLfloat,Ymove:?GLfloat>>).
%% @doc Read a block of pixels from the frame buffer
%%
%% ``gl:readPixels'' returns pixel data from the frame buffer, starting with the pixel
%% whose lower left corner is at location ( `X' , `Y' ), into client memory starting
%% at location `Data' . Several parameters control the processing of the pixel data before
%% it is placed into client memory. These parameters are set with {@link gl:pixelStoref/2} .
%% This reference page describes the effects on ``gl:readPixels'' of most, but not all
%% of the parameters specified by these three commands.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a block of pixels is requested, `Data' is treated
%% as a byte offset into the buffer object's data store rather than a pointer to client memory.
%%
%%
%% ``gl:readPixels'' returns values from each pixel with lower left corner at (x+i y+j) for 0<=
%% i< width and 0<= j< height. This pixel is said to be the ith pixel in the
%% jth row. Pixels are returned in row order from the lowest to the highest row, left to
%% right in each row.
%%
%% `Format' specifies the format for the returned pixel values; accepted values are:
%%
%% `?GL_STENCIL_INDEX': Stencil values are read from the stencil buffer. Each index
%% is converted to fixed point, shifted left or right depending on the value and sign of `?GL_INDEX_SHIFT'
%% , and added to `?GL_INDEX_OFFSET'. If `?GL_MAP_STENCIL' is `?GL_TRUE',
%% indices are replaced by their mappings in the table `?GL_PIXEL_MAP_S_TO_S'.
%%
%% `?GL_DEPTH_COMPONENT': Depth values are read from the depth buffer. Each component
%% is converted to floating point such that the minimum depth value maps to 0 and the maximum
%% value maps to 1. Each component is then multiplied by `?GL_DEPTH_SCALE', added to `?GL_DEPTH_BIAS'
%% , and finally clamped to the range [0 1].
%%
%% `?GL_DEPTH_STENCIL': Values are taken from both the depth and stencil buffers. The `Type'
%% parameter must be `?GL_UNSIGNED_INT_24_8' or `?GL_FLOAT_32_UNSIGNED_INT_24_8_REV'
%% .
%%
%% `?GL_RED'
%%
%% `?GL_GREEN'
%%
%% `?GL_BLUE'
%%
%% `?GL_RGB'
%%
%% `?GL_BGR'
%%
%% `?GL_RGBA'
%%
%% `?GL_BGRA': Finally, the indices or components are converted to the proper format,
%% as specified by `Type' . If `Format' is `?GL_STENCIL_INDEX' and `Type'
%% is not `?GL_FLOAT', each index is masked with the mask value given in the following
%% table. If `Type' is `?GL_FLOAT', then each integer index is converted to single-precision
%% floating-point format.
%%
%% If `Format' is `?GL_RED', `?GL_GREEN', `?GL_BLUE', `?GL_RGB', `?GL_BGR'
%% , `?GL_RGBA', or `?GL_BGRA' and `Type' is not `?GL_FLOAT', each component
%% is multiplied by the multiplier shown in the following table. If type is `?GL_FLOAT',
%% then each component is passed as is (or converted to the client's single-precision floating-point
%% format if it is different from the one used by the GL).
%%
%% <table><tbody><tr><td> `Type' </td><td>` Index Mask '</td><td>` Component Conversion '
%% </td></tr></tbody><tbody><tr><td>`?GL_UNSIGNED_BYTE'</td><td> 2 8-1</td><td>(2 8-1) c</td></tr>
%% <tr><td>`?GL_BYTE'</td><td> 2 7-1</td><td>((2 8-1) c-1)/2</td></tr><tr><td>`?GL_UNSIGNED_SHORT'
%% </td><td> 2 16-1</td><td>(2 16-1) c</td></tr><tr><td>`?GL_SHORT'</td><td> 2 15-1</td><td>((2
%% 16-1)
%% c-1)/2</td>
%% </tr><tr><td>`?GL_UNSIGNED_INT'</td><td> 2 32-1</td><td>(2 32-1) c</td></tr><tr><td>`?GL_INT'
%% </td><td> 2 31-1</td><td>((2 32-1) c-1)/2</td></tr><tr><td>`?GL_HALF_FLOAT'</td><td> none </td><td>
%% c</td></tr><tr><td>`?GL_FLOAT'</td><td> none </td><td> c</td></tr><tr><td>`?GL_UNSIGNED_BYTE_3_3_2'
%% </td><td> 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_BYTE_2_3_3_REV'</td><td>
%% 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_6_5'</td><td> 2 N-1</td><td>
%% (2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_6_5_REV'</td><td> 2 N-1</td><td>(2 N-1) c</td></tr>
%% <tr><td>`?GL_UNSIGNED_SHORT_4_4_4_4'</td><td> 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_SHORT_4_4_4_4_REV'
%% </td><td> 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_5_5_1'</td><td> 2
%% N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_SHORT_1_5_5_5_REV'</td><td> 2 N-1</td>
%% <td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_INT_8_8_8_8'</td><td> 2 N-1</td><td>(2 N-1) c</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_8_8_8_8_REV'</td><td> 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_INT_10_10_10_2'
%% </td><td> 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_INT_2_10_10_10_REV'</td><td>
%% 2 N-1</td><td>(2 N-1) c</td></tr><tr><td>`?GL_UNSIGNED_INT_24_8'</td><td> 2 N-1</td><td>(2
%% N-1)
%% c</td></tr><tr><td>`?GL_UNSIGNED_INT_10F_11F_11F_REV'</td><td> -- </td><td> Special </td>
%% </tr><tr><td>`?GL_UNSIGNED_INT_5_9_9_9_REV'</td><td> -- </td><td> Special </td></tr><tr>
%% <td>`?GL_FLOAT_32_UNSIGNED_INT_24_8_REV'</td><td> none </td><td> c (Depth Only) </td>
%% </tr></tbody></table>
%%
%% Return values are placed in memory as follows. If `Format' is `?GL_STENCIL_INDEX'
%% , `?GL_DEPTH_COMPONENT', `?GL_RED', `?GL_GREEN', or `?GL_BLUE', a
%% single value is returned and the data for the ith pixel in the jth row is placed in
%% location (j) width+i. `?GL_RGB' and `?GL_BGR' return three values, `?GL_RGBA'
%% and `?GL_BGRA' return four values for each pixel, with all values corresponding
%% to a single pixel occupying contiguous space in `Data' . Storage parameters set by {@link gl:pixelStoref/2}
%% , such as `?GL_PACK_LSB_FIRST' and `?GL_PACK_SWAP_BYTES', affect the way that
%% data is written into memory. See {@link gl:pixelStoref/2} for a description.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glReadPixels.xml">external</a> documentation.
-spec readPixels(X, Y, Width, Height, Format, Type, Pixels) -> 'ok' when X :: integer(),Y :: integer(),Width :: integer(),Height :: integer(),Format :: enum(),Type :: enum(),Pixels :: mem().
readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
send_bin(Pixels),
call(5235, <<X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Write a block of pixels to the frame buffer
%%
%% ``gl:drawPixels'' reads pixel data from memory and writes it into the frame buffer relative
%% to the current raster position, provided that the raster position is valid. Use {@link gl:rasterPos2d/2}
%% or {@link gl:windowPos2d/2} to set the current raster position; use {@link gl:getBooleanv/1} with
%% argument `?GL_CURRENT_RASTER_POSITION_VALID' to determine if the specified raster
%% position is valid, and {@link gl:getBooleanv/1} with argument `?GL_CURRENT_RASTER_POSITION'
%% to query the raster position.
%%
%% Several parameters define the encoding of pixel data in memory and control the processing
%% of the pixel data before it is placed in the frame buffer. These parameters are set with
%% four commands: {@link gl:pixelStoref/2} , {@link gl:pixelTransferf/2} , {@link gl:pixelMapfv/3} ,
%% and {@link gl:pixelZoom/2} . This reference page describes the effects on ``gl:drawPixels''
%% of many, but not all, of the parameters specified by these four commands.
%%
%% Data is read from `Data' as a sequence of signed or unsigned bytes, signed or unsigned
%% shorts, signed or unsigned integers, or single-precision floating-point values, depending
%% on `Type' . When `Type' is one of `?GL_UNSIGNED_BYTE', `?GL_BYTE', `?GL_UNSIGNED_SHORT'
%% , `?GL_SHORT', `?GL_UNSIGNED_INT', `?GL_INT', or `?GL_FLOAT' each
%% of these bytes, shorts, integers, or floating-point values is interpreted as one color
%% or depth component, or one index, depending on `Format' . When `Type' is one of `?GL_UNSIGNED_BYTE_3_3_2'
%% , `?GL_UNSIGNED_SHORT_5_6_5', `?GL_UNSIGNED_SHORT_4_4_4_4', `?GL_UNSIGNED_SHORT_5_5_5_1'
%% , `?GL_UNSIGNED_INT_8_8_8_8', or `?GL_UNSIGNED_INT_10_10_10_2', each unsigned
%% value is interpreted as containing all the components for a single pixel, with the color
%% components arranged according to `Format' . When `Type' is one of `?GL_UNSIGNED_BYTE_2_3_3_REV'
%% , `?GL_UNSIGNED_SHORT_5_6_5_REV', `?GL_UNSIGNED_SHORT_4_4_4_4_REV', `?GL_UNSIGNED_SHORT_1_5_5_5_REV'
%% , `?GL_UNSIGNED_INT_8_8_8_8_REV', or `?GL_UNSIGNED_INT_2_10_10_10_REV', each
%% unsigned value is interpreted as containing all color components, specified by `Format'
%% , for a single pixel in a reversed order. Indices are always treated individually. Color
%% components are treated as groups of one, two, three, or four values, again based on `Format'
%% . Both individual indices and groups of components are referred to as pixels. If `Type'
%% is `?GL_BITMAP', the data must be unsigned bytes, and `Format' must be either `?GL_COLOR_INDEX'
%% or `?GL_STENCIL_INDEX'. Each unsigned byte is treated as eight 1-bit pixels, with
%% bit ordering determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2} ).
%%
%% width×height pixels are read from memory, starting at location `Data' . By default,
%% these pixels are taken from adjacent memory locations, except that after all `Width'
%% pixels are read, the read pointer is advanced to the next four-byte boundary. The four-byte
%% row alignment is specified by {@link gl:pixelStoref/2} with argument `?GL_UNPACK_ALIGNMENT'
%% , and it can be set to one, two, four, or eight bytes. Other pixel store parameters specify
%% different read pointer advancements, both before the first pixel is read and after all `Width'
%% pixels are read. See the {@link gl:pixelStoref/2} reference page for details on these options.
%%
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a block of pixels is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% The width×height pixels that are read from memory are each operated on in the same
%% way, based on the values of several parameters specified by {@link gl:pixelTransferf/2}
%% and {@link gl:pixelMapfv/3} . The details of these operations, as well as the target buffer
%% into which the pixels are drawn, are specific to the format of the pixels, as specified
%% by `Format' . `Format' can assume one of 13 symbolic values:
%%
%% `?GL_COLOR_INDEX': Each pixel is a single value, a color index. It is converted
%% to fixed-point format, with an unspecified number of bits to the right of the binary point,
%% regardless of the memory data type. Floating-point values convert to true fixed-point
%% values. Signed and unsigned integer data is converted with all fraction bits set to 0.
%% Bitmap data convert to either 0 or 1.
%%
%% Each fixed-point index is then shifted left by `?GL_INDEX_SHIFT' bits and added to `?GL_INDEX_OFFSET'
%% . If `?GL_INDEX_SHIFT' is negative, the shift is to the right. In either case, zero
%% bits fill otherwise unspecified bit locations in the result.
%%
%% If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel with the
%% help of the `?GL_PIXEL_MAP_I_TO_R', `?GL_PIXEL_MAP_I_TO_G', `?GL_PIXEL_MAP_I_TO_B'
%% , and `?GL_PIXEL_MAP_I_TO_A' tables. If the GL is in color index mode, and if `?GL_MAP_COLOR'
%% is true, the index is replaced with the value that it references in lookup table `?GL_PIXEL_MAP_I_TO_I'
%% . Whether the lookup replacement of the index is done or not, the integer part of the
%% index is then ANDed with 2 b-1, where b is the number of bits in a color index buffer.
%%
%%
%% The GL then converts the resulting indices or RGBA colors to fragments by attaching the
%% current raster position `z' coordinate and texture coordinates to each pixel, then
%% assigning x and y window coordinates to the nth fragment such that x n=x r+n% width
%%
%%
%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
%% and all the fragment operations are applied before the fragments are written to the frame
%% buffer.
%%
%% `?GL_STENCIL_INDEX': Each pixel is a single value, a stencil index. It is converted
%% to fixed-point format, with an unspecified number of bits to the right of the binary point,
%% regardless of the memory data type. Floating-point values convert to true fixed-point
%% values. Signed and unsigned integer data is converted with all fraction bits set to 0.
%% Bitmap data convert to either 0 or 1.
%%
%% Each fixed-point index is then shifted left by `?GL_INDEX_SHIFT' bits, and added
%% to `?GL_INDEX_OFFSET'. If `?GL_INDEX_SHIFT' is negative, the shift is to the
%% right. In either case, zero bits fill otherwise unspecified bit locations in the result.
%% If `?GL_MAP_STENCIL' is true, the index is replaced with the value that it references
%% in lookup table `?GL_PIXEL_MAP_S_TO_S'. Whether the lookup replacement of the index
%% is done or not, the integer part of the index is then ANDed with 2 b-1, where b is
%% the number of bits in the stencil buffer. The resulting stencil indices are then written
%% to the stencil buffer such that the nth index is written to location
%%
%% x n=x r+n% width
%%
%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. Only the pixel ownership test, the scissor test,
%% and the stencil writemask affect these write operations.
%%
%% `?GL_DEPTH_COMPONENT': Each pixel is a single-depth component. Floating-point data
%% is converted directly to an internal floating-point format with unspecified precision.
%% Signed integer data is mapped linearly to the internal floating-point format such that
%% the most positive representable integer value maps to 1.0, and the most negative representable
%% value maps to -1.0. Unsigned integer data is mapped similarly: the largest integer value
%% maps to 1.0, and 0 maps to 0.0. The resulting floating-point depth value is then multiplied
%% by `?GL_DEPTH_SCALE' and added to `?GL_DEPTH_BIAS'. The result is clamped to
%% the range [0 1].
%%
%% The GL then converts the resulting depth components to fragments by attaching the current
%% raster position color or color index and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
%% x n=x r+n% width
%%
%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
%% and all the fragment operations are applied before the fragments are written to the frame
%% buffer.
%%
%% `?GL_RGBA'
%%
%% `?GL_BGRA': Each pixel is a four-component group: For `?GL_RGBA', the red component
%% is first, followed by green, followed by blue, followed by alpha; for `?GL_BGRA'
%% the order is blue, green, red and then alpha. Floating-point values are converted directly
%% to an internal floating-point format with unspecified precision. Signed integer values
%% are mapped linearly to the internal floating-point format such that the most positive
%% representable integer value maps to 1.0, and the most negative representable value maps
%% to -1.0. (Note that this mapping does not convert 0 precisely to 0.0.) Unsigned integer
%% data is mapped similarly: The largest integer value maps to 1.0, and 0 maps to 0.0. The
%% resulting floating-point color values are then multiplied by `?GL_c_SCALE' and added
%% to `?GL_c_BIAS', where `c' is RED, GREEN, BLUE, and ALPHA for the respective
%% color components. The results are clamped to the range [0 1].
%%
%% If `?GL_MAP_COLOR' is true, each color component is scaled by the size of lookup
%% table `?GL_PIXEL_MAP_c_TO_c', then replaced by the value that it references in that
%% table. `c' is R, G, B, or A respectively.
%%
%% The GL then converts the resulting RGBA colors to fragments by attaching the current
%% raster position `z' coordinate and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
%% x n=x r+n% width
%%
%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
%% and all the fragment operations are applied before the fragments are written to the frame
%% buffer.
%%
%% `?GL_RED': Each pixel is a single red component. This component is converted to
%% the internal floating-point format in the same way the red component of an RGBA pixel
%% is. It is then converted to an RGBA pixel with green and blue set to 0, and alpha set
%% to 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
%%
%%
%% `?GL_GREEN': Each pixel is a single green component. This component is converted
%% to the internal floating-point format in the same way the green component of an RGBA pixel
%% is. It is then converted to an RGBA pixel with red and blue set to 0, and alpha set to
%% 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
%%
%% `?GL_BLUE': Each pixel is a single blue component. This component is converted to
%% the internal floating-point format in the same way the blue component of an RGBA pixel
%% is. It is then converted to an RGBA pixel with red and green set to 0, and alpha set to
%% 1. After this conversion, the pixel is treated as if it had been read as an RGBA pixel.
%%
%% `?GL_ALPHA': Each pixel is a single alpha component. This component is converted
%% to the internal floating-point format in the same way the alpha component of an RGBA pixel
%% is. It is then converted to an RGBA pixel with red, green, and blue set to 0. After this
%% conversion, the pixel is treated as if it had been read as an RGBA pixel.
%%
%% `?GL_RGB'
%%
%% `?GL_BGR': Each pixel is a three-component group: red first, followed by green,
%% followed by blue; for `?GL_BGR', the first component is blue, followed by green and
%% then red. Each component is converted to the internal floating-point format in the same
%% way the red, green, and blue components of an RGBA pixel are. The color triple is converted
%% to an RGBA pixel with alpha set to 1. After this conversion, the pixel is treated as if
%% it had been read as an RGBA pixel.
%%
%% `?GL_LUMINANCE': Each pixel is a single luminance component. This component is converted
%% to the internal floating-point format in the same way the red component of an RGBA pixel
%% is. It is then converted to an RGBA pixel with red, green, and blue set to the converted
%% luminance value, and alpha set to 1. After this conversion, the pixel is treated as if
%% it had been read as an RGBA pixel.
%%
%% `?GL_LUMINANCE_ALPHA': Each pixel is a two-component group: luminance first, followed
%% by alpha. The two components are converted to the internal floating-point format in the
%% same way the red component of an RGBA pixel is. They are then converted to an RGBA pixel
%% with red, green, and blue set to the converted luminance value, and alpha set to the converted
%% alpha value. After this conversion, the pixel is treated as if it had been read as an
%% RGBA pixel.
%%
%% The following table summarizes the meaning of the valid constants for the `type'
%% parameter:
%%
%% <table><tbody><tr><td>` Type '</td><td>` Corresponding Type '</td></tr></tbody><tbody>
%% <tr><td>`?GL_UNSIGNED_BYTE'</td><td> unsigned 8-bit integer </td></tr><tr><td>`?GL_BYTE'
%% </td><td> signed 8-bit integer </td></tr><tr><td>`?GL_BITMAP'</td><td> single bits
%% in unsigned 8-bit integers </td></tr><tr><td>`?GL_UNSIGNED_SHORT'</td><td> unsigned
%% 16-bit integer </td></tr><tr><td>`?GL_SHORT'</td><td> signed 16-bit integer </td></tr>
%% <tr><td>`?GL_UNSIGNED_INT'</td><td> unsigned 32-bit integer </td></tr><tr><td>`?GL_INT'
%% </td><td> 32-bit integer </td></tr><tr><td>`?GL_FLOAT'</td><td> single-precision
%% floating-point </td></tr><tr><td>`?GL_UNSIGNED_BYTE_3_3_2'</td><td> unsigned 8-bit
%% integer </td></tr><tr><td>`?GL_UNSIGNED_BYTE_2_3_3_REV'</td><td> unsigned 8-bit
%% integer with reversed component ordering </td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_6_5'</td>
%% <td> unsigned 16-bit integer </td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_6_5_REV'</td><td>
%% unsigned 16-bit integer with reversed component ordering </td></tr><tr><td>`?GL_UNSIGNED_SHORT_4_4_4_4'
%% </td><td> unsigned 16-bit integer </td></tr><tr><td>`?GL_UNSIGNED_SHORT_4_4_4_4_REV'</td>
%% <td> unsigned 16-bit integer with reversed component ordering </td></tr><tr><td>`?GL_UNSIGNED_SHORT_5_5_5_1'
%% </td><td> unsigned 16-bit integer </td></tr><tr><td>`?GL_UNSIGNED_SHORT_1_5_5_5_REV'</td>
%% <td> unsigned 16-bit integer with reversed component ordering </td></tr><tr><td>`?GL_UNSIGNED_INT_8_8_8_8'
%% </td><td> unsigned 32-bit integer </td></tr><tr><td>`?GL_UNSIGNED_INT_8_8_8_8_REV'</td>
%% <td> unsigned 32-bit integer with reversed component ordering </td></tr><tr><td>`?GL_UNSIGNED_INT_10_10_10_2'
%% </td><td> unsigned 32-bit integer </td></tr><tr><td>`?GL_UNSIGNED_INT_2_10_10_10_REV'</td>
%% <td> unsigned 32-bit integer with reversed component ordering </td></tr></tbody></table>
%%
%% The rasterization described so far assumes pixel zoom factors of 1. If {@link gl:pixelZoom/2}
%% is used to change the x and y pixel zoom factors, pixels are converted to fragments
%% as follows. If (x r y r) is the current raster position, and a given pixel is in the nth column
%% and mth row of the pixel rectangle, then fragments are generated for pixels whose centers
%% are in the rectangle with corners at
%%
%% (x r+(zoom x) n y r+(zoom y) m)
%%
%% (x r+(zoom x)(n+1) y r+(zoom y)(m+1))
%%
%% where zoom x is the value of `?GL_ZOOM_X' and zoom y is the value of `?GL_ZOOM_Y'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawPixels.xml">external</a> documentation.
-spec drawPixels(Width, Height, Format, Type, Pixels) -> 'ok' when Width :: integer(),Height :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
drawPixels(Width,Height,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5236, <<Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
drawPixels(Width,Height,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5237, <<Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Copy pixels in the frame buffer
%%
%% ``gl:copyPixels'' copies a screen-aligned rectangle of pixels from the specified frame
%% buffer location to a region relative to the current raster position. Its operation is
%% well defined only if the entire pixel source region is within the exposed portion of the
%% window. Results of copies from outside the window, or from regions of the window that
%% are not exposed, are hardware dependent and undefined.
%%
%% `X' and `Y' specify the window coordinates of the lower left corner of the rectangular
%% region to be copied. `Width' and `Height' specify the dimensions of the rectangular
%% region to be copied. Both `Width' and `Height' must not be negative.
%%
%% Several parameters control the processing of the pixel data while it is being copied.
%% These parameters are set with three commands: {@link gl:pixelTransferf/2} , {@link gl:pixelMapfv/3}
%% , and {@link gl:pixelZoom/2} . This reference page describes the effects on ``gl:copyPixels''
%% of most, but not all, of the parameters specified by these three commands.
%%
%% ``gl:copyPixels'' copies values from each pixel with the lower left-hand corner at (x+i
%% y+j)
%% for 0<= i< width and 0<= j< height. This pixel is said to be the ith
%% pixel in the jth row. Pixels are copied in row order from the lowest to the highest
%% row, left to right in each row.
%%
%% `Type' specifies whether color, depth, or stencil data is to be copied. The details
%% of the transfer for each data type are as follows:
%%
%% `?GL_COLOR': Indices or RGBA colors are read from the buffer currently specified
%% as the read source buffer (see {@link gl:readBuffer/1} ). If the GL is in color index mode,
%% each index that is read from this buffer is converted to a fixed-point format with an
%% unspecified number of bits to the right of the binary point. Each index is then shifted
%% left by `?GL_INDEX_SHIFT' bits, and added to `?GL_INDEX_OFFSET'. If `?GL_INDEX_SHIFT'
%% is negative, the shift is to the right. In either case, zero bits fill otherwise unspecified
%% bit locations in the result. If `?GL_MAP_COLOR' is true, the index is replaced with
%% the value that it references in lookup table `?GL_PIXEL_MAP_I_TO_I'. Whether the
%% lookup replacement of the index is done or not, the integer part of the index is then
%% ANDed with 2 b-1, where b is the number of bits in a color index buffer.
%%
%% If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that
%% is read are converted to an internal floating-point format with unspecified precision.
%% The conversion maps the largest representable component value to 1.0, and component value
%% 0 to 0.0. The resulting floating-point color values are then multiplied by `?GL_c_SCALE'
%% and added to `?GL_c_BIAS', where `c' is RED, GREEN, BLUE, and ALPHA for the
%% respective color components. The results are clamped to the range [0,1]. If `?GL_MAP_COLOR'
%% is true, each color component is scaled by the size of lookup table `?GL_PIXEL_MAP_c_TO_c'
%% , then replaced by the value that it references in that table. `c' is R, G, B, or
%% A.
%%
%% If the ARB_imaging extension is supported, the color values may be additionally processed
%% by color-table lookups, color-matrix transformations, and convolution filters.
%%
%% The GL then converts the resulting indices or RGBA colors to fragments by attaching the
%% current raster position `z' coordinate and texture coordinates to each pixel, then
%% assigning window coordinates (x r+i y r+j), where (x r y r) is the current raster position, and the pixel was
%% the ith pixel in the jth row. These pixel fragments are then treated just like the
%% fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and
%% all the fragment operations are applied before the fragments are written to the frame
%% buffer.
%%
%% `?GL_DEPTH': Depth values are read from the depth buffer and converted directly
%% to an internal floating-point format with unspecified precision. The resulting floating-point
%% depth value is then multiplied by `?GL_DEPTH_SCALE' and added to `?GL_DEPTH_BIAS'
%% . The result is clamped to the range [0,1].
%%
%% The GL then converts the resulting depth components to fragments by attaching the current
%% raster position color or color index and texture coordinates to each pixel, then assigning
%% window coordinates (x r+i y r+j), where (x r y r) is the current raster position, and the pixel was the ith
%% pixel in the jth row. These pixel fragments are then treated just like the fragments
%% generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the
%% fragment operations are applied before the fragments are written to the frame buffer.
%%
%% `?GL_STENCIL': Stencil indices are read from the stencil buffer and converted to
%% an internal fixed-point format with an unspecified number of bits to the right of the
%% binary point. Each fixed-point index is then shifted left by `?GL_INDEX_SHIFT' bits,
%% and added to `?GL_INDEX_OFFSET'. If `?GL_INDEX_SHIFT' is negative, the shift
%% is to the right. In either case, zero bits fill otherwise unspecified bit locations in
%% the result. If `?GL_MAP_STENCIL' is true, the index is replaced with the value that
%% it references in lookup table `?GL_PIXEL_MAP_S_TO_S'. Whether the lookup replacement
%% of the index is done or not, the integer part of the index is then ANDed with 2 b-1,
%% where b is the number of bits in the stencil buffer. The resulting stencil indices are
%% then written to the stencil buffer such that the index read from the ith location of
%% the jth row is written to location (x r+i y r+j), where (x r y r) is the current raster position. Only the
%% pixel ownership test, the scissor test, and the stencil writemask affect these write operations.
%%
%%
%% The rasterization described thus far assumes pixel zoom factors of 1.0. If {@link gl:pixelZoom/2}
%% is used to change the x and y pixel zoom factors, pixels are converted to fragments
%% as follows. If (x r y r) is the current raster position, and a given pixel is in the ith location
%% in the jth row of the source pixel rectangle, then fragments are generated for pixels
%% whose centers are in the rectangle with corners at
%%
%% (x r+(zoom x) i y r+(zoom y) j)
%%
%% and
%%
%% (x r+(zoom x)(i+1) y r+(zoom y)(j+1))
%%
%% where zoom x is the value of `?GL_ZOOM_X' and zoom y is the value of `?GL_ZOOM_Y'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyPixels.xml">external</a> documentation.
-spec copyPixels(X, Y, Width, Height, Type) -> 'ok' when X :: integer(),Y :: integer(),Width :: integer(),Height :: integer(),Type :: enum().
copyPixels(X,Y,Width,Height,Type) ->
cast(5238, <<X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei,Type:?GLenum>>).
%% @doc Set front and back function and reference value for stencil testing
%%
%% Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
%% Stencil planes are first drawn into using GL drawing primitives, then geometry and images
%% are rendered using the stencil planes to mask out portions of the screen. Stenciling is
%% typically used in multipass rendering algorithms to achieve special effects, such as decals,
%% outlining, and constructive solid geometry rendering.
%%
%% The stencil test conditionally eliminates a pixel based on the outcome of a comparison
%% between the reference value and the value in the stencil buffer. To enable and disable
%% the test, call {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_STENCIL_TEST'
%% . To specify actions based on the outcome of the stencil test, call {@link gl:stencilOp/3}
%% or {@link gl:stencilOpSeparate/4} .
%%
%% There can be two separate sets of `Func' , `Ref' , and `Mask' parameters;
%% one affects back-facing polygons, and the other affects front-facing polygons as well
%% as other non-polygon primitives. {@link gl:stencilFunc/3} sets both front and back stencil
%% state to the same values. Use {@link gl:stencilFuncSeparate/4} to set front and back stencil
%% state to different values.
%%
%% `Func' is a symbolic constant that determines the stencil comparison function. It
%% accepts one of eight values, shown in the following list. `Ref' is an integer reference
%% value that is used in the stencil comparison. It is clamped to the range [0 2 n-1], where n
%% is the number of bitplanes in the stencil buffer. `Mask' is bitwise ANDed with both
%% the reference value and the stored stencil value, with the ANDed values participating
%% in the comparison.
%%
%% If `stencil' represents the value stored in the corresponding stencil buffer location,
%% the following list shows the effect of each comparison function that can be specified by `Func'
%% . Only if the comparison succeeds is the pixel passed through to the next stage in the
%% rasterization process (see {@link gl:stencilOp/3} ). All tests treat `stencil' values
%% as unsigned integers in the range [0 2 n-1], where n is the number of bitplanes in the stencil
%% buffer.
%%
%% The following values are accepted by `Func' :
%%
%% `?GL_NEVER': Always fails.
%%
%% `?GL_LESS': Passes if ( `Ref' & `Mask' ) < ( `stencil' & `Mask'
%% ).
%%
%% `?GL_LEQUAL': Passes if ( `Ref' & `Mask' ) <= ( `stencil'
%% & `Mask' ).
%%
%% `?GL_GREATER': Passes if ( `Ref' & `Mask' ) > ( `stencil'
%% & `Mask' ).
%%
%% `?GL_GEQUAL': Passes if ( `Ref' & `Mask' ) >= ( `stencil'
%% & `Mask' ).
%%
%% `?GL_EQUAL': Passes if ( `Ref' & `Mask' ) = ( `stencil' & `Mask'
%% ).
%%
%% `?GL_NOTEQUAL': Passes if ( `Ref' & `Mask' ) != ( `stencil' &
%% `Mask' ).
%%
%% `?GL_ALWAYS': Always passes.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilFunc.xml">external</a> documentation.
-spec stencilFunc(Func, Ref, Mask) -> 'ok' when Func :: enum(),Ref :: integer(),Mask :: integer().
stencilFunc(Func,Ref,Mask) ->
cast(5239, <<Func:?GLenum,Ref:?GLint,Mask:?GLuint>>).
%% @doc Control the front and back writing of individual bits in the stencil planes
%%
%% ``gl:stencilMask'' controls the writing of individual bits in the stencil planes. The
%% least significant n bits of `Mask' , where n is the number of bits in the stencil
%% buffer, specify a mask. Where a 1 appears in the mask, it's possible to write to the corresponding
%% bit in the stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
%% Initially, all bits are enabled for writing.
%%
%% There can be two separate `Mask' writemasks; one affects back-facing polygons, and
%% the other affects front-facing polygons as well as other non-polygon primitives. {@link gl:stencilMask/1}
%% sets both front and back stencil writemasks to the same values. Use {@link gl:stencilMaskSeparate/2}
%% to set front and back stencil writemasks to different values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilMask.xml">external</a> documentation.
-spec stencilMask(Mask) -> 'ok' when Mask :: integer().
stencilMask(Mask) ->
cast(5240, <<Mask:?GLuint>>).
%% @doc Set front and back stencil test actions
%%
%% Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
%% You draw into the stencil planes using GL drawing primitives, then render geometry and
%% images, using the stencil planes to mask out portions of the screen. Stenciling is typically
%% used in multipass rendering algorithms to achieve special effects, such as decals, outlining,
%% and constructive solid geometry rendering.
%%
%% The stencil test conditionally eliminates a pixel based on the outcome of a comparison
%% between the value in the stencil buffer and a reference value. To enable and disable the
%% test, call {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_STENCIL_TEST'
%% ; to control it, call {@link gl:stencilFunc/3} or {@link gl:stencilFuncSeparate/4} .
%%
%% There can be two separate sets of `Sfail' , `Dpfail' , and `Dppass' parameters;
%% one affects back-facing polygons, and the other affects front-facing polygons as well
%% as other non-polygon primitives. {@link gl:stencilOp/3} sets both front and back stencil
%% state to the same values. Use {@link gl:stencilOpSeparate/4} to set front and back stencil
%% state to different values.
%%
%% ``gl:stencilOp'' takes three arguments that indicate what happens to the stored stencil
%% value while stenciling is enabled. If the stencil test fails, no change is made to the
%% pixel's color or depth buffers, and `Sfail' specifies what happens to the stencil
%% buffer contents. The following eight actions are possible.
%%
%% `?GL_KEEP': Keeps the current value.
%%
%% `?GL_ZERO': Sets the stencil buffer value to 0.
%%
%% `?GL_REPLACE': Sets the stencil buffer value to `ref', as specified by {@link gl:stencilFunc/3}
%% .
%%
%% `?GL_INCR': Increments the current stencil buffer value. Clamps to the maximum representable
%% unsigned value.
%%
%% `?GL_INCR_WRAP': Increments the current stencil buffer value. Wraps stencil buffer
%% value to zero when incrementing the maximum representable unsigned value.
%%
%% `?GL_DECR': Decrements the current stencil buffer value. Clamps to 0.
%%
%% `?GL_DECR_WRAP': Decrements the current stencil buffer value. Wraps stencil buffer
%% value to the maximum representable unsigned value when decrementing a stencil buffer value
%% of zero.
%%
%% `?GL_INVERT': Bitwise inverts the current stencil buffer value.
%%
%% Stencil buffer values are treated as unsigned integers. When incremented and decremented,
%% values are clamped to 0 and 2 n-1, where n is the value returned by querying `?GL_STENCIL_BITS'
%% .
%%
%% The other two arguments to ``gl:stencilOp'' specify stencil buffer actions that depend
%% on whether subsequent depth buffer tests succeed ( `Dppass' ) or fail ( `Dpfail' )
%% (see {@link gl:depthFunc/1} ). The actions are specified using the same eight symbolic constants
%% as `Sfail' . Note that `Dpfail' is ignored when there is no depth buffer, or
%% when the depth buffer is not enabled. In these cases, `Sfail' and `Dppass' specify
%% stencil action when the stencil test fails and passes, respectively.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilOp.xml">external</a> documentation.
-spec stencilOp(Fail, Zfail, Zpass) -> 'ok' when Fail :: enum(),Zfail :: enum(),Zpass :: enum().
stencilOp(Fail,Zfail,Zpass) ->
cast(5241, <<Fail:?GLenum,Zfail:?GLenum,Zpass:?GLenum>>).
%% @doc Specify the clear value for the stencil buffer
%%
%% ``gl:clearStencil'' specifies the index used by {@link gl:clear/1} to clear the stencil
%% buffer. `S' is masked with 2 m-1, where m is the number of bits in the stencil
%% buffer.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearStencil.xml">external</a> documentation.
-spec clearStencil(S) -> 'ok' when S :: integer().
clearStencil(S) ->
cast(5242, <<S:?GLint>>).
%% @doc Control the generation of texture coordinates
%%
%% ``gl:texGen'' selects a texture-coordinate generation function or supplies coefficients
%% for one of the functions. `Coord' names one of the (`s', `t', `r', `q'
%% ) texture coordinates; it must be one of the symbols `?GL_S', `?GL_T', `?GL_R'
%% , or `?GL_Q'. `Pname' must be one of three symbolic constants: `?GL_TEXTURE_GEN_MODE'
%% , `?GL_OBJECT_PLANE', or `?GL_EYE_PLANE'. If `Pname' is `?GL_TEXTURE_GEN_MODE'
%% , then `Params' chooses a mode, one of `?GL_OBJECT_LINEAR', `?GL_EYE_LINEAR'
%% , `?GL_SPHERE_MAP', `?GL_NORMAL_MAP', or `?GL_REFLECTION_MAP'. If `Pname'
%% is either `?GL_OBJECT_PLANE' or `?GL_EYE_PLANE', `Params' contains coefficients
%% for the corresponding texture generation function.
%%
%% If the texture generation function is `?GL_OBJECT_LINEAR', the function
%%
%% g=p 1×x o+p 2×y o+p 3×z o+p 4×w o
%%
%% is used, where g is the value computed for the coordinate named in `Coord' , p 1,
%% p 2, p 3, and p 4 are the four values supplied in `Params' , and x o, y o, z o,
%% and w o are the object coordinates of the vertex. This function can be used, for example,
%% to texture-map terrain using sea level as a reference plane (defined by p 1, p 2, p
%% 3, and p 4). The altitude of a terrain vertex is computed by the `?GL_OBJECT_LINEAR'
%% coordinate generation function as its distance from sea level; that altitude can then
%% be used to index the texture image to map white snow onto peaks and green grass onto foothills.
%%
%%
%% If the texture generation function is `?GL_EYE_LINEAR', the function
%%
%% g=(p 1)"×x e+(p 2)"×y e+(p 3)"×z e+(p 4)"×w e
%%
%% is used, where
%%
%% ((p 1)" (p 2)" (p 3)" (p 4)")=(p 1 p 2 p 3 p 4) M -1
%%
%% and x e, y e, z e, and w e are the eye coordinates of the vertex, p 1, p 2, p 3,
%% and p 4 are the values supplied in `Params' , and M is the modelview matrix when ``gl:texGen''
%% is invoked. If M is poorly conditioned or singular, texture coordinates generated by
%% the resulting function may be inaccurate or undefined.
%%
%% Note that the values in `Params' define a reference plane in eye coordinates. The
%% modelview matrix that is applied to them may not be the same one in effect when the polygon
%% vertices are transformed. This function establishes a field of texture coordinates that
%% can produce dynamic contour lines on moving objects.
%%
%% If the texture generation function is `?GL_SPHERE_MAP' and `Coord' is either `?GL_S'
%% or `?GL_T', s and t texture coordinates are generated as follows. Let `u'
%% be the unit vector pointing from the origin to the polygon vertex (in eye coordinates).
%% Let `n' sup prime be the current normal, after transformation to eye coordinates.
%% Let
%%
%% f=(f x f y f z) T be the reflection vector such that
%%
%% f=u-2 n" (n") T u
%%
%% Finally, let m=2 ((f x) 2+(f y) 2+(f z+1) 2). Then the values assigned to the s and t texture coordinates
%% are
%%
%% s=f x/m+1/2
%%
%% t=f y/m+1/2
%%
%% To enable or disable a texture-coordinate generation function, call {@link gl:enable/1}
%% or {@link gl:enable/1} with one of the symbolic texture-coordinate names (`?GL_TEXTURE_GEN_S'
%% , `?GL_TEXTURE_GEN_T', `?GL_TEXTURE_GEN_R', or `?GL_TEXTURE_GEN_Q') as
%% the argument. When enabled, the specified texture coordinate is computed according to
%% the generating function associated with that coordinate. When disabled, subsequent vertices
%% take the specified texture coordinate from the current set of texture coordinates. Initially,
%% all texture generation functions are set to `?GL_EYE_LINEAR' and are disabled. Both
%% s plane equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all
%% r and q plane equations are (0, 0, 0, 0).
%%
%% When the ARB_multitexture extension is supported, ``gl:texGen'' sets the texture generation
%% parameters for the currently active texture unit, selected with {@link gl:activeTexture/1} .
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexGen.xml">external</a> documentation.
-spec texGend(Coord, Pname, Param) -> 'ok' when Coord :: enum(),Pname :: enum(),Param :: float().
texGend(Coord,Pname,Param) ->
cast(5243, <<Coord:?GLenum,Pname:?GLenum,Param:?GLdouble>>).
%% @doc
%% See {@link texGend/3}
-spec texGenf(Coord, Pname, Param) -> 'ok' when Coord :: enum(),Pname :: enum(),Param :: float().
texGenf(Coord,Pname,Param) ->
cast(5244, <<Coord:?GLenum,Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link texGend/3}
-spec texGeni(Coord, Pname, Param) -> 'ok' when Coord :: enum(),Pname :: enum(),Param :: integer().
texGeni(Coord,Pname,Param) ->
cast(5245, <<Coord:?GLenum,Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link texGend/3}
-spec texGendv(Coord, Pname, Params) -> 'ok' when Coord :: enum(),Pname :: enum(),Params :: tuple().
texGendv(Coord,Pname,Params) ->
cast(5246, <<Coord:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,0:32,
(<< <<C:?GLdouble>> ||C <- tuple_to_list(Params)>>)/binary>>).
%% @doc
%% See {@link texGend/3}
-spec texGenfv(Coord, Pname, Params) -> 'ok' when Coord :: enum(),Pname :: enum(),Params :: tuple().
texGenfv(Coord,Pname,Params) ->
cast(5247, <<Coord:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link texGend/3}
-spec texGeniv(Coord, Pname, Params) -> 'ok' when Coord :: enum(),Pname :: enum(),Params :: tuple().
texGeniv(Coord,Pname,Params) ->
cast(5248, <<Coord:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc Return texture coordinate generation parameters
%%
%% ``gl:getTexGen'' returns in `Params' selected parameters of a texture coordinate
%% generation function that was specified using {@link gl:texGend/3} . `Coord' names one
%% of the (`s', `t', `r', `q') texture coordinates, using the symbolic
%% constant `?GL_S', `?GL_T', `?GL_R', or `?GL_Q'.
%%
%% `Pname' specifies one of three symbolic names:
%%
%% `?GL_TEXTURE_GEN_MODE': `Params' returns the single-valued texture generation
%% function, a symbolic constant. The initial value is `?GL_EYE_LINEAR'.
%%
%% `?GL_OBJECT_PLANE': `Params' returns the four plane equation coefficients that
%% specify object linear-coordinate generation. Integer values, when requested, are mapped
%% directly from the internal floating-point representation.
%%
%% `?GL_EYE_PLANE': `Params' returns the four plane equation coefficients that
%% specify eye linear-coordinate generation. Integer values, when requested, are mapped directly
%% from the internal floating-point representation. The returned values are those maintained
%% in eye coordinates. They are not equal to the values specified using {@link gl:texGend/3} ,
%% unless the modelview matrix was identity when {@link gl:texGend/3} was called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexGen.xml">external</a> documentation.
-spec getTexGendv(Coord, Pname) -> {float(),float(),float(),float()} when Coord :: enum(),Pname :: enum().
getTexGendv(Coord,Pname) ->
call(5249, <<Coord:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getTexGendv/2}
-spec getTexGenfv(Coord, Pname) -> {float(),float(),float(),float()} when Coord :: enum(),Pname :: enum().
getTexGenfv(Coord,Pname) ->
call(5250, <<Coord:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getTexGendv/2}
-spec getTexGeniv(Coord, Pname) -> {integer(),integer(),integer(),integer()} when Coord :: enum(),Pname :: enum().
getTexGeniv(Coord,Pname) ->
call(5251, <<Coord:?GLenum,Pname:?GLenum>>).
%% @doc glTexEnvf
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexEnvf.xml">external</a> documentation.
-spec texEnvf(Target, Pname, Param) -> 'ok' when Target :: enum(),Pname :: enum(),Param :: float().
texEnvf(Target,Pname,Param) ->
cast(5252, <<Target:?GLenum,Pname:?GLenum,Param:?GLfloat>>).
%% @doc glTexEnvi
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexEnvi.xml">external</a> documentation.
-spec texEnvi(Target, Pname, Param) -> 'ok' when Target :: enum(),Pname :: enum(),Param :: integer().
texEnvi(Target,Pname,Param) ->
cast(5253, <<Target:?GLenum,Pname:?GLenum,Param:?GLint>>).
%% @doc Set texture environment parameters
%%
%% A texture environment specifies how texture values are interpreted when a fragment is
%% textured. When `Target' is `?GL_TEXTURE_FILTER_CONTROL', `Pname' must be `?GL_TEXTURE_LOD_BIAS'
%% . When `Target' is `?GL_TEXTURE_ENV', `Pname' can be `?GL_TEXTURE_ENV_MODE'
%% , `?GL_TEXTURE_ENV_COLOR', `?GL_COMBINE_RGB', `?GL_COMBINE_ALPHA', `?GL_RGB_SCALE'
%% , `?GL_ALPHA_SCALE', `?GL_SRC0_RGB', `?GL_SRC1_RGB', `?GL_SRC2_RGB', `?GL_SRC0_ALPHA'
%% , `?GL_SRC1_ALPHA', or `?GL_SRC2_ALPHA'.
%%
%% If `Pname' is `?GL_TEXTURE_ENV_MODE', then `Params' is (or points to)
%% the symbolic name of a texture function. Six texture functions may be specified: `?GL_ADD'
%% , `?GL_MODULATE', `?GL_DECAL', `?GL_BLEND', `?GL_REPLACE', or `?GL_COMBINE'
%% .
%%
%% The following table shows the correspondence of filtered texture values R t, G t, B t,
%% A t, L t, I t to texture source components. C s and A s are used by the texture functions
%% described below.
%%
%% <table><tbody><tr><td> Texture Base Internal Format </td><td> C s</td><td> A s</td></tr></tbody>
%% <tbody><tr><td>`?GL_ALPHA'</td><td> (0, 0, 0) </td><td> A t</td></tr><tr><td>`?GL_LUMINANCE'
%% </td><td> ( L t, L t, L t ) </td><td> 1 </td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td>
%% <td> ( L t, L t, L t ) </td><td> A t</td></tr><tr><td>`?GL_INTENSITY'</td><td> (
%% I t, I t, I t ) </td><td> I t</td></tr><tr><td>`?GL_RGB'</td><td> ( R t, G t, B
%% t ) </td><td> 1 </td></tr><tr><td>`?GL_RGBA'</td><td> ( R t, G t, B t ) </td><td>
%% A t</td></tr></tbody></table>
%%
%% A texture function acts on the fragment to be textured using the texture image value
%% that applies to the fragment (see {@link gl:texParameterf/3} ) and produces an RGBA color
%% for that fragment. The following table shows how the RGBA color is produced for each of
%% the first five texture functions that can be chosen. C is a triple of color values (RGB)
%% and A is the associated alpha value. RGBA values extracted from a texture image are in
%% the range [0,1]. The subscript p refers to the color computed from the previous texture
%% stage (or the incoming fragment if processing texture stage 0), the subscript s to the
%% texture source color, the subscript c to the texture environment color, and the subscript
%% v indicates a value produced by the texture function.
%%
%% <table><tbody><tr><td> Texture Base Internal Format </td><td>`?Value'</td><td>`?GL_REPLACE'
%% Function </td><td>`?GL_MODULATE' Function </td><td>`?GL_DECAL' Function </td><td>
%% `?GL_BLEND' Function </td><td>`?GL_ADD' Function </td></tr></tbody><tbody><tr><td>
%% `?GL_ALPHA'</td><td> C v=</td><td> C p</td><td> C p</td><td> undefined </td><td> C p</td>
%% <td> C p</td></tr><tr><td></td><td> A v=</td><td> A s</td><td> A p A s</td><td></td><td>
%% A v=A p A s</td><td> A p A s</td></tr><tr><td>`?GL_LUMINANCE'</td><td> C v=</td><td>
%% C s</td><td> C p C s</td><td> undefined </td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr>
%% <tr><td> (or 1) </td><td> A v=</td><td> A p</td><td> A p</td><td></td><td> A p</td><td> A
%% p</td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td> C v=</td><td> C s</td><td> C p C
%% s</td><td> undefined </td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr><tr><td> (or 2) </td>
%% <td> A v=</td><td> A s</td><td> A p A s</td><td></td><td> A p A s</td><td> A p A s</td>
%% </tr><tr><td>`?GL_INTENSITY'</td><td> C v=</td><td> C s</td><td> C p C s</td><td>
%% undefined </td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr><tr><td></td><td> A v=</td><td>
%% A s</td><td> A p A s</td><td></td><td> A p (1-A s)+A c A s</td><td> A p+A s</td></tr><tr><td>`?GL_RGB'
%% </td><td> C v=</td><td> C s</td><td> C p C s</td><td> C s</td><td> C p (1-C s)+C c C s</td><td>
%% C p+C s</td></tr><tr><td> (or 3) </td><td> A v=</td><td> A p</td><td> A p</td><td> A p</td>
%% <td> A p</td><td> A p</td></tr><tr><td>`?GL_RGBA'</td><td> C v=</td><td> C s</td><td>
%% C p C s</td><td> C p (1-A s)+C s A s</td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr><tr><td>
%% (or 4) </td><td> A v=</td><td> A s</td><td> A p A s</td><td> A p</td><td> A p A s</td><td>
%% A p A s</td></tr></tbody></table>
%%
%% If `Pname' is `?GL_TEXTURE_ENV_MODE', and `Params' is `?GL_COMBINE',
%% the form of the texture function depends on the values of `?GL_COMBINE_RGB' and `?GL_COMBINE_ALPHA'
%% .
%%
%% The following describes how the texture sources, as specified by `?GL_SRC0_RGB', `?GL_SRC1_RGB'
%% , `?GL_SRC2_RGB', `?GL_SRC0_ALPHA', `?GL_SRC1_ALPHA', and `?GL_SRC2_ALPHA'
%% , are combined to produce a final texture color. In the following tables, `?GL_SRC0_c'
%% is represented by Arg0, `?GL_SRC1_c' is represented by Arg1, and `?GL_SRC2_c'
%% is represented by Arg2.
%%
%% `?GL_COMBINE_RGB' accepts any of `?GL_REPLACE', `?GL_MODULATE', `?GL_ADD'
%% , `?GL_ADD_SIGNED', `?GL_INTERPOLATE', `?GL_SUBTRACT', `?GL_DOT3_RGB',
%% or `?GL_DOT3_RGBA'.
%%
%% <table><tbody><tr><td>`?GL_COMBINE_RGB'</td><td>` Texture Function '</td></tr></tbody>
%% <tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'</td><td>
%% Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr><tr><td>`?GL_DOT3_RGB'
%% or `?GL_DOT3_RGBA'</td><td> 4×((((Arg0 r)-0.5)×((Arg1 r)-0.5))+(((Arg0 g)-0.5)×((Arg1 g)-0.5))+(((Arg0 b)-0.5)×((Arg1 b)-0.5)))</td></tr></tbody></table>
%%
%% The scalar results for `?GL_DOT3_RGB' and `?GL_DOT3_RGBA' are placed into each
%% of the 3 (RGB) or 4 (RGBA) components on output.
%%
%% Likewise, `?GL_COMBINE_ALPHA' accepts any of `?GL_REPLACE', `?GL_MODULATE',
%% `?GL_ADD', `?GL_ADD_SIGNED', `?GL_INTERPOLATE', or `?GL_SUBTRACT'.
%% The following table describes how alpha values are combined:
%%
%% <table><tbody><tr><td>`?GL_COMBINE_ALPHA'</td><td>` Texture Function '</td></tr>
%% </tbody><tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'
%% </td><td> Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr></tbody></table>
%%
%% In the following tables, the value C s represents the color sampled from the currently
%% bound texture, C c represents the constant texture-environment color, C f represents
%% the primary color of the incoming fragment, and C p represents the color computed from
%% the previous texture stage or C f if processing texture stage 0. Likewise, A s, A c,
%% A f, and A p represent the respective alpha values.
%%
%% The following table describes the values assigned to Arg0, Arg1, and Arg2 based upon
%% the RGB sources and operands:
%%
%% <table><tbody><tr><td>`?GL_SRCn_RGB'</td><td>`?GL_OPERANDn_RGB'</td><td>` Argument Value '
%% </td></tr></tbody><tbody><tr><td>`?GL_TEXTURE'</td><td>`?GL_SRC_COLOR'</td><td>(C
%% s)</td>
%% </tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_COLOR'</td><td> 1-(C s)</td></tr><tr><td></td><td>
%% `?GL_SRC_ALPHA'</td><td>(A s)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'</td>
%% <td> 1-(A s)</td></tr><tr><td>`?GL_TEXTUREn'</td><td>`?GL_SRC_COLOR'</td><td>(C s)</td></tr>
%% <tr><td></td><td>`?GL_ONE_MINUS_SRC_COLOR'</td><td> 1-(C s)</td></tr><tr><td></td><td>`?GL_SRC_ALPHA'
%% </td><td>(A s)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A s)</td></tr><tr>
%% <td>`?GL_CONSTANT'</td><td>`?GL_SRC_COLOR'</td><td>(C c)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_COLOR'
%% </td><td> 1-(C c)</td></tr><tr><td></td><td>`?GL_SRC_ALPHA'</td><td>(A c)</td></tr><tr><td></td>
%% <td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A c)</td></tr><tr><td>`?GL_PRIMARY_COLOR'</td>
%% <td>`?GL_SRC_COLOR'</td><td>(C f)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_COLOR'</td>
%% <td> 1-(C f)</td></tr><tr><td></td><td>`?GL_SRC_ALPHA'</td><td>(A f)</td></tr><tr><td></td><td>
%% `?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A f)</td></tr><tr><td>`?GL_PREVIOUS'</td><td>`?GL_SRC_COLOR'
%% </td><td>(C p)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_COLOR'</td><td> 1-(C p)</td></tr><tr>
%% <td></td><td>`?GL_SRC_ALPHA'</td><td>(A p)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'
%% </td><td> 1-(A p)</td></tr></tbody></table>
%%
%% For `?GL_TEXTUREn' sources, C s and A s represent the color and alpha, respectively,
%% produced from texture stage n.
%%
%% The follow table describes the values assigned to Arg0, Arg1, and Arg2 based upon
%% the alpha sources and operands:
%%
%% <table><tbody><tr><td>`?GL_SRCn_ALPHA'</td><td>`?GL_OPERANDn_ALPHA'</td><td>` Argument Value '
%% </td></tr></tbody><tbody><tr><td>`?GL_TEXTURE'</td><td>`?GL_SRC_ALPHA'</td><td>(A
%% s)</td>
%% </tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A s)</td></tr><tr><td>`?GL_TEXTUREn'
%% </td><td>`?GL_SRC_ALPHA'</td><td>(A s)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'
%% </td><td> 1-(A s)</td></tr><tr><td>`?GL_CONSTANT'</td><td>`?GL_SRC_ALPHA'</td><td>(A
%% c)</td>
%% </tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A c)</td></tr><tr><td>`?GL_PRIMARY_COLOR'
%% </td><td>`?GL_SRC_ALPHA'</td><td>(A f)</td></tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'
%% </td><td> 1-(A f)</td></tr><tr><td>`?GL_PREVIOUS'</td><td>`?GL_SRC_ALPHA'</td><td>(A
%% p)</td>
%% </tr><tr><td></td><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td> 1-(A p)</td></tr></tbody></table>
%%
%%
%% The RGB and alpha results of the texture function are multipled by the values of `?GL_RGB_SCALE'
%% and `?GL_ALPHA_SCALE', respectively, and clamped to the range [0 1].
%%
%% If `Pname' is `?GL_TEXTURE_ENV_COLOR', `Params' is a pointer to an array
%% that holds an RGBA color consisting of four values. Integer color components are interpreted
%% linearly such that the most positive integer maps to 1.0, and the most negative integer
%% maps to -1.0. The values are clamped to the range [0,1] when they are specified. C c
%% takes these four values.
%%
%% If `Pname' is `?GL_TEXTURE_LOD_BIAS', the value specified is added to the texture
%% level-of-detail parameter, that selects which mipmap, or mipmaps depending upon the selected
%% `?GL_TEXTURE_MIN_FILTER', will be sampled.
%%
%% `?GL_TEXTURE_ENV_MODE' defaults to `?GL_MODULATE' and `?GL_TEXTURE_ENV_COLOR'
%% defaults to (0, 0, 0, 0).
%%
%% If `Target' is `?GL_POINT_SPRITE' and `Pname' is `?GL_COORD_REPLACE',
%% the boolean value specified is used to either enable or disable point sprite texture coordinate
%% replacement. The default value is `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexEnv.xml">external</a> documentation.
-spec texEnvfv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texEnvfv(Target,Pname,Params) ->
cast(5254, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link texEnvfv/3}
-spec texEnviv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texEnviv(Target,Pname,Params) ->
cast(5255, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc Return texture environment parameters
%%
%% ``gl:getTexEnv'' returns in `Params' selected values of a texture environment that
%% was specified with {@link gl:texEnvfv/3} . `Target' specifies a texture environment.
%%
%% When `Target' is `?GL_TEXTURE_FILTER_CONTROL', `Pname' must be `?GL_TEXTURE_LOD_BIAS'
%% . When `Target' is `?GL_POINT_SPRITE', `Pname' must be `?GL_COORD_REPLACE'
%% . When `Target' is `?GL_TEXTURE_ENV', `Pname' can be `?GL_TEXTURE_ENV_MODE'
%% , `?GL_TEXTURE_ENV_COLOR', `?GL_COMBINE_RGB', `?GL_COMBINE_ALPHA', `?GL_RGB_SCALE'
%% , `?GL_ALPHA_SCALE', `?GL_SRC0_RGB', `?GL_SRC1_RGB', `?GL_SRC2_RGB',
%% `?GL_SRC0_ALPHA', `?GL_SRC1_ALPHA', or `?GL_SRC2_ALPHA'.
%%
%% `Pname' names a specific texture environment parameter, as follows:
%%
%% `?GL_TEXTURE_ENV_MODE': `Params' returns the single-valued texture environment
%% mode, a symbolic constant. The initial value is `?GL_MODULATE'.
%%
%% `?GL_TEXTURE_ENV_COLOR': `Params' returns four integer or floating-point values
%% that are the texture environment color. Integer values, when requested, are linearly mapped
%% from the internal floating-point representation such that 1.0 maps to the most positive
%% representable integer, and -1.0 maps to the most negative representable integer. The
%% initial value is (0, 0, 0, 0).
%%
%% `?GL_TEXTURE_LOD_BIAS': `Params' returns a single floating-point value that
%% is the texture level-of-detail bias. The initial value is 0.
%%
%% `?GL_COMBINE_RGB': `Params' returns a single symbolic constant value representing
%% the current RGB combine mode. The initial value is `?GL_MODULATE'.
%%
%% `?GL_COMBINE_ALPHA': `Params' returns a single symbolic constant value representing
%% the current alpha combine mode. The initial value is `?GL_MODULATE'.
%%
%% `?GL_SRC0_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner zero's RGB source. The initial value is `?GL_TEXTURE'.
%%
%% `?GL_SRC1_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner one's RGB source. The initial value is `?GL_PREVIOUS'.
%%
%% `?GL_SRC2_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner two's RGB source. The initial value is `?GL_CONSTANT'.
%%
%% `?GL_SRC0_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner zero's alpha source. The initial value is `?GL_TEXTURE'.
%%
%% `?GL_SRC1_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner one's alpha source. The initial value is `?GL_PREVIOUS'.
%%
%% `?GL_SRC2_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner two's alpha source. The initial value is `?GL_CONSTANT'.
%%
%% `?GL_OPERAND0_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner zero's RGB operand. The initial value is `?GL_SRC_COLOR'.
%%
%% `?GL_OPERAND1_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner one's RGB operand. The initial value is `?GL_SRC_COLOR'.
%%
%% `?GL_OPERAND2_RGB': `Params' returns a single symbolic constant value representing
%% the texture combiner two's RGB operand. The initial value is `?GL_SRC_ALPHA'.
%%
%% `?GL_OPERAND0_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner zero's alpha operand. The initial value is `?GL_SRC_ALPHA'.
%%
%% `?GL_OPERAND1_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner one's alpha operand. The initial value is `?GL_SRC_ALPHA'.
%%
%% `?GL_OPERAND2_ALPHA': `Params' returns a single symbolic constant value representing
%% the texture combiner two's alpha operand. The initial value is `?GL_SRC_ALPHA'.
%%
%% `?GL_RGB_SCALE': `Params' returns a single floating-point value representing
%% the current RGB texture combiner scaling factor. The initial value is 1.0.
%%
%% `?GL_ALPHA_SCALE': `Params' returns a single floating-point value representing
%% the current alpha texture combiner scaling factor. The initial value is 1.0.
%%
%% `?GL_COORD_REPLACE': `Params' returns a single boolean value representing the
%% current point sprite texture coordinate replacement enable state. The initial value is `?GL_FALSE'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexEnv.xml">external</a> documentation.
-spec getTexEnvfv(Target, Pname) -> {float(),float(),float(),float()} when Target :: enum(),Pname :: enum().
getTexEnvfv(Target,Pname) ->
call(5256, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getTexEnvfv/2}
-spec getTexEnviv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getTexEnviv(Target,Pname) ->
call(5257, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Set texture parameters
%%
%% ``gl:texParameter'' assigns the value or values in `Params' to the texture parameter
%% specified as `Pname' . `Target' defines the target texture, either `?GL_TEXTURE_1D'
%% , `?GL_TEXTURE_2D', `?GL_TEXTURE_1D_ARRAY', `?GL_TEXTURE_2D_ARRAY', `?GL_TEXTURE_RECTANGLE'
%% , or `?GL_TEXTURE_3D'. The following symbols are accepted in `Pname' :
%%
%% `?GL_TEXTURE_BASE_LEVEL': Specifies the index of the lowest defined mipmap level.
%% This is an integer value. The initial value is 0.
%%
%%
%%
%% `?GL_TEXTURE_BORDER_COLOR': The data in `Params' specifies four values that
%% define the border values that should be used for border texels. If a texel is sampled
%% from the border of the texture, the values of `?GL_TEXTURE_BORDER_COLOR' are interpreted
%% as an RGBA color to match the texture's internal format and substituted for the non-existent
%% texel data. If the texture contains depth components, the first component of `?GL_TEXTURE_BORDER_COLOR'
%% is interpreted as a depth value. The initial value is ( 0.0, 0.0, 0.0, 0.0 ).
%%
%% If the values for `?GL_TEXTURE_BORDER_COLOR' are specified with ``gl:texParameterIiv''
%% or ``gl:texParameterIuiv'', the values are stored unmodified with an internal data
%% type of integer. If specified with ``gl:texParameteriv'', they are converted to floating
%% point with the following equation: f=2 c+1 2 b-/1. If specified with ``gl:texParameterfv''
%% , they are stored unmodified as floating-point values.
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r<=(D t) r>(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
%% result={1.0 0.0 r>=(D t) r<(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r<(D t) r>=(D t))</td></tr><tr><td>`?GL_GREATER'
%% </td><td> result={1.0 0.0 r>(D t) r<=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&ne;
%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
%% </td><td> result={1.0 0.0 r&ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the depth texture value sampled from the
%% currently bound depth texture. result is assigned to the the red channel.
%%
%% `?GL_TEXTURE_COMPARE_MODE': Specifies the texture comparison mode for currently
%% bound depth textures. That is, a texture whose internal format is `?GL_DEPTH_COMPONENT_*'
%% ; see {@link gl:texImage2D/9} ) Permissible values are:
%%
%% `?GL_COMPARE_REF_TO_TEXTURE': Specifies that the interpolated and clamped r texture
%% coordinate should be compared to the value in the currently bound depth texture. See the
%% discussion of `?GL_TEXTURE_COMPARE_FUNC' for details of how the comparison is evaluated.
%% The result of the comparison is assigned to the red channel.
%%
%% `?GL_NONE': Specifies that the red channel should be assigned the appropriate value
%% from the currently bound depth texture.
%%
%% `?GL_TEXTURE_LOD_BIAS': `Params' specifies a fixed bias value that is to be
%% added to the level-of-detail parameter for the texture before texture sampling. The specified
%% value is added to the shader-supplied bias value (if any) and subsequently clamped into
%% the implementation-defined range [( - bias max)(bias max)], where bias max is the value of the implementation
%% defined constant `?GL_MAX_TEXTURE_LOD_BIAS'. The initial value is 0.0.
%%
%% `?GL_TEXTURE_MIN_FILTER': The texture minifying function is used whenever the level-of-detail
%% function used when sampling from the texture determines that the texture should be minified.
%% There are six defined minifying functions. Two of them use either the nearest texture
%% elements or a weighted average of multiple texture elements to compute the texture value.
%% The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
%% `?GL_NEAREST': Returns the value of the texture element that is nearest (in Manhattan
%% distance) to the specified texture coordinates.
%%
%% `?GL_LINEAR': Returns the weighted average of the four texture elements that are
%% closest to the specified texture coordinates. These can include items wrapped or repeated
%% from other parts of a texture, depending on the values of `?GL_TEXTURE_WRAP_S' and `?GL_TEXTURE_WRAP_T'
%% , and on the exact mapping.
%%
%% `?GL_NEAREST_MIPMAP_NEAREST': Chooses the mipmap that most closely matches the size
%% of the pixel being textured and uses the `?GL_NEAREST' criterion (the texture element
%% closest to the specified texture coordinates) to produce a texture value.
%%
%% `?GL_LINEAR_MIPMAP_NEAREST': Chooses the mipmap that most closely matches the size
%% of the pixel being textured and uses the `?GL_LINEAR' criterion (a weighted average
%% of the four texture elements that are closest to the specified texture coordinates) to
%% produce a texture value.
%%
%% `?GL_NEAREST_MIPMAP_LINEAR': Chooses the two mipmaps that most closely match the
%% size of the pixel being textured and uses the `?GL_NEAREST' criterion (the texture
%% element closest to the specified texture coordinates ) to produce a texture value from
%% each mipmap. The final texture value is a weighted average of those two values.
%%
%% `?GL_LINEAR_MIPMAP_LINEAR': Chooses the two mipmaps that most closely match the
%% size of the pixel being textured and uses the `?GL_LINEAR' criterion (a weighted
%% average of the texture elements that are closest to the specified texture coordinates)
%% to produce a texture value from each mipmap. The final texture value is a weighted average
%% of those two values.
%%
%% As more texture elements are sampled in the minification process, fewer aliasing artifacts
%% will be apparent. While the `?GL_NEAREST' and `?GL_LINEAR' minification functions
%% can be faster than the other four, they sample only one or multiple texture elements to
%% determine the texture value of the pixel being rendered and can produce moire patterns
%% or ragged transitions. The initial value of `?GL_TEXTURE_MIN_FILTER' is `?GL_NEAREST_MIPMAP_LINEAR'
%% .
%%
%%
%%
%% `?GL_TEXTURE_MAG_FILTER': The texture magnification function is used whenever the
%% level-of-detail function used when sampling from the texture determines that the texture
%% should be magified. It sets the texture magnification function to either `?GL_NEAREST'
%% or `?GL_LINEAR' (see below). `?GL_NEAREST' is generally faster than `?GL_LINEAR'
%% , but it can produce textured images with sharper edges because the transition between
%% texture elements is not as smooth. The initial value of `?GL_TEXTURE_MAG_FILTER' is `?GL_LINEAR'
%% .
%%
%% `?GL_NEAREST': Returns the value of the texture element that is nearest (in Manhattan
%% distance) to the specified texture coordinates.
%%
%% `?GL_LINEAR': Returns the weighted average of the texture elements that are closest
%% to the specified texture coordinates. These can include items wrapped or repeated from
%% other parts of a texture, depending on the values of `?GL_TEXTURE_WRAP_S' and `?GL_TEXTURE_WRAP_T'
%% , and on the exact mapping.
%%
%%
%%
%% `?GL_TEXTURE_MIN_LOD': Sets the minimum level-of-detail parameter. This floating-point
%% value limits the selection of highest resolution mipmap (lowest mipmap level). The initial
%% value is -1000.
%%
%%
%%
%% `?GL_TEXTURE_MAX_LOD': Sets the maximum level-of-detail parameter. This floating-point
%% value limits the selection of the lowest resolution mipmap (highest mipmap level). The
%% initial value is 1000.
%%
%%
%%
%% `?GL_TEXTURE_MAX_LEVEL': Sets the index of the highest defined mipmap level. This
%% is an integer value. The initial value is 1000.
%%
%%
%%
%% `?GL_TEXTURE_SWIZZLE_R': Sets the swizzle that will be applied to the r component
%% of a texel before it is returned to the shader. Valid values for `Param' are `?GL_RED'
%% , `?GL_GREEN', `?GL_BLUE', `?GL_ALPHA', `?GL_ZERO' and `?GL_ONE'.
%% If `?GL_TEXTURE_SWIZZLE_R' is `?GL_RED', the value for r will be taken from
%% the first channel of the fetched texel. If `?GL_TEXTURE_SWIZZLE_R' is `?GL_GREEN'
%% , the value for r will be taken from the second channel of the fetched texel. If `?GL_TEXTURE_SWIZZLE_R'
%% is `?GL_BLUE', the value for r will be taken from the third channel of the fetched
%% texel. If `?GL_TEXTURE_SWIZZLE_R' is `?GL_ALPHA', the value for r will be taken
%% from the fourth channel of the fetched texel. If `?GL_TEXTURE_SWIZZLE_R' is `?GL_ZERO'
%% , the value for r will be subtituted with 0.0. If `?GL_TEXTURE_SWIZZLE_R' is `?GL_ONE'
%% , the value for r will be subtituted with 1.0. The initial value is `?GL_RED'.
%%
%%
%%
%% `?GL_TEXTURE_SWIZZLE_G': Sets the swizzle that will be applied to the g component
%% of a texel before it is returned to the shader. Valid values for `Param' and their
%% effects are similar to those of `?GL_TEXTURE_SWIZZLE_R'. The initial value is `?GL_GREEN'
%% .
%%
%%
%%
%% `?GL_TEXTURE_SWIZZLE_B': Sets the swizzle that will be applied to the b component
%% of a texel before it is returned to the shader. Valid values for `Param' and their
%% effects are similar to those of `?GL_TEXTURE_SWIZZLE_R'. The initial value is `?GL_BLUE'
%% .
%%
%%
%%
%% `?GL_TEXTURE_SWIZZLE_A': Sets the swizzle that will be applied to the a component
%% of a texel before it is returned to the shader. Valid values for `Param' and their
%% effects are similar to those of `?GL_TEXTURE_SWIZZLE_R'. The initial value is `?GL_ALPHA'
%% .
%%
%%
%%
%% `?GL_TEXTURE_SWIZZLE_RGBA': Sets the swizzles that will be applied to the r, g,
%% b, and a components of a texel before they are returned to the shader. Valid values for `Params'
%% and their effects are similar to those of `?GL_TEXTURE_SWIZZLE_R', except that all
%% channels are specified simultaneously. Setting the value of `?GL_TEXTURE_SWIZZLE_RGBA'
%% is equivalent (assuming no errors are generated) to setting the parameters of each of `?GL_TEXTURE_SWIZZLE_R'
%% , `?GL_TEXTURE_SWIZZLE_G', `?GL_TEXTURE_SWIZZLE_B', and `?GL_TEXTURE_SWIZZLE_A'
%% successively.
%%
%%
%%
%% `?GL_TEXTURE_WRAP_S': Sets the wrap parameter for texture coordinate s to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_CLAMP_TO_BORDER', `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. `?GL_CLAMP_TO_EDGE'
%% causes s coordinates to be clamped to the range [(1 2/N) 1-(1 2/N)], where N is the size of the texture
%% in the direction of clamping. `?GL_CLAMP_TO_BORDER' evaluates s coordinates in a
%% similar manner to `?GL_CLAMP_TO_EDGE'. However, in cases where clamping would have
%% occurred in `?GL_CLAMP_TO_EDGE' mode, the fetched texel data is substituted with
%% the values specified by `?GL_TEXTURE_BORDER_COLOR'. `?GL_REPEAT' causes the
%% integer part of the s coordinate to be ignored; the GL uses only the fractional part,
%% thereby creating a repeating pattern. `?GL_MIRRORED_REPEAT' causes the s coordinate
%% to be set to the fractional part of the texture coordinate if the integer part of s
%% is even; if the integer part of s is odd, then the s texture coordinate is set to 1-
%% frac(s), where frac(s) represents the fractional part of s. Initially, `?GL_TEXTURE_WRAP_S'
%% is set to `?GL_REPEAT'.
%%
%%
%%
%% `?GL_TEXTURE_WRAP_T': Sets the wrap parameter for texture coordinate t to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_CLAMP_TO_BORDER', `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. See the
%% discussion under `?GL_TEXTURE_WRAP_S'. Initially, `?GL_TEXTURE_WRAP_T' is set
%% to `?GL_REPEAT'.
%%
%%
%%
%% `?GL_TEXTURE_WRAP_R': Sets the wrap parameter for texture coordinate r to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_CLAMP_TO_BORDER', `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. See the
%% discussion under `?GL_TEXTURE_WRAP_S'. Initially, `?GL_TEXTURE_WRAP_R' is set
%% to `?GL_REPEAT'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexParameter.xml">external</a> documentation.
-spec texParameterf(Target, Pname, Param) -> 'ok' when Target :: enum(),Pname :: enum(),Param :: float().
texParameterf(Target,Pname,Param) ->
cast(5258, <<Target:?GLenum,Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link texParameterf/3}
-spec texParameteri(Target, Pname, Param) -> 'ok' when Target :: enum(),Pname :: enum(),Param :: integer().
texParameteri(Target,Pname,Param) ->
cast(5259, <<Target:?GLenum,Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link texParameterf/3}
-spec texParameterfv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texParameterfv(Target,Pname,Params) ->
cast(5260, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link texParameterf/3}
-spec texParameteriv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texParameteriv(Target,Pname,Params) ->
cast(5261, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc Return texture parameter values
%%
%% ``gl:getTexParameter'' returns in `Params' the value or values of the texture parameter
%% specified as `Pname' . `Target' defines the target texture. `?GL_TEXTURE_1D',
%% `?GL_TEXTURE_2D', `?GL_TEXTURE_3D', `?GL_TEXTURE_1D_ARRAY', `?GL_TEXTURE_2D_ARRAY'
%% , `?GL_TEXTURE_RECTANGLE', `?GL_TEXTURE_CUBE_MAP', `?GL_TEXTURE_CUBE_MAP_ARRAY'
%% specify one-, two-, or three-dimensional, one-dimensional array, two-dimensional array,
%% rectangle, cube-mapped or cube-mapped array texturing, respectively. `Pname' accepts
%% the same symbols as {@link gl:texParameterf/3} , with the same interpretations:
%%
%% `?GL_TEXTURE_MAG_FILTER': Returns the single-valued texture magnification filter,
%% a symbolic constant. The initial value is `?GL_LINEAR'.
%%
%% `?GL_TEXTURE_MIN_FILTER': Returns the single-valued texture minification filter,
%% a symbolic constant. The initial value is `?GL_NEAREST_MIPMAP_LINEAR'.
%%
%% `?GL_TEXTURE_MIN_LOD': Returns the single-valued texture minimum level-of-detail
%% value. The initial value is -1000.
%%
%% `?GL_TEXTURE_MAX_LOD': Returns the single-valued texture maximum level-of-detail
%% value. The initial value is 1000.
%%
%% `?GL_TEXTURE_BASE_LEVEL': Returns the single-valued base texture mipmap level. The
%% initial value is 0.
%%
%% `?GL_TEXTURE_MAX_LEVEL': Returns the single-valued maximum texture mipmap array
%% level. The initial value is 1000.
%%
%% `?GL_TEXTURE_SWIZZLE_R': Returns the red component swizzle. The initial value is `?GL_RED'
%% .
%%
%% `?GL_TEXTURE_SWIZZLE_G': Returns the green component swizzle. The initial value is `?GL_GREEN'
%% .
%%
%% `?GL_TEXTURE_SWIZZLE_B': Returns the blue component swizzle. The initial value is `?GL_BLUE'
%% .
%%
%% `?GL_TEXTURE_SWIZZLE_A': Returns the alpha component swizzle. The initial value is `?GL_ALPHA'
%% .
%%
%% `?GL_TEXTURE_SWIZZLE_RGBA': Returns the component swizzle for all channels in a
%% single query.
%%
%% `?GL_TEXTURE_WRAP_S': Returns the single-valued wrapping function for texture coordinate
%% s, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_WRAP_T': Returns the single-valued wrapping function for texture coordinate
%% t, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_WRAP_R': Returns the single-valued wrapping function for texture coordinate
%% r, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_BORDER_COLOR': Returns four integer or floating-point numbers that
%% comprise the RGBA color of the texture border. Floating-point values are returned in the
%% range [0 1]. Integer values are returned as a linear mapping of the internal floating-point
%% representation such that 1.0 maps to the most positive representable integer and -1.0
%% maps to the most negative representable integer. The initial value is (0, 0, 0, 0).
%%
%% `?GL_TEXTURE_COMPARE_MODE': Returns a single-valued texture comparison mode, a symbolic
%% constant. The initial value is `?GL_NONE'. See {@link gl:texParameterf/3} .
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Returns a single-valued texture comparison function,
%% a symbolic constant. The initial value is `?GL_LEQUAL'. See {@link gl:texParameterf/3} .
%%
%%
%% In addition to the parameters that may be set with {@link gl:texParameterf/3} , ``gl:getTexParameter''
%% accepts the following read-only parameters:
%%
%% `?GL_TEXTURE_IMMUTABLE_FORMAT': Returns non-zero if the texture has an immutable
%% format. Textures become immutable if their storage is specified with {@link gl:texStorage1D/4}
%% , {@link gl:texStorage2D/5} or {@link gl:texStorage3D/6} . The initial value is `?GL_FALSE'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexParameter.xml">external</a> documentation.
-spec getTexParameterfv(Target, Pname) -> {float(),float(),float(),float()} when Target :: enum(),Pname :: enum().
getTexParameterfv(Target,Pname) ->
call(5262, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getTexParameterfv/2}
-spec getTexParameteriv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getTexParameteriv(Target,Pname) ->
call(5263, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Return texture parameter values for a specific level of detail
%%
%% ``gl:getTexLevelParameter'' returns in `Params' texture parameter values for a
%% specific level-of-detail value, specified as `Level' . `Target' defines the target
%% texture, either `?GL_TEXTURE_1D', `?GL_TEXTURE_2D', `?GL_TEXTURE_3D', `?GL_PROXY_TEXTURE_1D'
%% , `?GL_PROXY_TEXTURE_2D', `?GL_PROXY_TEXTURE_3D', `?GL_TEXTURE_CUBE_MAP_POSITIVE_X'
%% , `?GL_TEXTURE_CUBE_MAP_NEGATIVE_X', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Y', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y'
%% , `?GL_TEXTURE_CUBE_MAP_POSITIVE_Z', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z', or `?GL_PROXY_TEXTURE_CUBE_MAP'
%% .
%%
%% `?GL_MAX_TEXTURE_SIZE', and `?GL_MAX_3D_TEXTURE_SIZE' are not really descriptive
%% enough. It has to report the largest square texture image that can be accommodated with
%% mipmaps and borders, but a long skinny texture, or a texture without mipmaps and borders,
%% may easily fit in texture memory. The proxy targets allow the user to more accurately
%% query whether the GL can accommodate a texture of a given configuration. If the texture
%% cannot be accommodated, the texture state variables, which may be queried with ``gl:getTexLevelParameter''
%% , are set to 0. If the texture can be accommodated, the texture state values will be set
%% as they would be set for a non-proxy target.
%%
%% `Pname' specifies the texture parameter whose value or values will be returned.
%%
%% The accepted parameter names are as follows:
%%
%% `?GL_TEXTURE_WIDTH': `Params' returns a single value, the width of the texture
%% image. This value includes the border of the texture image. The initial value is 0.
%%
%% `?GL_TEXTURE_HEIGHT': `Params' returns a single value, the height of the texture
%% image. This value includes the border of the texture image. The initial value is 0.
%%
%% `?GL_TEXTURE_DEPTH': `Params' returns a single value, the depth of the texture
%% image. This value includes the border of the texture image. The initial value is 0.
%%
%% `?GL_TEXTURE_INTERNAL_FORMAT': `Params' returns a single value, the internal
%% format of the texture image.
%%
%% `?GL_TEXTURE_RED_TYPE',
%%
%% `?GL_TEXTURE_GREEN_TYPE',
%%
%% `?GL_TEXTURE_BLUE_TYPE',
%%
%% `?GL_TEXTURE_ALPHA_TYPE',
%%
%% `?GL_TEXTURE_DEPTH_TYPE': The data type used to store the component. The types `?GL_NONE'
%% , `?GL_SIGNED_NORMALIZED', `?GL_UNSIGNED_NORMALIZED', `?GL_FLOAT', `?GL_INT'
%% , and `?GL_UNSIGNED_INT' may be returned to indicate signed normalized fixed-point,
%% unsigned normalized fixed-point, floating-point, integer unnormalized, and unsigned integer
%% unnormalized components, respectively.
%%
%% `?GL_TEXTURE_RED_SIZE',
%%
%% `?GL_TEXTURE_GREEN_SIZE',
%%
%% `?GL_TEXTURE_BLUE_SIZE',
%%
%% `?GL_TEXTURE_ALPHA_SIZE',
%%
%% `?GL_TEXTURE_DEPTH_SIZE': The internal storage resolution of an individual component.
%% The resolution chosen by the GL will be a close match for the resolution requested by
%% the user with the component argument of {@link gl:texImage1D/8} , {@link gl:texImage2D/9} , {@link gl:texImage3D/10}
%% , {@link gl:copyTexImage1D/7} , and {@link gl:copyTexImage2D/8} . The initial value is 0.
%%
%% `?GL_TEXTURE_COMPRESSED': `Params' returns a single boolean value indicating
%% if the texture image is stored in a compressed internal format. The initiali value is `?GL_FALSE'
%% .
%%
%% `?GL_TEXTURE_COMPRESSED_IMAGE_SIZE': `Params' returns a single integer value,
%% the number of unsigned bytes of the compressed texture image that would be returned from {@link gl:getCompressedTexImage/3}
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexLevelParameter.xml">external</a> documentation.
-spec getTexLevelParameterfv(Target, Level, Pname) -> {float()} when Target :: enum(),Level :: integer(),Pname :: enum().
getTexLevelParameterfv(Target,Level,Pname) ->
call(5264, <<Target:?GLenum,Level:?GLint,Pname:?GLenum>>).
%% @doc
%% See {@link getTexLevelParameterfv/3}
-spec getTexLevelParameteriv(Target, Level, Pname) -> {integer()} when Target :: enum(),Level :: integer(),Pname :: enum().
getTexLevelParameteriv(Target,Level,Pname) ->
call(5265, <<Target:?GLenum,Level:?GLint,Pname:?GLenum>>).
%% @doc Specify a one-dimensional texture image
%%
%% Texturing maps a portion of a specified texture image onto each graphical primitive for
%% which texturing is enabled. To enable and disable one-dimensional texturing, call {@link gl:enable/1}
%% and {@link gl:enable/1} with argument `?GL_TEXTURE_1D'.
%%
%% Texture images are defined with ``gl:texImage1D''. The arguments describe the parameters
%% of the texture image, such as width, width of the border, level-of-detail number (see {@link gl:texParameterf/3}
%% ), and the internal resolution and format used to store the image. The last three arguments
%% describe how the image is represented in memory.
%%
%% If `Target' is `?GL_PROXY_TEXTURE_1D', no data is read from `Data' , but
%% all of the texture image state is recalculated, checked for consistency, and checked against
%% the implementation's capabilities. If the implementation cannot handle a texture of the
%% requested texture size, it sets all of the image state to 0, but does not generate an
%% error (see {@link gl:getError/0} ). To query for an entire mipmap array, use an image array
%% level greater than or equal to 1.
%%
%% If `Target' is `?GL_TEXTURE_1D', data is read from `Data' as a sequence
%% of signed or unsigned bytes, shorts, or longs, or single-precision floating-point values,
%% depending on `Type' . These values are grouped into sets of one, two, three, or four
%% values, depending on `Format' , to form elements. Each data byte is treated as eight
%% 1-bit elements, with bit ordering determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2}
%% ).
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% The first element corresponds to the left end of the texture array. Subsequent elements
%% progress left-to-right through the remaining texels in the texture array. The final element
%% corresponds to the right end of the texture array.
%%
%% `Format' determines the composition of each element in `Data' . It can assume
%% one of these symbolic values:
%%
%% `?GL_RED': Each element is a single red component. The GL converts it to floating
%% point and assembles it into an RGBA element by attaching 0 for green and blue, and 1 for
%% alpha. Each component is then multiplied by the signed scale factor `?GL_c_SCALE',
%% added to the signed bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RG': Each element is a single red/green double The GL converts it to floating
%% point and assembles it into an RGBA element by attaching 0 for blue, and 1 for alpha.
%% Each component is then multiplied by the signed scale factor `?GL_c_SCALE', added
%% to the signed bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RGB'
%%
%% `?GL_BGR': Each element is an RGB triple. The GL converts it to floating point and
%% assembles it into an RGBA element by attaching 1 for alpha. Each component is then multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% `?GL_RGBA'
%%
%% `?GL_BGRA': Each element contains all four components. Each component is multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% `?GL_DEPTH_COMPONENT': Each element is a single depth value. The GL converts it
%% to floating point, multiplies by the signed scale factor `?GL_DEPTH_SCALE', adds
%% the signed bias `?GL_DEPTH_BIAS', and clamps to the range [0,1].
%%
%% If an application wants to store the texture at a certain resolution or in a certain
%% format, it can request the resolution and format with `InternalFormat' . The GL will
%% choose an internal representation that closely approximates that requested by `InternalFormat'
%% , but it may not match exactly. (The representations specified by `?GL_RED', `?GL_RG'
%% , `?GL_RGB' and `?GL_RGBA' must match exactly.)
%%
%% `InternalFormat' may be one of the base internal formats shown in Table 1, below
%%
%% `InternalFormat' may also be one of the sized internal formats shown in Table 2,
%% below
%%
%% Finally, `InternalFormat' may also be one of the generic or compressed compressed
%% texture formats shown in Table 3 below
%%
%% If the `InternalFormat' parameter is one of the generic compressed formats, `?GL_COMPRESSED_RED'
%% , `?GL_COMPRESSED_RG', `?GL_COMPRESSED_RGB', or `?GL_COMPRESSED_RGBA',
%% the GL will replace the internal format with the symbolic constant for a specific internal
%% format and compress the texture before storage. If no corresponding internal format is
%% available, or the GL can not compress that image for any reason, the internal format is
%% instead replaced with a corresponding base internal format.
%%
%% If the `InternalFormat' parameter is `?GL_SRGB', `?GL_SRGB8', `?GL_SRGB_ALPHA'
%% or `?GL_SRGB8_ALPHA8', the texture is treated as if the red, green, or blue components
%% are encoded in the sRGB color space. Any alpha component is left unchanged. The conversion
%% from the sRGB encoded component c s to a linear component c l is:
%%
%% c l={ c s/12.92if c s&le; 0.04045( c s+0.055/1.055) 2.4if c s> 0.04045
%%
%% Assume c s is the sRGB component in the range [0,1].
%%
%% Use the `?GL_PROXY_TEXTURE_1D' target to try out a resolution and format. The implementation
%% will update and recompute its best match for the requested storage resolution and format.
%% To then query this state, call {@link gl:getTexLevelParameterfv/3} . If the texture cannot
%% be accommodated, texture state is set to 0.
%%
%% A one-component texture image uses only the red component of the RGBA color from `Data'
%% . A two-component image uses the R and A values. A three-component image uses the R, G,
%% and B values. A four-component image uses all of the RGBA components.
%%
%% Image-based shadowing can be enabled by comparing texture r coordinates to depth texture
%% values to generate a boolean result. See {@link gl:texParameterf/3} for details on texture
%% comparison.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexImage1D.xml">external</a> documentation.
-spec texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),InternalFormat :: integer(),Width :: integer(),Border :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texImage1D(Target,Level,InternalFormat,Width,Border,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5266, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texImage1D(Target,Level,InternalFormat,Width,Border,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5267, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum>>).
%% @doc Specify a two-dimensional texture image
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% To define texture images, call ``gl:texImage2D''. The arguments describe the parameters
%% of the texture image, such as height, width, width of the border, level-of-detail number
%% (see {@link gl:texParameterf/3} ), and number of color components provided. The last three
%% arguments describe how the image is represented in memory.
%%
%% If `Target' is `?GL_PROXY_TEXTURE_2D', `?GL_PROXY_TEXTURE_1D_ARRAY', `?GL_PROXY_TEXTURE_CUBE_MAP'
%% , or `?GL_PROXY_TEXTURE_RECTANGLE', no data is read from `Data' , but all of
%% the texture image state is recalculated, checked for consistency, and checked against
%% the implementation's capabilities. If the implementation cannot handle a texture of the
%% requested texture size, it sets all of the image state to 0, but does not generate an
%% error (see {@link gl:getError/0} ). To query for an entire mipmap array, use an image array
%% level greater than or equal to 1.
%%
%% If `Target' is `?GL_TEXTURE_2D', `?GL_TEXTURE_RECTANGLE' or one of the `?GL_TEXTURE_CUBE_MAP'
%% targets, data is read from `Data' as a sequence of signed or unsigned bytes, shorts,
%% or longs, or single-precision floating-point values, depending on `Type' . These values
%% are grouped into sets of one, two, three, or four values, depending on `Format' ,
%% to form elements. Each data byte is treated as eight 1-bit elements, with bit ordering
%% determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2} ).
%%
%% If `Target' is `?GL_TEXTURE_1D_ARRAY', data is interpreted as an array of one-dimensional
%% images.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% The first element corresponds to the lower left corner of the texture image. Subsequent
%% elements progress left-to-right through the remaining texels in the lowest row of the
%% texture image, and then in successively higher rows of the texture image. The final element
%% corresponds to the upper right corner of the texture image.
%%
%% `Format' determines the composition of each element in `Data' . It can assume
%% one of these symbolic values:
%%
%% `?GL_RED': Each element is a single red component. The GL converts it to floating
%% point and assembles it into an RGBA element by attaching 0 for green and blue, and 1 for
%% alpha. Each component is then multiplied by the signed scale factor `?GL_c_SCALE',
%% added to the signed bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RG': Each element is a red/green double. The GL converts it to floating point
%% and assembles it into an RGBA element by attaching 0 for blue, and 1 for alpha. Each component
%% is then multiplied by the signed scale factor `?GL_c_SCALE', added to the signed
%% bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RGB'
%%
%% `?GL_BGR': Each element is an RGB triple. The GL converts it to floating point and
%% assembles it into an RGBA element by attaching 1 for alpha. Each component is then multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% `?GL_RGBA'
%%
%% `?GL_BGRA': Each element contains all four components. Each component is multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% `?GL_DEPTH_COMPONENT': Each element is a single depth value. The GL converts it
%% to floating point, multiplies by the signed scale factor `?GL_DEPTH_SCALE', adds
%% the signed bias `?GL_DEPTH_BIAS', and clamps to the range [0,1].
%%
%% `?GL_DEPTH_STENCIL': Each element is a pair of depth and stencil values. The depth
%% component of the pair is interpreted as in `?GL_DEPTH_COMPONENT'. The stencil component
%% is interpreted based on specified the depth + stencil internal format.
%%
%% If an application wants to store the texture at a certain resolution or in a certain
%% format, it can request the resolution and format with `InternalFormat' . The GL will
%% choose an internal representation that closely approximates that requested by `InternalFormat'
%% , but it may not match exactly. (The representations specified by `?GL_RED', `?GL_RG'
%% , `?GL_RGB', and `?GL_RGBA' must match exactly.)
%%
%% `InternalFormat' may be one of the base internal formats shown in Table 1, below
%%
%% `InternalFormat' may also be one of the sized internal formats shown in Table 2,
%% below
%%
%% Finally, `InternalFormat' may also be one of the generic or compressed compressed
%% texture formats shown in Table 3 below
%%
%% If the `InternalFormat' parameter is one of the generic compressed formats, `?GL_COMPRESSED_RED'
%% , `?GL_COMPRESSED_RG', `?GL_COMPRESSED_RGB', or `?GL_COMPRESSED_RGBA',
%% the GL will replace the internal format with the symbolic constant for a specific internal
%% format and compress the texture before storage. If no corresponding internal format is
%% available, or the GL can not compress that image for any reason, the internal format is
%% instead replaced with a corresponding base internal format.
%%
%% If the `InternalFormat' parameter is `?GL_SRGB', `?GL_SRGB8', `?GL_SRGB_ALPHA'
%% , or `?GL_SRGB8_ALPHA8', the texture is treated as if the red, green, or blue components
%% are encoded in the sRGB color space. Any alpha component is left unchanged. The conversion
%% from the sRGB encoded component c s to a linear component c l is:
%%
%% c l={ c s/12.92if c s&le; 0.04045( c s+0.055/1.055) 2.4if c s> 0.04045
%%
%% Assume c s is the sRGB component in the range [0,1].
%%
%% Use the `?GL_PROXY_TEXTURE_2D', `?GL_PROXY_TEXTURE_1D_ARRAY', `?GL_PROXY_TEXTURE_RECTANGLE'
%% , or `?GL_PROXY_TEXTURE_CUBE_MAP' target to try out a resolution and format. The
%% implementation will update and recompute its best match for the requested storage resolution
%% and format. To then query this state, call {@link gl:getTexLevelParameterfv/3} . If the texture
%% cannot be accommodated, texture state is set to 0.
%%
%% A one-component texture image uses only the red component of the RGBA color extracted
%% from `Data' . A two-component image uses the R and G values. A three-component image
%% uses the R, G, and B values. A four-component image uses all of the RGBA components.
%%
%% Image-based shadowing can be enabled by comparing texture r coordinates to depth texture
%% values to generate a boolean result. See {@link gl:texParameterf/3} for details on texture
%% comparison.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexImage2D.xml">external</a> documentation.
-spec texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),InternalFormat :: integer(),Width :: integer(),Height :: integer(),Border :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texImage2D(Target,Level,InternalFormat,Width,Height,Border,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5268, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Height:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texImage2D(Target,Level,InternalFormat,Width,Height,Border,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5269, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Height:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum>>).
%% @doc Return a texture image
%%
%% ``gl:getTexImage'' returns a texture image into `Img' . `Target' specifies
%% whether the desired texture image is one specified by {@link gl:texImage1D/8} (`?GL_TEXTURE_1D'
%% ), {@link gl:texImage2D/9} (`?GL_TEXTURE_1D_ARRAY', `?GL_TEXTURE_RECTANGLE', `?GL_TEXTURE_2D'
%% or any of `?GL_TEXTURE_CUBE_MAP_*'), or {@link gl:texImage3D/10} (`?GL_TEXTURE_2D_ARRAY'
%% , `?GL_TEXTURE_3D'). `Level' specifies the level-of-detail number of the desired
%% image. `Format' and `Type' specify the format and type of the desired image
%% array. See the reference page for {@link gl:texImage1D/8} for a description of the acceptable
%% values for the `Format' and `Type' parameters, respectively.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is requested, `Img' is treated
%% as a byte offset into the buffer object's data store.
%%
%% To understand the operation of ``gl:getTexImage'', consider the selected internal four-component
%% texture image to be an RGBA color buffer the size of the image. The semantics of ``gl:getTexImage''
%% are then identical to those of {@link gl:readPixels/7} , with the exception that no pixel
%% transfer operations are performed, when called with the same `Format' and `Type' ,
%% with `x' and `y' set to 0, `width' set to the width of the texture image
%% and `height' set to 1 for 1D images, or to the height of the texture image for 2D
%% images.
%%
%% If the selected texture image does not contain four components, the following mappings
%% are applied. Single-component textures are treated as RGBA buffers with red set to the
%% single-component value, green set to 0, blue set to 0, and alpha set to 1. Two-component
%% textures are treated as RGBA buffers with red set to the value of component zero, alpha
%% set to the value of component one, and green and blue set to 0. Finally, three-component
%% textures are treated as RGBA buffers with red set to component zero, green set to component
%% one, blue set to component two, and alpha set to 1.
%%
%% To determine the required size of `Img' , use {@link gl:getTexLevelParameterfv/3} to
%% determine the dimensions of the internal texture image, then scale the required number
%% of pixels by the storage required for each pixel, based on `Format' and `Type' .
%% Be sure to take the pixel storage parameters into account, especially `?GL_PACK_ALIGNMENT'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexImage.xml">external</a> documentation.
-spec getTexImage(Target, Level, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),Format :: enum(),Type :: enum(),Pixels :: mem().
getTexImage(Target,Level,Format,Type,Pixels) ->
send_bin(Pixels),
call(5270, <<Target:?GLenum,Level:?GLint,Format:?GLenum,Type:?GLenum>>).
%% @doc Generate texture names
%%
%% ``gl:genTextures'' returns `N' texture names in `Textures' . There is no guarantee
%% that the names form a contiguous set of integers; however, it is guaranteed that none
%% of the returned names was in use immediately before the call to ``gl:genTextures''.
%%
%% The generated textures have no dimensionality; they assume the dimensionality of the
%% texture target to which they are first bound (see {@link gl:bindTexture/2} ).
%%
%% Texture names returned by a call to ``gl:genTextures'' are not returned by subsequent
%% calls, unless they are first deleted with {@link gl:deleteTextures/1} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenTextures.xml">external</a> documentation.
-spec genTextures(N) -> [integer()] when N :: integer().
genTextures(N) ->
call(5271, <<N:?GLsizei>>).
%% @doc Delete named textures
%%
%% ``gl:deleteTextures'' deletes `N' textures named by the elements of the array `Textures'
%% . After a texture is deleted, it has no contents or dimensionality, and its name is free
%% for reuse (for example by {@link gl:genTextures/1} ). If a texture that is currently bound
%% is deleted, the binding reverts to 0 (the default texture).
%%
%% ``gl:deleteTextures'' silently ignores 0's and names that do not correspond to existing
%% textures.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteTextures.xml">external</a> documentation.
-spec deleteTextures(Textures) -> 'ok' when Textures :: [integer()].
deleteTextures(Textures) ->
cast(5272, <<(length(Textures)):?GLuint,
(<< <<C:?GLuint>> || C <- Textures>>)/binary,0:(((1+length(Textures)) rem 2)*32)>>).
%% @doc Bind a named texture to a texturing target
%%
%% ``gl:bindTexture'' lets you create or use a named texture. Calling ``gl:bindTexture''
%% with `Target' set to `?GL_TEXTURE_1D', `?GL_TEXTURE_2D', `?GL_TEXTURE_3D'
%% , or `?GL_TEXTURE_1D_ARRAY', `?GL_TEXTURE_2D_ARRAY', `?GL_TEXTURE_RECTANGLE'
%% , `?GL_TEXTURE_CUBE_MAP', `?GL_TEXTURE_2D_MULTISAMPLE' or `?GL_TEXTURE_2D_MULTISAMPLE_ARRAY'
%% and `Texture' set to the name of the new texture binds the texture name to the target.
%% When a texture is bound to a target, the previous binding for that target is automatically
%% broken.
%%
%% Texture names are unsigned integers. The value zero is reserved to represent the default
%% texture for each texture target. Texture names and the corresponding texture contents
%% are local to the shared object space of the current GL rendering context; two rendering
%% contexts share texture names only if they explicitly enable sharing between contexts through
%% the appropriate GL windows interfaces functions.
%%
%% You must use {@link gl:genTextures/1} to generate a set of new texture names.
%%
%% When a texture is first bound, it assumes the specified target: A texture first bound
%% to `?GL_TEXTURE_1D' becomes one-dimensional texture, a texture first bound to `?GL_TEXTURE_2D'
%% becomes two-dimensional texture, a texture first bound to `?GL_TEXTURE_3D' becomes
%% three-dimensional texture, a texture first bound to `?GL_TEXTURE_1D_ARRAY' becomes
%% one-dimensional array texture, a texture first bound to `?GL_TEXTURE_2D_ARRAY' becomes
%% two-dimensional arary texture, a texture first bound to `?GL_TEXTURE_RECTANGLE' becomes
%% rectangle texture, a, texture first bound to `?GL_TEXTURE_CUBE_MAP' becomes a cube-mapped
%% texture, a texture first bound to `?GL_TEXTURE_2D_MULTISAMPLE' becomes a two-dimensional
%% multisampled texture, and a texture first bound to `?GL_TEXTURE_2D_MULTISAMPLE_ARRAY'
%% becomes a two-dimensional multisampled array texture. The state of a one-dimensional texture
%% immediately after it is first bound is equivalent to the state of the default `?GL_TEXTURE_1D'
%% at GL initialization, and similarly for the other texture types.
%%
%% While a texture is bound, GL operations on the target to which it is bound affect the
%% bound texture, and queries of the target to which it is bound return state from the bound
%% texture. In effect, the texture targets become aliases for the textures currently bound
%% to them, and the texture name zero refers to the default textures that were bound to them
%% at initialization.
%%
%% A texture binding created with ``gl:bindTexture'' remains active until a different
%% texture is bound to the same target, or until the bound texture is deleted with {@link gl:deleteTextures/1}
%% .
%%
%% Once created, a named texture may be re-bound to its same original target as often as
%% needed. It is usually much faster to use ``gl:bindTexture'' to bind an existing named
%% texture to one of the texture targets than it is to reload the texture image using {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} or another similar function.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindTexture.xml">external</a> documentation.
-spec bindTexture(Target, Texture) -> 'ok' when Target :: enum(),Texture :: integer().
bindTexture(Target,Texture) ->
cast(5273, <<Target:?GLenum,Texture:?GLuint>>).
%% @doc Set texture residence priority
%%
%% ``gl:prioritizeTextures'' assigns the `N' texture priorities given in `Priorities'
%% to the `N' textures named in `Textures' .
%%
%% The GL establishes a ``working set'' of textures that are resident in texture memory.
%% These textures may be bound to a texture target much more efficiently than textures that
%% are not resident. By specifying a priority for each texture, ``gl:prioritizeTextures''
%% allows applications to guide the GL implementation in determining which textures should
%% be resident.
%%
%% The priorities given in `Priorities' are clamped to the range [0 1] before they are
%% assigned. 0 indicates the lowest priority; textures with priority 0 are least likely to
%% be resident. 1 indicates the highest priority; textures with priority 1 are most likely
%% to be resident. However, textures are not guaranteed to be resident until they are used.
%%
%% ``gl:prioritizeTextures'' silently ignores attempts to prioritize texture 0 or any texture
%% name that does not correspond to an existing texture.
%%
%% ``gl:prioritizeTextures'' does not require that any of the textures named by `Textures'
%% be bound to a texture target. {@link gl:texParameterf/3} may also be used to set a texture's
%% priority, but only if the texture is currently bound. This is the only way to set the
%% priority of a default texture.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPrioritizeTextures.xml">external</a> documentation.
-spec prioritizeTextures(Textures, Priorities) -> 'ok' when Textures :: [integer()],Priorities :: [clamp()].
prioritizeTextures(Textures,Priorities) ->
cast(5274, <<(length(Textures)):?GLuint,
(<< <<C:?GLuint>> || C <- Textures>>)/binary,0:(((1+length(Textures)) rem 2)*32),(length(Priorities)):?GLuint,
(<< <<C:?GLclampf>> || C <- Priorities>>)/binary,0:(((1+length(Priorities)) rem 2)*32)>>).
%% @doc Determine if textures are loaded in texture memory
%%
%% GL establishes a ``working set'' of textures that are resident in texture memory. These
%% textures can be bound to a texture target much more efficiently than textures that are
%% not resident.
%%
%% ``gl:areTexturesResident'' queries the texture residence status of the `N' textures
%% named by the elements of `Textures' . If all the named textures are resident, ``gl:areTexturesResident''
%% returns `?GL_TRUE', and the contents of `Residences' are undisturbed. If not
%% all the named textures are resident, ``gl:areTexturesResident'' returns `?GL_FALSE',
%% and detailed status is returned in the `N' elements of `Residences' . If an element
%% of `Residences' is `?GL_TRUE', then the texture named by the corresponding element
%% of `Textures' is resident.
%%
%% The residence status of a single bound texture may also be queried by calling {@link gl:getTexParameterfv/2}
%% with the `target' argument set to the target to which the texture is bound, and
%% the `pname' argument set to `?GL_TEXTURE_RESIDENT'. This is the only way that
%% the residence status of a default texture can be queried.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glAreTexturesResident.xml">external</a> documentation.
-spec areTexturesResident(Textures) -> {0|1,Residences :: [0|1]} when Textures :: [integer()].
areTexturesResident(Textures) ->
call(5275, <<(length(Textures)):?GLuint,
(<< <<C:?GLuint>> || C <- Textures>>)/binary,0:(((1+length(Textures)) rem 2)*32)>>).
%% @doc Determine if a name corresponds to a texture
%%
%% ``gl:isTexture'' returns `?GL_TRUE' if `Texture' is currently the name of
%% a texture. If `Texture' is zero, or is a non-zero value that is not currently the
%% name of a texture, or if an error occurs, ``gl:isTexture'' returns `?GL_FALSE'.
%%
%% A name returned by {@link gl:genTextures/1} , but not yet associated with a texture by
%% calling {@link gl:bindTexture/2} , is not the name of a texture.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsTexture.xml">external</a> documentation.
-spec isTexture(Texture) -> 0|1 when Texture :: integer().
isTexture(Texture) ->
call(5276, <<Texture:?GLuint>>).
%% @doc glTexSubImage
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexSubImage.xml">external</a> documentation.
-spec texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Width :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texSubImage1D(Target,Level,Xoffset,Width,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5277, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Width:?GLsizei,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texSubImage1D(Target,Level,Xoffset,Width,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5278, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Width:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc glTexSubImage
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexSubImage.xml">external</a> documentation.
-spec texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),Width :: integer(),Height :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texSubImage2D(Target,Level,Xoffset,Yoffset,Width,Height,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5279, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texSubImage2D(Target,Level,Xoffset,Yoffset,Width,Height,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5280, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Copy pixels into a 1D texture image
%%
%% ``gl:copyTexImage1D'' defines a one-dimensional texture image with pixels from the current
%% `?GL_READ_BUFFER'.
%%
%% The screen-aligned pixel row with left corner at (x y) and with a length of width+2(border) defines
%% the texture array at the mipmap level specified by `Level' . `Internalformat'
%% specifies the internal format of the texture array.
%%
%% The pixels in the row are processed exactly as if {@link gl:readPixels/7} had been called,
%% but the process stops just before final conversion. At this point all pixel component
%% values are clamped to the range [0 1] and then converted to the texture's internal format
%% for storage in the texel array.
%%
%% Pixel ordering is such that lower x screen coordinates correspond to lower texture
%% coordinates.
%%
%% If any of the pixels within the specified row of the current `?GL_READ_BUFFER' are
%% outside the window associated with the current rendering context, then the values obtained
%% for those pixels are undefined.
%%
%% ``gl:copyTexImage1D'' defines a one-dimensional texture image with pixels from the current
%% `?GL_READ_BUFFER'.
%%
%% When `Internalformat' is one of the sRGB types, the GL does not automatically convert
%% the source pixels to the sRGB color space. In this case, the ``gl:pixelMap'' function
%% can be used to accomplish the conversion.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyTexImage1D.xml">external</a> documentation.
-spec copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border) -> 'ok' when Target :: enum(),Level :: integer(),Internalformat :: enum(),X :: integer(),Y :: integer(),Width :: integer(),Border :: integer().
copyTexImage1D(Target,Level,Internalformat,X,Y,Width,Border) ->
cast(5281, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,X:?GLint,Y:?GLint,Width:?GLsizei,Border:?GLint>>).
%% @doc Copy pixels into a 2D texture image
%%
%% ``gl:copyTexImage2D'' defines a two-dimensional texture image, or cube-map texture image
%% with pixels from the current `?GL_READ_BUFFER'.
%%
%% The screen-aligned pixel rectangle with lower left corner at ( `X' , `Y' ) and
%% with a width of width+2(border) and a height of height+2(border) defines the texture array at the mipmap
%% level specified by `Level' . `Internalformat' specifies the internal format of
%% the texture array.
%%
%% The pixels in the rectangle are processed exactly as if {@link gl:readPixels/7} had been
%% called, but the process stops just before final conversion. At this point all pixel component
%% values are clamped to the range [0 1] and then converted to the texture's internal format
%% for storage in the texel array.
%%
%% Pixel ordering is such that lower x and y screen coordinates correspond to lower s
%% and t texture coordinates.
%%
%% If any of the pixels within the specified rectangle of the current `?GL_READ_BUFFER'
%% are outside the window associated with the current rendering context, then the values
%% obtained for those pixels are undefined.
%%
%% When `Internalformat' is one of the sRGB types, the GL does not automatically convert
%% the source pixels to the sRGB color space. In this case, the ``gl:pixelMap'' function
%% can be used to accomplish the conversion.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyTexImage2D.xml">external</a> documentation.
-spec copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border) -> 'ok' when Target :: enum(),Level :: integer(),Internalformat :: enum(),X :: integer(),Y :: integer(),Width :: integer(),Height :: integer(),Border :: integer().
copyTexImage2D(Target,Level,Internalformat,X,Y,Width,Height,Border) ->
cast(5282, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei,Border:?GLint>>).
%% @doc Copy a one-dimensional texture subimage
%%
%% ``gl:copyTexSubImage1D'' replaces a portion of a one-dimensional texture image with
%% pixels from the current `?GL_READ_BUFFER' (rather than from main memory, as is the
%% case for {@link gl:texSubImage1D/7} ).
%%
%% The screen-aligned pixel row with left corner at ( `X' , `Y' ), and with length `Width'
%% replaces the portion of the texture array with x indices `Xoffset' through xoffset
%% +width-1, inclusive. The destination in the texture array may not include any texels outside
%% the texture array as it was originally specified.
%%
%% The pixels in the row are processed exactly as if {@link gl:readPixels/7} had been called,
%% but the process stops just before final conversion. At this point, all pixel component
%% values are clamped to the range [0 1] and then converted to the texture's internal format
%% for storage in the texel array.
%%
%% It is not an error to specify a subtexture with zero width, but such a specification
%% has no effect. If any of the pixels within the specified row of the current `?GL_READ_BUFFER'
%% are outside the read window associated with the current rendering context, then the values
%% obtained for those pixels are undefined.
%%
%% No change is made to the `internalformat', `width', or `border' parameters
%% of the specified texture array or to texel values outside the specified subregion.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyTexSubImage1D.xml">external</a> documentation.
-spec copyTexSubImage1D(Target, Level, Xoffset, X, Y, Width) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),X :: integer(),Y :: integer(),Width :: integer().
copyTexSubImage1D(Target,Level,Xoffset,X,Y,Width) ->
cast(5283, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,X:?GLint,Y:?GLint,Width:?GLsizei>>).
%% @doc Copy a two-dimensional texture subimage
%%
%% ``gl:copyTexSubImage2D'' replaces a rectangular portion of a two-dimensional texture
%% image or cube-map texture image with pixels from the current `?GL_READ_BUFFER' (rather
%% than from main memory, as is the case for {@link gl:texSubImage1D/7} ).
%%
%% The screen-aligned pixel rectangle with lower left corner at (x y) and with width `Width'
%% and height `Height' replaces the portion of the texture array with x indices `Xoffset'
%% through xoffset+width-1, inclusive, and y indices `Yoffset' through yoffset+height
%% -1, inclusive, at the mipmap level specified by `Level' .
%%
%% The pixels in the rectangle are processed exactly as if {@link gl:readPixels/7} had been
%% called, but the process stops just before final conversion. At this point, all pixel component
%% values are clamped to the range [0 1] and then converted to the texture's internal format
%% for storage in the texel array.
%%
%% The destination rectangle in the texture array may not include any texels outside the
%% texture array as it was originally specified. It is not an error to specify a subtexture
%% with zero width or height, but such a specification has no effect.
%%
%% If any of the pixels within the specified rectangle of the current `?GL_READ_BUFFER'
%% are outside the read window associated with the current rendering context, then the values
%% obtained for those pixels are undefined.
%%
%% No change is made to the `internalformat', `width', `height', or `border'
%% parameters of the specified texture array or to texel values outside the specified subregion.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyTexSubImage2D.xml">external</a> documentation.
-spec copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),X :: integer(),Y :: integer(),Width :: integer(),Height :: integer().
copyTexSubImage2D(Target,Level,Xoffset,Yoffset,X,Y,Width,Height) ->
cast(5284, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc glMap
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMap.xml">external</a> documentation.
-spec map1d(Target, U1, U2, Stride, Order, Points) -> 'ok' when Target :: enum(),U1 :: float(),U2 :: float(),Stride :: integer(),Order :: integer(),Points :: binary().
map1d(Target,U1,U2,Stride,Order,Points) ->
send_bin(Points),
cast(5285, <<Target:?GLenum,0:32,U1:?GLdouble,U2:?GLdouble,Stride:?GLint,Order:?GLint>>).
%% @doc glMap
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMap.xml">external</a> documentation.
-spec map1f(Target, U1, U2, Stride, Order, Points) -> 'ok' when Target :: enum(),U1 :: float(),U2 :: float(),Stride :: integer(),Order :: integer(),Points :: binary().
map1f(Target,U1,U2,Stride,Order,Points) ->
send_bin(Points),
cast(5286, <<Target:?GLenum,U1:?GLfloat,U2:?GLfloat,Stride:?GLint,Order:?GLint>>).
%% @doc glMap
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMap.xml">external</a> documentation.
-spec map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> 'ok' when Target :: enum(),U1 :: float(),U2 :: float(),Ustride :: integer(),Uorder :: integer(),V1 :: float(),V2 :: float(),Vstride :: integer(),Vorder :: integer(),Points :: binary().
map2d(Target,U1,U2,Ustride,Uorder,V1,V2,Vstride,Vorder,Points) ->
send_bin(Points),
cast(5287, <<Target:?GLenum,0:32,U1:?GLdouble,U2:?GLdouble,Ustride:?GLint,Uorder:?GLint,V1:?GLdouble,V2:?GLdouble,Vstride:?GLint,Vorder:?GLint>>).
%% @doc glMap
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMap.xml">external</a> documentation.
-spec map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> 'ok' when Target :: enum(),U1 :: float(),U2 :: float(),Ustride :: integer(),Uorder :: integer(),V1 :: float(),V2 :: float(),Vstride :: integer(),Vorder :: integer(),Points :: binary().
map2f(Target,U1,U2,Ustride,Uorder,V1,V2,Vstride,Vorder,Points) ->
send_bin(Points),
cast(5288, <<Target:?GLenum,U1:?GLfloat,U2:?GLfloat,Ustride:?GLint,Uorder:?GLint,V1:?GLfloat,V2:?GLfloat,Vstride:?GLint,Vorder:?GLint>>).
%% @doc Return evaluator parameters
%%
%% {@link gl:map1d/6} and {@link gl:map1d/6} define evaluators. ``gl:getMap'' returns evaluator
%% parameters. `Target' chooses a map, `Query' selects a specific parameter, and `V'
%% points to storage where the values will be returned.
%%
%% The acceptable values for the `Target' parameter are described in the {@link gl:map1d/6}
%% and {@link gl:map1d/6} reference pages.
%%
%% `Query' can assume the following values:
%%
%% `?GL_COEFF': `V' returns the control points for the evaluator function. One-dimensional
%% evaluators return order control points, and two-dimensional evaluators return uorder×vorder
%% control points. Each control point consists of one, two, three, or four integer, single-precision
%% floating-point, or double-precision floating-point values, depending on the type of the
%% evaluator. The GL returns two-dimensional control points in row-major order, incrementing
%% the uorder index quickly and the vorder index after each row. Integer values, when
%% requested, are computed by rounding the internal floating-point values to the nearest
%% integer values.
%%
%% `?GL_ORDER': `V' returns the order of the evaluator function. One-dimensional
%% evaluators return a single value, order. The initial value is 1. Two-dimensional evaluators
%% return two values, uorder and vorder. The initial value is 1,1.
%%
%% `?GL_DOMAIN': `V' returns the linear u and v mapping parameters. One-dimensional
%% evaluators return two values, u1 and u2, as specified by {@link gl:map1d/6} . Two-dimensional
%% evaluators return four values ( u1, u2, v1, and v2) as specified by {@link gl:map1d/6} .
%% Integer values, when requested, are computed by rounding the internal floating-point values
%% to the nearest integer values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetMap.xml">external</a> documentation.
-spec getMapdv(Target, Query, V) -> 'ok' when Target :: enum(),Query :: enum(),V :: mem().
getMapdv(Target,Query,V) ->
send_bin(V),
call(5289, <<Target:?GLenum,Query:?GLenum>>).
%% @doc
%% See {@link getMapdv/3}
-spec getMapfv(Target, Query, V) -> 'ok' when Target :: enum(),Query :: enum(),V :: mem().
getMapfv(Target,Query,V) ->
send_bin(V),
call(5290, <<Target:?GLenum,Query:?GLenum>>).
%% @doc
%% See {@link getMapdv/3}
-spec getMapiv(Target, Query, V) -> 'ok' when Target :: enum(),Query :: enum(),V :: mem().
getMapiv(Target,Query,V) ->
send_bin(V),
call(5291, <<Target:?GLenum,Query:?GLenum>>).
%% @doc Evaluate enabled one- and two-dimensional maps
%%
%% ``gl:evalCoord1'' evaluates enabled one-dimensional maps at argument `U' . ``gl:evalCoord2''
%% does the same for two-dimensional maps using two domain values, `U' and `V' .
%% To define a map, call {@link gl:map1d/6} and {@link gl:map1d/6} ; to enable and disable it,
%% call {@link gl:enable/1} and {@link gl:enable/1} .
%%
%% When one of the ``gl:evalCoord'' commands is issued, all currently enabled maps of
%% the indicated dimension are evaluated. Then, for each enabled map, it is as if the corresponding
%% GL command had been issued with the computed value. That is, if `?GL_MAP1_INDEX' or `?GL_MAP2_INDEX'
%% is enabled, a {@link gl:indexd/1} command is simulated. If `?GL_MAP1_COLOR_4' or `?GL_MAP2_COLOR_4'
%% is enabled, a {@link gl:color3b/3} command is simulated. If `?GL_MAP1_NORMAL' or `?GL_MAP2_NORMAL'
%% is enabled, a normal vector is produced, and if any of `?GL_MAP1_TEXTURE_COORD_1', `?GL_MAP1_TEXTURE_COORD_2'
%% , `?GL_MAP1_TEXTURE_COORD_3', `?GL_MAP1_TEXTURE_COORD_4', `?GL_MAP2_TEXTURE_COORD_1'
%% , `?GL_MAP2_TEXTURE_COORD_2', `?GL_MAP2_TEXTURE_COORD_3', or `?GL_MAP2_TEXTURE_COORD_4'
%% is enabled, then an appropriate {@link gl:texCoord1d/1} command is simulated.
%%
%% For color, color index, normal, and texture coordinates the GL uses evaluated values
%% instead of current values for those evaluations that are enabled, and current values otherwise,
%% However, the evaluated values do not update the current values. Thus, if {@link gl:vertex2d/2}
%% commands are interspersed with ``gl:evalCoord'' commands, the color, normal, and texture
%% coordinates associated with the {@link gl:vertex2d/2} commands are not affected by the values
%% generated by the ``gl:evalCoord'' commands, but only by the most recent {@link gl:color3b/3}
%% , {@link gl:indexd/1} , {@link gl:normal3b/3} , and {@link gl:texCoord1d/1} commands.
%%
%% No commands are issued for maps that are not enabled. If more than one texture evaluation
%% is enabled for a particular dimension (for example, `?GL_MAP2_TEXTURE_COORD_1' and `?GL_MAP2_TEXTURE_COORD_2'
%% ), then only the evaluation of the map that produces the larger number of coordinates
%% (in this case, `?GL_MAP2_TEXTURE_COORD_2') is carried out. `?GL_MAP1_VERTEX_4'
%% overrides `?GL_MAP1_VERTEX_3', and `?GL_MAP2_VERTEX_4' overrides `?GL_MAP2_VERTEX_3'
%% , in the same manner. If neither a three- nor a four-component vertex map is enabled for
%% the specified dimension, the ``gl:evalCoord'' command is ignored.
%%
%% If you have enabled automatic normal generation, by calling {@link gl:enable/1} with argument
%% `?GL_AUTO_NORMAL', ``gl:evalCoord2'' generates surface normals analytically, regardless
%% of the contents or enabling of the `?GL_MAP2_NORMAL' map. Let
%%
%% m=((&PartialD; p)/(&PartialD; u))×((&PartialD; p)/(&PartialD; v))
%%
%% Then the generated normal n is n=m/(||m||)
%%
%% If automatic normal generation is disabled, the corresponding normal map `?GL_MAP2_NORMAL'
%% , if enabled, is used to produce a normal. If neither automatic normal generation nor
%% a normal map is enabled, no normal is generated for ``gl:evalCoord2'' commands.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalCoord.xml">external</a> documentation.
-spec evalCoord1d(U) -> 'ok' when U :: float().
evalCoord1d(U) ->
cast(5292, <<U:?GLdouble>>).
%% @doc
%% See {@link evalCoord1d/1}
-spec evalCoord1f(U) -> 'ok' when U :: float().
evalCoord1f(U) ->
cast(5293, <<U:?GLfloat>>).
%% @equiv evalCoord1d(U)
-spec evalCoord1dv(U) -> 'ok' when U :: {U :: float()}.
evalCoord1dv({U}) -> evalCoord1d(U).
%% @equiv evalCoord1f(U)
-spec evalCoord1fv(U) -> 'ok' when U :: {U :: float()}.
evalCoord1fv({U}) -> evalCoord1f(U).
%% @doc
%% See {@link evalCoord1d/1}
-spec evalCoord2d(U, V) -> 'ok' when U :: float(),V :: float().
evalCoord2d(U,V) ->
cast(5294, <<U:?GLdouble,V:?GLdouble>>).
%% @doc
%% See {@link evalCoord1d/1}
-spec evalCoord2f(U, V) -> 'ok' when U :: float(),V :: float().
evalCoord2f(U,V) ->
cast(5295, <<U:?GLfloat,V:?GLfloat>>).
%% @equiv evalCoord2d(U,V)
-spec evalCoord2dv(U) -> 'ok' when U :: {U :: float(),V :: float()}.
evalCoord2dv({U,V}) -> evalCoord2d(U,V).
%% @equiv evalCoord2f(U,V)
-spec evalCoord2fv(U) -> 'ok' when U :: {U :: float(),V :: float()}.
evalCoord2fv({U,V}) -> evalCoord2f(U,V).
%% @doc Define a one- or two-dimensional mesh
%%
%% ``gl:mapGrid'' and {@link gl:evalMesh1/3} are used together to efficiently generate and
%% evaluate a series of evenly-spaced map domain values. {@link gl:evalMesh1/3} steps through
%% the integer domain of a one- or two-dimensional grid, whose range is the domain of the
%% evaluation maps specified by {@link gl:map1d/6} and {@link gl:map1d/6} .
%%
%% ``gl:mapGrid1'' and ``gl:mapGrid2'' specify the linear grid mappings between the i
%% (or i and j) integer grid coordinates, to the u (or u and v) floating-point
%% evaluation map coordinates. See {@link gl:map1d/6} and {@link gl:map1d/6} for details of how
%% u and v coordinates are evaluated.
%%
%% ``gl:mapGrid1'' specifies a single linear mapping such that integer grid coordinate
%% 0 maps exactly to `U1' , and integer grid coordinate `Un' maps exactly to `U2'
%% . All other integer grid coordinates i are mapped so that
%%
%% u=i(u2-u1)/un+u1
%%
%% ``gl:mapGrid2'' specifies two such linear mappings. One maps integer grid coordinate
%% i=0 exactly to `U1' , and integer grid coordinate i=un exactly to `U2' . The
%% other maps integer grid coordinate j=0 exactly to `V1' , and integer grid coordinate
%% j=vn exactly to `V2' . Other integer grid coordinates i and j are mapped such
%% that
%%
%% u=i(u2-u1)/un+u1
%%
%% v=j(v2-v1)/vn+v1
%%
%% The mappings specified by ``gl:mapGrid'' are used identically by {@link gl:evalMesh1/3}
%% and {@link gl:evalPoint1/1} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMapGrid.xml">external</a> documentation.
-spec mapGrid1d(Un, U1, U2) -> 'ok' when Un :: integer(),U1 :: float(),U2 :: float().
mapGrid1d(Un,U1,U2) ->
cast(5296, <<Un:?GLint,0:32,U1:?GLdouble,U2:?GLdouble>>).
%% @doc
%% See {@link mapGrid1d/3}
-spec mapGrid1f(Un, U1, U2) -> 'ok' when Un :: integer(),U1 :: float(),U2 :: float().
mapGrid1f(Un,U1,U2) ->
cast(5297, <<Un:?GLint,U1:?GLfloat,U2:?GLfloat>>).
%% @doc
%% See {@link mapGrid1d/3}
-spec mapGrid2d(Un, U1, U2, Vn, V1, V2) -> 'ok' when Un :: integer(),U1 :: float(),U2 :: float(),Vn :: integer(),V1 :: float(),V2 :: float().
mapGrid2d(Un,U1,U2,Vn,V1,V2) ->
cast(5298, <<Un:?GLint,0:32,U1:?GLdouble,U2:?GLdouble,Vn:?GLint,0:32,V1:?GLdouble,V2:?GLdouble>>).
%% @doc
%% See {@link mapGrid1d/3}
-spec mapGrid2f(Un, U1, U2, Vn, V1, V2) -> 'ok' when Un :: integer(),U1 :: float(),U2 :: float(),Vn :: integer(),V1 :: float(),V2 :: float().
mapGrid2f(Un,U1,U2,Vn,V1,V2) ->
cast(5299, <<Un:?GLint,U1:?GLfloat,U2:?GLfloat,Vn:?GLint,V1:?GLfloat,V2:?GLfloat>>).
%% @doc Generate and evaluate a single point in a mesh
%%
%% {@link gl:mapGrid1d/3} and {@link gl:evalMesh1/3} are used in tandem to efficiently generate
%% and evaluate a series of evenly spaced map domain values. ``gl:evalPoint'' can be used
%% to evaluate a single grid point in the same gridspace that is traversed by {@link gl:evalMesh1/3}
%% . Calling ``gl:evalPoint1'' is equivalent to calling glEvalCoord1( i.&Delta; u+u
%% 1 ); where &Delta; u=(u 2-u 1)/n
%%
%% and n, u 1, and u 2 are the arguments to the most recent {@link gl:mapGrid1d/3} command.
%% The one absolute numeric requirement is that if i=n, then the value computed from i.&Delta;
%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalPoint2'', let
%%
%% &Delta; u=(u 2-u 1)/n
%%
%% &Delta; v=(v 2-v 1)/m
%%
%% where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent {@link gl:mapGrid1d/3}
%% command. Then the ``gl:evalPoint2'' command is equivalent to calling glEvalCoord2( i.
%% &Delta; u+u 1, j.&Delta; v+v 1 ); The only absolute numeric requirements are
%% that if i=n, then the value computed from i.&Delta; u+u 1 is exactly u 2, and
%% if j=m, then the value computed from j.&Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalPoint.xml">external</a> documentation.
-spec evalPoint1(I) -> 'ok' when I :: integer().
evalPoint1(I) ->
cast(5300, <<I:?GLint>>).
%% @doc
%% See {@link evalPoint1/1}
-spec evalPoint2(I, J) -> 'ok' when I :: integer(),J :: integer().
evalPoint2(I,J) ->
cast(5301, <<I:?GLint,J:?GLint>>).
%% @doc Compute a one- or two-dimensional grid of points or lines
%%
%% {@link gl:mapGrid1d/3} and ``gl:evalMesh'' are used in tandem to efficiently generate and
%% evaluate a series of evenly-spaced map domain values. ``gl:evalMesh'' steps through
%% the integer domain of a one- or two-dimensional grid, whose range is the domain of the
%% evaluation maps specified by {@link gl:map1d/6} and {@link gl:map1d/6} . `Mode' determines
%% whether the resulting vertices are connected as points, lines, or filled polygons.
%%
%% In the one-dimensional case, ``gl:evalMesh1'', the mesh is generated as if the following
%% code fragment were executed:
%%
%% glBegin( `Type' ); for ( i = `I1' ; i <= `I2' ; i += 1 ) glEvalCoord1(
%% i.&Delta; u+u 1 ); glEnd(); where
%%
%% &Delta; u=(u 2-u 1)/n
%%
%% and n, u 1, and u 2 are the arguments to the most recent {@link gl:mapGrid1d/3} command.
%% `type' is `?GL_POINTS' if `Mode' is `?GL_POINT', or `?GL_LINES'
%% if `Mode' is `?GL_LINE'.
%%
%% The one absolute numeric requirement is that if i=n, then the value computed from i.&Delta;
%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalMesh2'', let .cp &Delta; u=(u 2-u 1)/n
%%
%% &Delta; v=(v 2-v 1)/m
%%
%% where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent {@link gl:mapGrid1d/3}
%% command. Then, if `Mode' is `?GL_FILL', the ``gl:evalMesh2'' command is equivalent
%% to:
%%
%% for ( j = `J1' ; j < `J2' ; j += 1 ) { glBegin( GL_QUAD_STRIP ); for ( i = `I1'
%% ; i <= `I2' ; i += 1 ) { glEvalCoord2( i.&Delta; u+u 1, j.&Delta; v+v 1
%% ); glEvalCoord2( i.&Delta; u+u 1,(j+1).&Delta; v+v 1 ); } glEnd(); }
%%
%% If `Mode' is `?GL_LINE', then a call to ``gl:evalMesh2'' is equivalent to:
%%
%% for ( j = `J1' ; j <= `J2' ; j += 1 ) { glBegin( GL_LINE_STRIP ); for ( i = `I1'
%% ; i <= `I2' ; i += 1 ) glEvalCoord2( i.&Delta; u+u 1, j.&Delta; v+v 1
%% ); glEnd(); } for ( i = `I1' ; i <= `I2' ; i += 1 ) { glBegin( GL_LINE_STRIP
%% ); for ( j = `J1' ; j <= `J1' ; j += 1 ) glEvalCoord2( i.&Delta; u+u 1, j.
%% &Delta; v+v 1 ); glEnd(); }
%%
%% And finally, if `Mode' is `?GL_POINT', then a call to ``gl:evalMesh2'' is
%% equivalent to:
%%
%% glBegin( GL_POINTS ); for ( j = `J1' ; j <= `J2' ; j += 1 ) for ( i = `I1'
%% ; i <= `I2' ; i += 1 ) glEvalCoord2( i.&Delta; u+u 1, j.&Delta; v+v 1
%% ); glEnd();
%%
%% In all three cases, the only absolute numeric requirements are that if i=n, then the
%% value computed from i.&Delta; u+u 1 is exactly u 2, and if j=m, then the value
%% computed from j.&Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalMesh.xml">external</a> documentation.
-spec evalMesh1(Mode, I1, I2) -> 'ok' when Mode :: enum(),I1 :: integer(),I2 :: integer().
evalMesh1(Mode,I1,I2) ->
cast(5302, <<Mode:?GLenum,I1:?GLint,I2:?GLint>>).
%% @doc
%% See {@link evalMesh1/3}
-spec evalMesh2(Mode, I1, I2, J1, J2) -> 'ok' when Mode :: enum(),I1 :: integer(),I2 :: integer(),J1 :: integer(),J2 :: integer().
evalMesh2(Mode,I1,I2,J1,J2) ->
cast(5303, <<Mode:?GLenum,I1:?GLint,I2:?GLint,J1:?GLint,J2:?GLint>>).
%% @doc Specify fog parameters
%%
%% Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and
%% pixel blocks, but not buffer clear operations. To enable and disable fog, call {@link gl:enable/1}
%% and {@link gl:enable/1} with argument `?GL_FOG'.
%%
%% ``gl:fog'' assigns the value or values in `Params' to the fog parameter specified
%% by `Pname' . The following values are accepted for `Pname' :
%%
%% `?GL_FOG_MODE': `Params' is a single integer or floating-point value that specifies
%% the equation to be used to compute the fog blend factor, f. Three symbolic constants
%% are accepted: `?GL_LINEAR', `?GL_EXP', and `?GL_EXP2'. The equations corresponding
%% to these symbolic constants are defined below. The initial fog mode is `?GL_EXP'.
%%
%% `?GL_FOG_DENSITY': `Params' is a single integer or floating-point value that
%% specifies density, the fog density used in both exponential fog equations. Only nonnegative
%% densities are accepted. The initial fog density is 1.
%%
%% `?GL_FOG_START': `Params' is a single integer or floating-point value that specifies
%% start, the near distance used in the linear fog equation. The initial near distance
%% is 0.
%%
%% `?GL_FOG_END': `Params' is a single integer or floating-point value that specifies
%% end, the far distance used in the linear fog equation. The initial far distance is 1.
%%
%% `?GL_FOG_INDEX': `Params' is a single integer or floating-point value that specifies
%% i f, the fog color index. The initial fog index is 0.
%%
%% `?GL_FOG_COLOR': `Params' contains four integer or floating-point values that
%% specify C f, the fog color. Integer values are mapped linearly such that the most positive
%% representable value maps to 1.0, and the most negative representable value maps to -1.0.
%% Floating-point values are mapped directly. After conversion, all color components are
%% clamped to the range [0 1]. The initial fog color is (0, 0, 0, 0).
%%
%% `?GL_FOG_COORD_SRC': `Params' contains either of the following symbolic constants:
%% `?GL_FOG_COORD' or `?GL_FRAGMENT_DEPTH'. `?GL_FOG_COORD' specifies that
%% the current fog coordinate should be used as distance value in the fog color computation.
%% `?GL_FRAGMENT_DEPTH' specifies that the current fragment depth should be used as
%% distance value in the fog computation.
%%
%% Fog blends a fog color with each rasterized pixel fragment's post-texturing color using
%% a blending factor f. Factor f is computed in one of three ways, depending on the fog
%% mode. Let c be either the distance in eye coordinate from the origin (in the case that
%% the `?GL_FOG_COORD_SRC' is `?GL_FRAGMENT_DEPTH') or the current fog coordinate
%% (in the case that `?GL_FOG_COORD_SRC' is `?GL_FOG_COORD'). The equation for `?GL_LINEAR'
%% fog is f=(end-c)/(end-start)
%%
%% The equation for `?GL_EXP' fog is f=e(-(density. c))
%%
%% The equation for `?GL_EXP2' fog is f=e(-(density. c)) 2
%%
%% Regardless of the fog mode, f is clamped to the range [0 1] after it is computed. Then,
%% if the GL is in RGBA color mode, the fragment's red, green, and blue colors, represented
%% by C r, are replaced by
%%
%% (C r)"=f×C r+(1-f)×C f
%%
%% Fog does not affect a fragment's alpha component.
%%
%% In color index mode, the fragment's color index i r is replaced by
%%
%% (i r)"=i r+(1-f)×i f
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFog.xml">external</a> documentation.
-spec fogf(Pname, Param) -> 'ok' when Pname :: enum(),Param :: float().
fogf(Pname,Param) ->
cast(5304, <<Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link fogf/2}
-spec fogi(Pname, Param) -> 'ok' when Pname :: enum(),Param :: integer().
fogi(Pname,Param) ->
cast(5305, <<Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link fogf/2}
-spec fogfv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
fogfv(Pname,Params) ->
cast(5306, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link fogf/2}
-spec fogiv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
fogiv(Pname,Params) ->
cast(5307, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc Controls feedback mode
%%
%% The ``gl:feedbackBuffer'' function controls feedback. Feedback, like selection, is
%% a GL mode. The mode is selected by calling {@link gl:renderMode/1} with `?GL_FEEDBACK'.
%% When the GL is in feedback mode, no pixels are produced by rasterization. Instead, information
%% about primitives that would have been rasterized is fed back to the application using
%% the GL.
%%
%% ``gl:feedbackBuffer'' has three arguments: `Buffer' is a pointer to an array of
%% floating-point values into which feedback information is placed. `Size' indicates
%% the size of the array. `Type' is a symbolic constant describing the information that
%% is fed back for each vertex. ``gl:feedbackBuffer'' must be issued before feedback mode
%% is enabled (by calling {@link gl:renderMode/1} with argument `?GL_FEEDBACK'). Setting
%% `?GL_FEEDBACK' without establishing the feedback buffer, or calling ``gl:feedbackBuffer''
%% while the GL is in feedback mode, is an error.
%%
%% When {@link gl:renderMode/1} is called while in feedback mode, it returns the number of
%% entries placed in the feedback array and resets the feedback array pointer to the base
%% of the feedback buffer. The returned value never exceeds `Size' . If the feedback
%% data required more room than was available in `Buffer' , {@link gl:renderMode/1} returns
%% a negative value. To take the GL out of feedback mode, call {@link gl:renderMode/1} with
%% a parameter value other than `?GL_FEEDBACK'.
%%
%% While in feedback mode, each primitive, bitmap, or pixel rectangle that would be rasterized
%% generates a block of values that are copied into the feedback array. If doing so would
%% cause the number of entries to exceed the maximum, the block is partially written so as
%% to fill the array (if there is any room left at all), and an overflow flag is set. Each
%% block begins with a code indicating the primitive type, followed by values that describe
%% the primitive's vertices and associated data. Entries are also written for bitmaps and
%% pixel rectangles. Feedback occurs after polygon culling and {@link gl:polygonMode/2} interpretation
%% of polygons has taken place, so polygons that are culled are not returned in the feedback
%% buffer. It can also occur after polygons with more than three edges are broken up into
%% triangles, if the GL implementation renders polygons by performing this decomposition.
%%
%% The {@link gl:passThrough/1} command can be used to insert a marker into the feedback
%% buffer. See {@link gl:passThrough/1} .
%%
%% Following is the grammar for the blocks of values written into the feedback buffer. Each
%% primitive is indicated with a unique identifying value followed by some number of vertices.
%% Polygon entries include an integer value indicating how many vertices follow. A vertex
%% is fed back as some number of floating-point values, as determined by `Type' . Colors
%% are fed back as four values in RGBA mode and one value in color index mode.
%%
%% feedbackList ← feedbackItem feedbackList | feedbackItem
%%
%% feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru
%%
%% point ←`?GL_POINT_TOKEN' vertex
%%
%% lineSegment ←`?GL_LINE_TOKEN' vertex vertex | `?GL_LINE_RESET_TOKEN' vertex
%% vertex
%%
%% polygon ←`?GL_POLYGON_TOKEN' n polySpec
%%
%% polySpec ← polySpec vertex | vertex vertex vertex
%%
%% bitmap ←`?GL_BITMAP_TOKEN' vertex
%%
%% pixelRectangle ←`?GL_DRAW_PIXEL_TOKEN' vertex | `?GL_COPY_PIXEL_TOKEN' vertex
%%
%%
%% passThru ←`?GL_PASS_THROUGH_TOKEN' value
%%
%% vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
%%
%% 2d ← value value
%%
%% 3d ← value value value
%%
%% 3dColor ← value value value color
%%
%% 3dColorTexture ← value value value color tex
%%
%% 4dColorTexture ← value value value value color tex
%%
%% color ← rgba | index
%%
%% rgba ← value value value value
%%
%% index ← value
%%
%% tex ← value value value value
%%
%% `value' is a floating-point number, and `n' is a floating-point integer giving
%% the number of vertices in the polygon. `?GL_POINT_TOKEN', `?GL_LINE_TOKEN', `?GL_LINE_RESET_TOKEN'
%% , `?GL_POLYGON_TOKEN', `?GL_BITMAP_TOKEN', `?GL_DRAW_PIXEL_TOKEN', `?GL_COPY_PIXEL_TOKEN'
%% and `?GL_PASS_THROUGH_TOKEN' are symbolic floating-point constants. `?GL_LINE_RESET_TOKEN'
%% is returned whenever the line stipple pattern is reset. The data returned as a vertex
%% depends on the feedback `Type' .
%%
%% The following table gives the correspondence between `Type' and the number of values
%% per vertex. `k' is 1 in color index mode and 4 in RGBA mode.
%%
%% <table><tbody><tr><td>` Type '</td><td>` Coordinates '</td><td>` Color '</td>
%% <td>` Texture '</td><td>` Total Number of Values '</td></tr></tbody><tbody><tr><td>
%% `?GL_2D'</td><td>`x', `y'</td><td></td><td></td><td> 2 </td></tr><tr><td>`?GL_3D'
%% </td><td>`x', `y', `z'</td><td></td><td></td><td> 3 </td></tr><tr><td>`?GL_3D_COLOR'
%% </td><td>`x', `y', `z'</td><td> k</td><td></td><td> 3+k</td></tr><tr><td>`?GL_3D_COLOR_TEXTURE'
%% </td><td>`x', `y', `z'</td><td> k</td><td> 4 </td><td> 7+k</td></tr><tr><td>
%% `?GL_4D_COLOR_TEXTURE'</td><td>`x', `y', `z', `w'</td><td> k</td>
%% <td> 4 </td><td> 8+k</td></tr></tbody></table>
%%
%% Feedback vertex coordinates are in window coordinates, except `w', which is in clip
%% coordinates. Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates
%% are generated, if texture coordinate generation is enabled. They are always transformed
%% by the texture matrix.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFeedbackBuffer.xml">external</a> documentation.
-spec feedbackBuffer(Size, Type, Buffer) -> 'ok' when Size :: integer(),Type :: enum(),Buffer :: mem().
feedbackBuffer(Size,Type,Buffer) ->
send_bin(Buffer),
call(5308, <<Size:?GLsizei,Type:?GLenum>>).
%% @doc Place a marker in the feedback buffer
%%
%% Feedback is a GL render mode. The mode is selected by calling {@link gl:renderMode/1}
%% with `?GL_FEEDBACK'. When the GL is in feedback mode, no pixels are produced by rasterization.
%% Instead, information about primitives that would have been rasterized is fed back to the
%% application using the GL. See the {@link gl:feedbackBuffer/3} reference page for a description
%% of the feedback buffer and the values in it.
%%
%% ``gl:passThrough'' inserts a user-defined marker in the feedback buffer when it is executed
%% in feedback mode. `Token' is returned as if it were a primitive; it is indicated
%% with its own unique identifying value: `?GL_PASS_THROUGH_TOKEN'. The order of ``gl:passThrough''
%% commands with respect to the specification of graphics primitives is maintained.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPassThrough.xml">external</a> documentation.
-spec passThrough(Token) -> 'ok' when Token :: float().
passThrough(Token) ->
cast(5309, <<Token:?GLfloat>>).
%% @doc Establish a buffer for selection mode values
%%
%% ``gl:selectBuffer'' has two arguments: `Buffer' is a pointer to an array of unsigned
%% integers, and `Size' indicates the size of the array. `Buffer' returns values
%% from the name stack (see {@link gl:initNames/0} , {@link gl:loadName/1} , {@link gl:pushName/1} )
%% when the rendering mode is `?GL_SELECT' (see {@link gl:renderMode/1} ). ``gl:selectBuffer''
%% must be issued before selection mode is enabled, and it must not be issued while the
%% rendering mode is `?GL_SELECT'.
%%
%% A programmer can use selection to determine which primitives are drawn into some region
%% of a window. The region is defined by the current modelview and perspective matrices.
%%
%% In selection mode, no pixel fragments are produced from rasterization. Instead, if a
%% primitive or a raster position intersects the clipping volume defined by the viewing frustum
%% and the user-defined clipping planes, this primitive causes a selection hit. (With polygons,
%% no hit occurs if the polygon is culled.) When a change is made to the name stack, or when
%% {@link gl:renderMode/1} is called, a hit record is copied to `Buffer' if any hits
%% have occurred since the last such event (name stack change or {@link gl:renderMode/1} call).
%% The hit record consists of the number of names in the name stack at the time of the event,
%% followed by the minimum and maximum depth values of all vertices that hit since the previous
%% event, followed by the name stack contents, bottom name first.
%%
%% Depth values (which are in the range [0,1]) are multiplied by 2 32-1, before being
%% placed in the hit record.
%%
%% An internal index into `Buffer' is reset to 0 whenever selection mode is entered.
%% Each time a hit record is copied into `Buffer' , the index is incremented to point
%% to the cell just past the end of the block of names(emthat is, to the next available cell
%% If the hit record is larger than the number of remaining locations in `Buffer' , as
%% much data as can fit is copied, and the overflow flag is set. If the name stack is empty
%% when a hit record is copied, that record consists of 0 followed by the minimum and maximum
%% depth values.
%%
%% To exit selection mode, call {@link gl:renderMode/1} with an argument other than `?GL_SELECT'
%% . Whenever {@link gl:renderMode/1} is called while the render mode is `?GL_SELECT',
%% it returns the number of hit records copied to `Buffer' , resets the overflow flag
%% and the selection buffer pointer, and initializes the name stack to be empty. If the overflow
%% bit was set when {@link gl:renderMode/1} was called, a negative hit record count is returned.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSelectBuffer.xml">external</a> documentation.
-spec selectBuffer(Size, Buffer) -> 'ok' when Size :: integer(),Buffer :: mem().
selectBuffer(Size,Buffer) ->
send_bin(Buffer),
call(5310, <<Size:?GLsizei>>).
%% @doc Initialize the name stack
%%
%% The name stack is used during selection mode to allow sets of rendering commands to be
%% uniquely identified. It consists of an ordered set of unsigned integers. ``gl:initNames''
%% causes the name stack to be initialized to its default empty state.
%%
%% The name stack is always empty while the render mode is not `?GL_SELECT'. Calls to ``gl:initNames''
%% while the render mode is not `?GL_SELECT' are ignored.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glInitNames.xml">external</a> documentation.
-spec initNames() -> 'ok'.
initNames() ->
cast(5311, <<>>).
%% @doc Load a name onto the name stack
%%
%% The name stack is used during selection mode to allow sets of rendering commands to be
%% uniquely identified. It consists of an ordered set of unsigned integers and is initially
%% empty.
%%
%% ``gl:loadName'' causes `Name' to replace the value on the top of the name stack.
%%
%% The name stack is always empty while the render mode is not `?GL_SELECT'. Calls to ``gl:loadName''
%% while the render mode is not `?GL_SELECT' are ignored.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadName.xml">external</a> documentation.
-spec loadName(Name) -> 'ok' when Name :: integer().
loadName(Name) ->
cast(5312, <<Name:?GLuint>>).
%% @doc Push and pop the name stack
%%
%% The name stack is used during selection mode to allow sets of rendering commands to be
%% uniquely identified. It consists of an ordered set of unsigned integers and is initially
%% empty.
%%
%% ``gl:pushName'' causes `Name' to be pushed onto the name stack. {@link gl:pushName/1}
%% pops one name off the top of the stack.
%%
%% The maximum name stack depth is implementation-dependent; call `?GL_MAX_NAME_STACK_DEPTH'
%% to find out the value for a particular implementation. It is an error to push a name
%% onto a full stack or to pop a name off an empty stack. It is also an error to manipulate
%% the name stack between the execution of {@link gl:'begin'/1} and the corresponding execution
%% of {@link gl:'begin'/1} . In any of these cases, the error flag is set and no other change is
%% made to GL state.
%%
%% The name stack is always empty while the render mode is not `?GL_SELECT'. Calls to ``gl:pushName''
%% or {@link gl:pushName/1} while the render mode is not `?GL_SELECT' are ignored.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPushName.xml">external</a> documentation.
-spec pushName(Name) -> 'ok' when Name :: integer().
pushName(Name) ->
cast(5313, <<Name:?GLuint>>).
%% @doc
%% See {@link pushName/1}
-spec popName() -> 'ok'.
popName() ->
cast(5314, <<>>).
%% @doc Set the blend color
%%
%% The `?GL_BLEND_COLOR' may be used to calculate the source and destination blending
%% factors. The color components are clamped to the range [0 1] before being stored. See {@link gl:blendFunc/2}
%% for a complete description of the blending operations. Initially the `?GL_BLEND_COLOR'
%% is set to (0, 0, 0, 0).
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendColor.xml">external</a> documentation.
-spec blendColor(Red, Green, Blue, Alpha) -> 'ok' when Red :: clamp(),Green :: clamp(),Blue :: clamp(),Alpha :: clamp().
blendColor(Red,Green,Blue,Alpha) ->
cast(5315, <<Red:?GLclampf,Green:?GLclampf,Blue:?GLclampf,Alpha:?GLclampf>>).
%% @doc Specify the equation used for both the RGB blend equation and the Alpha blend equation
%%
%% The blend equations determine how a new pixel (the ''source'' color) is combined with
%% a pixel already in the framebuffer (the ''destination'' color). This function sets both
%% the RGB blend equation and the alpha blend equation to a single equation. ``gl:blendEquationi''
%% specifies the blend equation for a single draw buffer whereas ``gl:blendEquation''
%% sets the blend equation for all draw buffers.
%%
%% These equations use the source and destination blend factors specified by either {@link gl:blendFunc/2}
%% or {@link gl:blendFuncSeparate/4} . See {@link gl:blendFunc/2} or {@link gl:blendFuncSeparate/4}
%% for a description of the various blend factors.
%%
%% In the equations that follow, source and destination color components are referred to
%% as (R s G s B s A s) and (R d G d B d A d), respectively. The result color is referred to as (R r G r B r A r). The source and destination
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
%% The `?GL_MIN' and `?GL_MAX' equations are useful for applications that analyze
%% image data (image thresholding against a constant color, for example). The `?GL_FUNC_ADD'
%% equation is useful for antialiasing and transparency, among other things.
%%
%% Initially, both the RGB blend equation and the alpha blend equation are set to `?GL_FUNC_ADD'
%% .
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendEquation.xml">external</a> documentation.
-spec blendEquation(Mode) -> 'ok' when Mode :: enum().
blendEquation(Mode) ->
cast(5316, <<Mode:?GLenum>>).
%% @doc Render primitives from array data
%%
%% ``gl:drawRangeElements'' is a restricted form of {@link gl:drawElements/4} . `Mode' ,
%% `Start' , `End' , and `Count' match the corresponding arguments to {@link gl:drawElements/4}
%% , with the additional constraint that all values in the arrays `Count' must lie between
%% `Start' and `End' , inclusive.
%%
%% Implementations denote recommended maximum amounts of vertex and index data, which may
%% be queried by calling {@link gl:getBooleanv/1} with argument `?GL_MAX_ELEMENTS_VERTICES' and `?GL_MAX_ELEMENTS_INDICES'
%% . If end-start+1 is greater than the value of `?GL_MAX_ELEMENTS_VERTICES', or if `Count'
%% is greater than the value of `?GL_MAX_ELEMENTS_INDICES', then the call may operate
%% at reduced performance. There is no requirement that all vertices in the range [start end] be referenced.
%% However, the implementation may partially process unused vertices, reducing performance
%% from what could be achieved with an optimal index set.
%%
%% When ``gl:drawRangeElements'' is called, it uses `Count' sequential elements from
%% an enabled array, starting at `Start' to construct a sequence of geometric primitives.
%% `Mode' specifies what kind of primitives are constructed, and how the array elements
%% construct these primitives. If more than one array is enabled, each is used.
%%
%% Vertex attributes that are modified by ``gl:drawRangeElements'' have an unspecified
%% value after ``gl:drawRangeElements'' returns. Attributes that aren't modified maintain
%% their previous values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawRangeElements.xml">external</a> documentation.
-spec drawRangeElements(Mode, Start, End, Count, Type, Indices) -> 'ok' when Mode :: enum(),Start :: integer(),End :: integer(),Count :: integer(),Type :: enum(),Indices :: offset()|mem().
drawRangeElements(Mode,Start,End,Count,Type,Indices) when is_integer(Indices) ->
cast(5317, <<Mode:?GLenum,Start:?GLuint,End:?GLuint,Count:?GLsizei,Type:?GLenum,Indices:?GLuint>>);
drawRangeElements(Mode,Start,End,Count,Type,Indices) ->
send_bin(Indices),
cast(5318, <<Mode:?GLenum,Start:?GLuint,End:?GLuint,Count:?GLsizei,Type:?GLenum>>).
%% @doc Specify a three-dimensional texture image
%%
%% Texturing maps a portion of a specified texture image onto each graphical primitive for
%% which texturing is enabled. To enable and disable three-dimensional texturing, call {@link gl:enable/1}
%% and {@link gl:enable/1} with argument `?GL_TEXTURE_3D'.
%%
%% To define texture images, call ``gl:texImage3D''. The arguments describe the parameters
%% of the texture image, such as height, width, depth, width of the border, level-of-detail
%% number (see {@link gl:texParameterf/3} ), and number of color components provided. The last
%% three arguments describe how the image is represented in memory.
%%
%% If `Target' is `?GL_PROXY_TEXTURE_3D', no data is read from `Data' , but
%% all of the texture image state is recalculated, checked for consistency, and checked against
%% the implementation's capabilities. If the implementation cannot handle a texture of the
%% requested texture size, it sets all of the image state to 0, but does not generate an
%% error (see {@link gl:getError/0} ). To query for an entire mipmap array, use an image array
%% level greater than or equal to 1.
%%
%% If `Target' is `?GL_TEXTURE_3D', data is read from `Data' as a sequence
%% of signed or unsigned bytes, shorts, or longs, or single-precision floating-point values,
%% depending on `Type' . These values are grouped into sets of one, two, three, or four
%% values, depending on `Format' , to form elements. Each data byte is treated as eight
%% 1-bit elements, with bit ordering determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2}
%% ).
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% The first element corresponds to the lower left corner of the texture image. Subsequent
%% elements progress left-to-right through the remaining texels in the lowest row of the
%% texture image, and then in successively higher rows of the texture image. The final element
%% corresponds to the upper right corner of the texture image.
%%
%% `Format' determines the composition of each element in `Data' . It can assume
%% one of these symbolic values:
%%
%% `?GL_RED': Each element is a single red component. The GL converts it to floating
%% point and assembles it into an RGBA element by attaching 0 for green and blue, and 1 for
%% alpha. Each component is then multiplied by the signed scale factor `?GL_c_SCALE',
%% added to the signed bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RG': Each element is a red and green pair. The GL converts each to floating
%% point and assembles it into an RGBA element by attaching 0 for blue, and 1 for alpha.
%% Each component is then multiplied by the signed scale factor `?GL_c_SCALE', added
%% to the signed bias `?GL_c_BIAS', and clamped to the range [0,1].
%%
%% `?GL_RGB'
%%
%% `?GL_BGR': Each element is an RGB triple. The GL converts it to floating point and
%% assembles it into an RGBA element by attaching 1 for alpha. Each component is then multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% `?GL_RGBA'
%%
%% `?GL_BGRA': Each element contains all four components. Each component is multiplied
%% by the signed scale factor `?GL_c_SCALE', added to the signed bias `?GL_c_BIAS',
%% and clamped to the range [0,1].
%%
%% If an application wants to store the texture at a certain resolution or in a certain
%% format, it can request the resolution and format with `InternalFormat' . The GL will
%% choose an internal representation that closely approximates that requested by `InternalFormat'
%% , but it may not match exactly. (The representations specified by `?GL_RED', `?GL_RG'
%% , `?GL_RGB', and `?GL_RGBA' must match exactly.)
%%
%% `InternalFormat' may be one of the base internal formats shown in Table 1, below
%%
%% `InternalFormat' may also be one of the sized internal formats shown in Table 2,
%% below
%%
%% Finally, `InternalFormat' may also be one of the generic or compressed compressed
%% texture formats shown in Table 3 below
%%
%% If the `InternalFormat' parameter is one of the generic compressed formats, `?GL_COMPRESSED_RED'
%% , `?GL_COMPRESSED_RG', `?GL_COMPRESSED_RGB', or `?GL_COMPRESSED_RGBA',
%% the GL will replace the internal format with the symbolic constant for a specific internal
%% format and compress the texture before storage. If no corresponding internal format is
%% available, or the GL can not compress that image for any reason, the internal format is
%% instead replaced with a corresponding base internal format.
%%
%% If the `InternalFormat' parameter is `?GL_SRGB', `?GL_SRGB8', `?GL_SRGB_ALPHA'
%% , or `?GL_SRGB8_ALPHA8', the texture is treated as if the red, green, blue, or
%% luminance components are encoded in the sRGB color space. Any alpha component is left
%% unchanged. The conversion from the sRGB encoded component c s to a linear component
%% c l is:
%%
%% c l={ c s/12.92if c s&le; 0.04045( c s+0.055/1.055) 2.4if c s> 0.04045
%%
%% Assume c s is the sRGB component in the range [0,1].
%%
%% Use the `?GL_PROXY_TEXTURE_3D' target to try out a resolution and format. The implementation
%% will update and recompute its best match for the requested storage resolution and format.
%% To then query this state, call {@link gl:getTexLevelParameterfv/3} . If the texture cannot
%% be accommodated, texture state is set to 0.
%%
%% A one-component texture image uses only the red component of the RGBA color extracted
%% from `Data' . A two-component image uses the R and A values. A three-component image
%% uses the R, G, and B values. A four-component image uses all of the RGBA components.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexImage3D.xml">external</a> documentation.
-spec texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),InternalFormat :: integer(),Width :: integer(),Height :: integer(),Depth :: integer(),Border :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texImage3D(Target,Level,InternalFormat,Width,Height,Depth,Border,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5319, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texImage3D(Target,Level,InternalFormat,Width,Height,Depth,Border,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5320, <<Target:?GLenum,Level:?GLint,InternalFormat:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Border:?GLint,Format:?GLenum,Type:?GLenum>>).
%% @doc glTexSubImage
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexSubImage.xml">external</a> documentation.
-spec texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Pixels) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),Zoffset :: integer(),Width :: integer(),Height :: integer(),Depth :: integer(),Format :: enum(),Type :: enum(),Pixels :: offset()|mem().
texSubImage3D(Target,Level,Xoffset,Yoffset,Zoffset,Width,Height,Depth,Format,Type,Pixels) when is_integer(Pixels) ->
cast(5321, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Zoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Format:?GLenum,Type:?GLenum,Pixels:?GLuint>>);
texSubImage3D(Target,Level,Xoffset,Yoffset,Zoffset,Width,Height,Depth,Format,Type,Pixels) ->
send_bin(Pixels),
cast(5322, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Zoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Copy a three-dimensional texture subimage
%%
%% ``gl:copyTexSubImage3D'' replaces a rectangular portion of a three-dimensional texture
%% image with pixels from the current `?GL_READ_BUFFER' (rather than from main memory,
%% as is the case for {@link gl:texSubImage1D/7} ).
%%
%% The screen-aligned pixel rectangle with lower left corner at ( `X' , `Y' ) and
%% with width `Width' and height `Height' replaces the portion of the texture array
%% with x indices `Xoffset' through xoffset+width-1, inclusive, and y indices `Yoffset'
%% through yoffset+height-1, inclusive, at z index `Zoffset' and at the mipmap level
%% specified by `Level' .
%%
%% The pixels in the rectangle are processed exactly as if {@link gl:readPixels/7} had been
%% called, but the process stops just before final conversion. At this point, all pixel component
%% values are clamped to the range [0 1] and then converted to the texture's internal format
%% for storage in the texel array.
%%
%% The destination rectangle in the texture array may not include any texels outside the
%% texture array as it was originally specified. It is not an error to specify a subtexture
%% with zero width or height, but such a specification has no effect.
%%
%% If any of the pixels within the specified rectangle of the current `?GL_READ_BUFFER'
%% are outside the read window associated with the current rendering context, then the values
%% obtained for those pixels are undefined.
%%
%% No change is made to the `internalformat', `width', `height', `depth',
%% or `border' parameters of the specified texture array or to texel values outside
%% the specified subregion.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyTexSubImage3D.xml">external</a> documentation.
-spec copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),Zoffset :: integer(),X :: integer(),Y :: integer(),Width :: integer(),Height :: integer().
copyTexSubImage3D(Target,Level,Xoffset,Yoffset,Zoffset,X,Y,Width,Height) ->
cast(5323, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Zoffset:?GLint,X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Define a color lookup table
%%
%% ``gl:colorTable'' may be used in two ways: to test the actual size and color resolution
%% of a lookup table given a particular set of parameters, or to load the contents of a color
%% lookup table. Use the targets `?GL_PROXY_*' for the first case and the other targets
%% for the second case.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a color table is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% If `Target' is `?GL_COLOR_TABLE', `?GL_POST_CONVOLUTION_COLOR_TABLE', or `?GL_POST_COLOR_MATRIX_COLOR_TABLE'
%% , ``gl:colorTable'' builds a color lookup table from an array of pixels. The pixel array
%% specified by `Width' , `Format' , `Type' , and `Data' is extracted from
%% memory and processed just as if {@link gl:drawPixels/5} were called, but processing stops
%% after the final expansion to RGBA is completed.
%%
%% The four scale parameters and the four bias parameters that are defined for the table
%% are then used to scale and bias the R, G, B, and A components of each pixel. (Use ``gl:colorTableParameter''
%% to set these scale and bias parameters.)
%%
%% Next, the R, G, B, and A values are clamped to the range [0 1]. Each pixel is then converted
%% to the internal format specified by `Internalformat' . This conversion simply maps
%% the component values of the pixel (R, G, B, and A) to the values included in the internal
%% format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in the color table. They form a one-dimensional table with indices in
%% the range [0 width-1].
%%
%% If `Target' is `?GL_PROXY_*', ``gl:colorTable'' recomputes and stores the
%% values of the proxy color table's state variables `?GL_COLOR_TABLE_FORMAT', `?GL_COLOR_TABLE_WIDTH'
%% , `?GL_COLOR_TABLE_RED_SIZE', `?GL_COLOR_TABLE_GREEN_SIZE', `?GL_COLOR_TABLE_BLUE_SIZE'
%% , `?GL_COLOR_TABLE_ALPHA_SIZE', `?GL_COLOR_TABLE_LUMINANCE_SIZE', and `?GL_COLOR_TABLE_INTENSITY_SIZE'
%% . There is no effect on the image or state of any actual color table. If the specified
%% color table is too large to be supported, then all the proxy state variables listed above
%% are set to zero. Otherwise, the color table could be supported by ``gl:colorTable''
%% using the corresponding non-proxy target, and the proxy state variables are set as if
%% that target were being defined.
%%
%% The proxy state variables can be retrieved by calling {@link gl:getColorTableParameterfv/2}
%% with a target of `?GL_PROXY_*'. This allows the application to decide if a particular
%% ``gl:colorTable'' command would succeed, and to determine what the resulting color table
%% attributes would be.
%%
%% If a color table is enabled, and its width is non-zero, then its contents are used to
%% replace a subset of the components of each RGBA pixel group, based on the internal format
%% of the table.
%%
%% Each pixel group has color components (R, G, B, A) that are in the range [0.0 1.0]. The color
%% components are rescaled to the size of the color lookup table to form an index. Then a
%% subset of the components based on the internal format of the table are replaced by the
%% table entry selected by that index. If the color components and contents of the table
%% are represented as follows:
%%
%% <table><tbody><tr><td>` Representation '</td><td>` Meaning '</td></tr></tbody><tbody>
%% <tr><td>r</td><td> Table index computed from R</td></tr><tr><td>g</td><td> Table index
%% computed from G</td></tr><tr><td>b</td><td> Table index computed from B</td></tr><tr><td>a
%% </td><td> Table index computed from A</td></tr><tr><td>L[i]</td><td> Luminance value at
%% table index i</td></tr><tr><td>I[i]</td><td> Intensity value at table index i</td></tr><tr>
%% <td>R[i]</td><td> Red value at table index i</td></tr><tr><td>G[i]</td><td> Green value
%% at table index i</td></tr><tr><td>B[i]</td><td> Blue value at table index i</td></tr><tr><td>
%% A[i]</td><td> Alpha value at table index i</td></tr></tbody></table>
%%
%% then the result of color table lookup is as follows:
%%
%% <table><tbody><tr><td></td><td>` Resulting Texture Components '</td></tr><tr><td>` Table Internal Format '
%% </td><td>` R '</td><td>` G '</td><td>` B '</td><td>` A '</td></tr></tbody>
%% <tbody><tr><td>`?GL_ALPHA'</td><td>R</td><td>G</td><td>B</td><td>A[a]</td></tr><tr><td>
%% `?GL_LUMINANCE'</td><td>L[r]</td><td>L[g]</td><td>L[b]</td><td>At</td></tr><tr><td>`?GL_LUMINANCE_ALPHA'
%% </td><td>L[r]</td><td>L[g]</td><td>L[b]</td><td>A[a]</td></tr><tr><td>`?GL_INTENSITY'</td>
%% <td>I[r]</td><td>I[g]</td><td>I[b]</td><td>I[a]</td></tr><tr><td>`?GL_RGB'</td><td>R[r]
%% </td><td>G[g]</td><td>B[b]</td><td>A</td></tr><tr><td>`?GL_RGBA'</td><td>R[r]</td><td>
%% G[g]</td><td>B[b]</td><td>A[a]</td></tr></tbody></table>
%%
%% When `?GL_COLOR_TABLE' is enabled, the colors resulting from the pixel map operation
%% (if it is enabled) are mapped by the color lookup table before being passed to the convolution
%% operation. The colors resulting from the convolution operation are modified by the post
%% convolution color lookup table when `?GL_POST_CONVOLUTION_COLOR_TABLE' is enabled.
%% These modified colors are then sent to the color matrix operation. Finally, if `?GL_POST_COLOR_MATRIX_COLOR_TABLE'
%% is enabled, the colors resulting from the color matrix operation are mapped by the post
%% color matrix color lookup table before being used by the histogram operation.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorTable.xml">external</a> documentation.
-spec colorTable(Target, Internalformat, Width, Format, Type, Table) -> 'ok' when Target :: enum(),Internalformat :: enum(),Width :: integer(),Format :: enum(),Type :: enum(),Table :: offset()|mem().
colorTable(Target,Internalformat,Width,Format,Type,Table) when is_integer(Table) ->
cast(5324, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Format:?GLenum,Type:?GLenum,Table:?GLuint>>);
colorTable(Target,Internalformat,Width,Format,Type,Table) ->
send_bin(Table),
cast(5325, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Set color lookup table parameters
%%
%% ``gl:colorTableParameter'' is used to specify the scale factors and bias terms applied
%% to color components when they are loaded into a color table. `Target' indicates which
%% color table the scale and bias terms apply to; it must be set to `?GL_COLOR_TABLE', `?GL_POST_CONVOLUTION_COLOR_TABLE'
%% , or `?GL_POST_COLOR_MATRIX_COLOR_TABLE'.
%%
%% `Pname' must be `?GL_COLOR_TABLE_SCALE' to set the scale factors. In this case,
%% `Params' points to an array of four values, which are the scale factors for red,
%% green, blue, and alpha, in that order.
%%
%% `Pname' must be `?GL_COLOR_TABLE_BIAS' to set the bias terms. In this case, `Params'
%% points to an array of four values, which are the bias terms for red, green, blue, and
%% alpha, in that order.
%%
%% The color tables themselves are specified by calling {@link gl:colorTable/6} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorTableParameter.xml">external</a> documentation.
-spec colorTableParameterfv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: {float(),float(),float(),float()}.
colorTableParameterfv(Target,Pname,{P1,P2,P3,P4}) ->
cast(5326, <<Target:?GLenum,Pname:?GLenum,P1:?GLfloat,P2:?GLfloat,P3:?GLfloat,P4:?GLfloat>>).
%% @doc
%% See {@link colorTableParameterfv/3}
-spec colorTableParameteriv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: {integer(),integer(),integer(),integer()}.
colorTableParameteriv(Target,Pname,{P1,P2,P3,P4}) ->
cast(5327, <<Target:?GLenum,Pname:?GLenum,P1:?GLint,P2:?GLint,P3:?GLint,P4:?GLint>>).
%% @doc Copy pixels into a color table
%%
%% ``gl:copyColorTable'' loads a color table with pixels from the current `?GL_READ_BUFFER'
%% (rather than from main memory, as is the case for {@link gl:colorTable/6} ).
%%
%% The screen-aligned pixel rectangle with lower-left corner at ( `X' , `Y' ) having
%% width `Width' and height 1 is loaded into the color table. If any pixels within this
%% region are outside the window that is associated with the GL context, the values obtained
%% for those pixels are undefined.
%%
%% The pixels in the rectangle are processed just as if {@link gl:readPixels/7} were called,
%% with `Internalformat' set to RGBA, but processing stops after the final conversion
%% to RGBA.
%%
%% The four scale parameters and the four bias parameters that are defined for the table
%% are then used to scale and bias the R, G, B, and A components of each pixel. The scale
%% and bias parameters are set by calling {@link gl:colorTableParameterfv/3} .
%%
%% Next, the R, G, B, and A values are clamped to the range [0 1]. Each pixel is then converted
%% to the internal format specified by `Internalformat' . This conversion simply maps
%% the component values of the pixel (R, G, B, and A) to the values included in the internal
%% format (red, green, blue, alpha, luminance, and intensity). The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in the color table. They form a one-dimensional table with indices in
%% the range [0 width-1].
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyColorTable.xml">external</a> documentation.
-spec copyColorTable(Target, Internalformat, X, Y, Width) -> 'ok' when Target :: enum(),Internalformat :: enum(),X :: integer(),Y :: integer(),Width :: integer().
copyColorTable(Target,Internalformat,X,Y,Width) ->
cast(5328, <<Target:?GLenum,Internalformat:?GLenum,X:?GLint,Y:?GLint,Width:?GLsizei>>).
%% @doc Retrieve contents of a color lookup table
%%
%% ``gl:getColorTable'' returns in `Table' the contents of the color table specified
%% by `Target' . No pixel transfer operations are performed, but pixel storage modes
%% that are applicable to {@link gl:readPixels/7} are performed.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a histogram table is requested, `Table' is treated
%% as a byte offset into the buffer object's data store.
%%
%% Color components that are requested in the specified `Format' , but which are not
%% included in the internal format of the color lookup table, are returned as zero. The assignments
%% of internal color components to the components requested by `Format' are <table><tbody>
%% <tr><td>` Internal Component '</td><td>` Resulting Component '</td></tr></tbody>
%% <tbody><tr><td> Red </td><td> Red </td></tr><tr><td> Green </td><td> Green </td></tr><tr><td>
%% Blue </td><td> Blue </td></tr><tr><td> Alpha </td><td> Alpha </td></tr><tr><td> Luminance
%% </td><td> Red </td></tr><tr><td> Intensity </td><td> Red </td></tr></tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetColorTable.xml">external</a> documentation.
-spec getColorTable(Target, Format, Type, Table) -> 'ok' when Target :: enum(),Format :: enum(),Type :: enum(),Table :: mem().
getColorTable(Target,Format,Type,Table) ->
send_bin(Table),
call(5329, <<Target:?GLenum,Format:?GLenum,Type:?GLenum>>).
%% @doc Get color lookup table parameters
%%
%% Returns parameters specific to color table `Target' .
%%
%% When `Pname' is set to `?GL_COLOR_TABLE_SCALE' or `?GL_COLOR_TABLE_BIAS',
%% ``gl:getColorTableParameter'' returns the color table scale or bias parameters for the
%% table specified by `Target' . For these queries, `Target' must be set to `?GL_COLOR_TABLE'
%% , `?GL_POST_CONVOLUTION_COLOR_TABLE', or `?GL_POST_COLOR_MATRIX_COLOR_TABLE'
%% and `Params' points to an array of four elements, which receive the scale or bias
%% factors for red, green, blue, and alpha, in that order.
%%
%% ``gl:getColorTableParameter'' can also be used to retrieve the format and size parameters
%% for a color table. For these queries, set `Target' to either the color table target
%% or the proxy color table target. The format and size parameters are set by {@link gl:colorTable/6}
%% .
%%
%% The following table lists the format and size parameters that may be queried. For each
%% symbolic constant listed below for `Pname' , `Params' must point to an array
%% of the given length and receive the values indicated.
%%
%% <table><tbody><tr><td>` Parameter '</td><td>` N '</td><td>` Meaning '</td></tr>
%% </tbody><tbody><tr><td>`?GL_COLOR_TABLE_FORMAT'</td><td> 1 </td><td> Internal format
%% (e.g., `?GL_RGBA') </td></tr><tr><td>`?GL_COLOR_TABLE_WIDTH'</td><td> 1 </td><td>
%% Number of elements in table </td></tr><tr><td>`?GL_COLOR_TABLE_RED_SIZE'</td><td>
%% 1 </td><td> Size of red component, in bits </td></tr><tr><td>`?GL_COLOR_TABLE_GREEN_SIZE'
%% </td><td> 1 </td><td> Size of green component </td></tr><tr><td>`?GL_COLOR_TABLE_BLUE_SIZE'
%% </td><td> 1 </td><td> Size of blue component </td></tr><tr><td>`?GL_COLOR_TABLE_ALPHA_SIZE'
%% </td><td> 1 </td><td> Size of alpha component </td></tr><tr><td>`?GL_COLOR_TABLE_LUMINANCE_SIZE'
%% </td><td> 1 </td><td> Size of luminance component </td></tr><tr><td>`?GL_COLOR_TABLE_INTENSITY_SIZE'
%% </td><td> 1 </td><td> Size of intensity component </td></tr></tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetColorTableParameter.xml">external</a> documentation.
-spec getColorTableParameterfv(Target, Pname) -> {float(),float(),float(),float()} when Target :: enum(),Pname :: enum().
getColorTableParameterfv(Target,Pname) ->
call(5330, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getColorTableParameterfv/2}
-spec getColorTableParameteriv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getColorTableParameteriv(Target,Pname) ->
call(5331, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Respecify a portion of a color table
%%
%% ``gl:colorSubTable'' is used to respecify a contiguous portion of a color table previously
%% defined using {@link gl:colorTable/6} . The pixels referenced by `Data' replace the
%% portion of the existing table from indices `Start' to start+count-1, inclusive.
%% This region may not include any entries outside the range of the color table as it was
%% originally specified. It is not an error to specify a subtexture with width of 0, but
%% such a specification has no effect.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a portion of a color table is respecified, `Data'
%% is treated as a byte offset into the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorSubTable.xml">external</a> documentation.
-spec colorSubTable(Target, Start, Count, Format, Type, Data) -> 'ok' when Target :: enum(),Start :: integer(),Count :: integer(),Format :: enum(),Type :: enum(),Data :: offset()|mem().
colorSubTable(Target,Start,Count,Format,Type,Data) when is_integer(Data) ->
cast(5332, <<Target:?GLenum,Start:?GLsizei,Count:?GLsizei,Format:?GLenum,Type:?GLenum,Data:?GLuint>>);
colorSubTable(Target,Start,Count,Format,Type,Data) ->
send_bin(Data),
cast(5333, <<Target:?GLenum,Start:?GLsizei,Count:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Respecify a portion of a color table
%%
%% ``gl:copyColorSubTable'' is used to respecify a contiguous portion of a color table
%% previously defined using {@link gl:colorTable/6} . The pixels copied from the framebuffer
%% replace the portion of the existing table from indices `Start' to start+x-1, inclusive.
%% This region may not include any entries outside the range of the color table, as was originally
%% specified. It is not an error to specify a subtexture with width of 0, but such a specification
%% has no effect.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyColorSubTable.xml">external</a> documentation.
-spec copyColorSubTable(Target, Start, X, Y, Width) -> 'ok' when Target :: enum(),Start :: integer(),X :: integer(),Y :: integer(),Width :: integer().
copyColorSubTable(Target,Start,X,Y,Width) ->
cast(5334, <<Target:?GLenum,Start:?GLsizei,X:?GLint,Y:?GLint,Width:?GLsizei>>).
%% @doc Define a one-dimensional convolution filter
%%
%% ``gl:convolutionFilter1D'' builds a one-dimensional convolution filter kernel from an
%% array of pixels.
%%
%% The pixel array specified by `Width' , `Format' , `Type' , and `Data'
%% is extracted from memory and processed just as if {@link gl:drawPixels/5} were called,
%% but processing stops after the final expansion to RGBA is completed.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a convolution filter is specified, `Data' is
%% treated as a byte offset into the buffer object's data store.
%%
%% The R, G, B, and A components of each pixel are next scaled by the four 1D `?GL_CONVOLUTION_FILTER_SCALE'
%% parameters and biased by the four 1D `?GL_CONVOLUTION_FILTER_BIAS' parameters. (The
%% scale and bias parameters are set by {@link gl:convolutionParameterf/3} using the `?GL_CONVOLUTION_1D'
%% target and the names `?GL_CONVOLUTION_FILTER_SCALE' and `?GL_CONVOLUTION_FILTER_BIAS'
%% . The parameters themselves are vectors of four values that are applied to red, green,
%% blue, and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
%% any time during this process.
%%
%% Each pixel is then converted to the internal format specified by `Internalformat' .
%% This conversion simply maps the component values of the pixel (R, G, B, and A) to the
%% values included in the internal format (red, green, blue, alpha, luminance, and intensity).
%% The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% The red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in floating-point rather than integer format. They form a one-dimensional
%% filter kernel image indexed with coordinate `i' such that `i' starts at 0 and
%% increases from left to right. Kernel location `i' is derived from the `i'th
%% pixel, counting from 0.
%%
%% Note that after a convolution is performed, the resulting color components are also scaled
%% by their corresponding `?GL_POST_CONVOLUTION_c_SCALE' parameters and biased by their
%% corresponding `?GL_POST_CONVOLUTION_c_BIAS' parameters (where `c' takes on the
%% values `RED', `GREEN', `BLUE', and `ALPHA'). These parameters are
%% set by {@link gl:pixelTransferf/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glConvolutionFilter1D.xml">external</a> documentation.
-spec convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image) -> 'ok' when Target :: enum(),Internalformat :: enum(),Width :: integer(),Format :: enum(),Type :: enum(),Image :: offset()|mem().
convolutionFilter1D(Target,Internalformat,Width,Format,Type,Image) when is_integer(Image) ->
cast(5335, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Format:?GLenum,Type:?GLenum,Image:?GLuint>>);
convolutionFilter1D(Target,Internalformat,Width,Format,Type,Image) ->
send_bin(Image),
cast(5336, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Define a two-dimensional convolution filter
%%
%% ``gl:convolutionFilter2D'' builds a two-dimensional convolution filter kernel from an
%% array of pixels.
%%
%% The pixel array specified by `Width' , `Height' , `Format' , `Type' ,
%% and `Data' is extracted from memory and processed just as if {@link gl:drawPixels/5}
%% were called, but processing stops after the final expansion to RGBA is completed.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a convolution filter is specified, `Data' is
%% treated as a byte offset into the buffer object's data store.
%%
%% The R, G, B, and A components of each pixel are next scaled by the four 2D `?GL_CONVOLUTION_FILTER_SCALE'
%% parameters and biased by the four 2D `?GL_CONVOLUTION_FILTER_BIAS' parameters. (The
%% scale and bias parameters are set by {@link gl:convolutionParameterf/3} using the `?GL_CONVOLUTION_2D'
%% target and the names `?GL_CONVOLUTION_FILTER_SCALE' and `?GL_CONVOLUTION_FILTER_BIAS'
%% . The parameters themselves are vectors of four values that are applied to red, green,
%% blue, and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
%% any time during this process.
%%
%% Each pixel is then converted to the internal format specified by `Internalformat' .
%% This conversion simply maps the component values of the pixel (R, G, B, and A) to the
%% values included in the internal format (red, green, blue, alpha, luminance, and intensity).
%% The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% The red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in floating-point rather than integer format. They form a two-dimensional
%% filter kernel image indexed with coordinates `i' and `j' such that `i'
%% starts at zero and increases from left to right, and `j' starts at zero and increases
%% from bottom to top. Kernel location `i,j' is derived from the `N'th pixel, where
%% `N' is `i'+`j'* `Width' .
%%
%% Note that after a convolution is performed, the resulting color components are also scaled
%% by their corresponding `?GL_POST_CONVOLUTION_c_SCALE' parameters and biased by their
%% corresponding `?GL_POST_CONVOLUTION_c_BIAS' parameters (where `c' takes on the
%% values `RED', `GREEN', `BLUE', and `ALPHA'). These parameters are
%% set by {@link gl:pixelTransferf/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glConvolutionFilter2D.xml">external</a> documentation.
-spec convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image) -> 'ok' when Target :: enum(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Format :: enum(),Type :: enum(),Image :: offset()|mem().
convolutionFilter2D(Target,Internalformat,Width,Height,Format,Type,Image) when is_integer(Image) ->
cast(5337, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum,Image:?GLuint>>);
convolutionFilter2D(Target,Internalformat,Width,Height,Format,Type,Image) ->
send_bin(Image),
cast(5338, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Set convolution parameters
%%
%% ``gl:convolutionParameter'' sets the value of a convolution parameter.
%%
%% `Target' selects the convolution filter to be affected: `?GL_CONVOLUTION_1D', `?GL_CONVOLUTION_2D'
%% , or `?GL_SEPARABLE_2D' for the 1D, 2D, or separable 2D filter, respectively.
%%
%% `Pname' selects the parameter to be changed. `?GL_CONVOLUTION_FILTER_SCALE'
%% and `?GL_CONVOLUTION_FILTER_BIAS' affect the definition of the convolution filter
%% kernel; see {@link gl:convolutionFilter1D/6} , {@link gl:convolutionFilter2D/7} , and {@link gl:separableFilter2D/8}
%% for details. In these cases, `Params' v is an array of four values to be applied
%% to red, green, blue, and alpha values, respectively. The initial value for `?GL_CONVOLUTION_FILTER_SCALE'
%% is (1, 1, 1, 1), and the initial value for `?GL_CONVOLUTION_FILTER_BIAS' is (0,
%% 0, 0, 0).
%%
%% A `Pname' value of `?GL_CONVOLUTION_BORDER_MODE' controls the convolution border
%% mode. The accepted modes are:
%%
%% `?GL_REDUCE': The image resulting from convolution is smaller than the source image.
%% If the filter width is Wf and height is Hf, and the source image width is Ws and
%% height is Hs, then the convolved image width will be Ws-Wf+1 and height will be Hs-Hf
%% +1. (If this reduction would generate an image with zero or negative width and/or height,
%% the output is simply null, with no error generated.) The coordinates of the image resulting
%% from convolution are zero through Ws-Wf in width and zero through Hs-Hf in height.
%%
%% `?GL_CONSTANT_BORDER': The image resulting from convolution is the same size as
%% the source image, and processed as if the source image were surrounded by pixels with
%% their color specified by the `?GL_CONVOLUTION_BORDER_COLOR'.
%%
%% `?GL_REPLICATE_BORDER': The image resulting from convolution is the same size as
%% the source image, and processed as if the outermost pixel on the border of the source
%% image were replicated.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glConvolutionParameter.xml">external</a> documentation.
-spec convolutionParameterf(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
convolutionParameterf(Target,Pname,Params) ->
cast(5339, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @equiv convolutionParameterf(Target,Pname,Params)
-spec convolutionParameterfv(Target :: enum(),Pname :: enum(),Params) -> 'ok' when Params :: {Params :: tuple()}.
convolutionParameterfv(Target,Pname,{Params}) -> convolutionParameterf(Target,Pname,Params).
%% @doc
%% See {@link convolutionParameterf/3}
-spec convolutionParameteri(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
convolutionParameteri(Target,Pname,Params) ->
cast(5340, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @equiv convolutionParameteri(Target,Pname,Params)
-spec convolutionParameteriv(Target :: enum(),Pname :: enum(),Params) -> 'ok' when Params :: {Params :: tuple()}.
convolutionParameteriv(Target,Pname,{Params}) -> convolutionParameteri(Target,Pname,Params).
%% @doc Copy pixels into a one-dimensional convolution filter
%%
%% ``gl:copyConvolutionFilter1D'' defines a one-dimensional convolution filter kernel with
%% pixels from the current `?GL_READ_BUFFER' (rather than from main memory, as is the
%% case for {@link gl:convolutionFilter1D/6} ).
%%
%% The screen-aligned pixel rectangle with lower-left corner at ( `X' , `Y' ), width
%% `Width' and height 1 is used to define the convolution filter. If any pixels within
%% this region are outside the window that is associated with the GL context, the values
%% obtained for those pixels are undefined.
%%
%% The pixels in the rectangle are processed exactly as if {@link gl:readPixels/7} had been
%% called with `format' set to RGBA, but the process stops just before final conversion.
%% The R, G, B, and A components of each pixel are next scaled by the four 1D `?GL_CONVOLUTION_FILTER_SCALE'
%% parameters and biased by the four 1D `?GL_CONVOLUTION_FILTER_BIAS' parameters. (The
%% scale and bias parameters are set by {@link gl:convolutionParameterf/3} using the `?GL_CONVOLUTION_1D'
%% target and the names `?GL_CONVOLUTION_FILTER_SCALE' and `?GL_CONVOLUTION_FILTER_BIAS'
%% . The parameters themselves are vectors of four values that are applied to red, green,
%% blue, and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
%% any time during this process.
%%
%% Each pixel is then converted to the internal format specified by `Internalformat' .
%% This conversion simply maps the component values of the pixel (R, G, B, and A) to the
%% values included in the internal format (red, green, blue, alpha, luminance, and intensity).
%% The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% The red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in floating-point rather than integer format.
%%
%% Pixel ordering is such that lower x screen coordinates correspond to lower `i' filter
%% image coordinates.
%%
%% Note that after a convolution is performed, the resulting color components are also scaled
%% by their corresponding `?GL_POST_CONVOLUTION_c_SCALE' parameters and biased by their
%% corresponding `?GL_POST_CONVOLUTION_c_BIAS' parameters (where `c' takes on the
%% values `RED', `GREEN', `BLUE', and `ALPHA'). These parameters are
%% set by {@link gl:pixelTransferf/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyConvolutionFilter1D.xml">external</a> documentation.
-spec copyConvolutionFilter1D(Target, Internalformat, X, Y, Width) -> 'ok' when Target :: enum(),Internalformat :: enum(),X :: integer(),Y :: integer(),Width :: integer().
copyConvolutionFilter1D(Target,Internalformat,X,Y,Width) ->
cast(5341, <<Target:?GLenum,Internalformat:?GLenum,X:?GLint,Y:?GLint,Width:?GLsizei>>).
%% @doc Copy pixels into a two-dimensional convolution filter
%%
%% ``gl:copyConvolutionFilter2D'' defines a two-dimensional convolution filter kernel with
%% pixels from the current `?GL_READ_BUFFER' (rather than from main memory, as is the
%% case for {@link gl:convolutionFilter2D/7} ).
%%
%% The screen-aligned pixel rectangle with lower-left corner at ( `X' , `Y' ), width
%% `Width' and height `Height' is used to define the convolution filter. If any
%% pixels within this region are outside the window that is associated with the GL context,
%% the values obtained for those pixels are undefined.
%%
%% The pixels in the rectangle are processed exactly as if {@link gl:readPixels/7} had been
%% called with `format' set to RGBA, but the process stops just before final conversion.
%% The R, G, B, and A components of each pixel are next scaled by the four 2D `?GL_CONVOLUTION_FILTER_SCALE'
%% parameters and biased by the four 2D `?GL_CONVOLUTION_FILTER_BIAS' parameters. (The
%% scale and bias parameters are set by {@link gl:convolutionParameterf/3} using the `?GL_CONVOLUTION_2D'
%% target and the names `?GL_CONVOLUTION_FILTER_SCALE' and `?GL_CONVOLUTION_FILTER_BIAS'
%% . The parameters themselves are vectors of four values that are applied to red, green,
%% blue, and alpha, in that order.) The R, G, B, and A values are not clamped to [0,1] at
%% any time during this process.
%%
%% Each pixel is then converted to the internal format specified by `Internalformat' .
%% This conversion simply maps the component values of the pixel (R, G, B, and A) to the
%% values included in the internal format (red, green, blue, alpha, luminance, and intensity).
%% The mapping is as follows:
%%
%% <table><tbody><tr><td>` Internal Format '</td><td>` Red '</td><td>` Green '</td>
%% <td>` Blue '</td><td>` Alpha '</td><td>` Luminance '</td><td>` Intensity '
%% </td></tr></tbody><tbody><tr><td>`?GL_ALPHA'</td><td></td><td></td><td></td><td> A </td>
%% <td></td><td></td></tr><tr><td>`?GL_LUMINANCE'</td><td></td><td></td><td></td><td></td>
%% <td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td></td><td></td><td></td>
%% <td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'</td><td></td><td></td><td>
%% </td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td><td> R </td><td> G </td>
%% <td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'</td><td> R </td><td>
%% G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%% The red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in floating-point rather than integer format.
%%
%% Pixel ordering is such that lower x screen coordinates correspond to lower `i' filter
%% image coordinates, and lower y screen coordinates correspond to lower `j' filter
%% image coordinates.
%%
%% Note that after a convolution is performed, the resulting color components are also scaled
%% by their corresponding `?GL_POST_CONVOLUTION_c_SCALE' parameters and biased by their
%% corresponding `?GL_POST_CONVOLUTION_c_BIAS' parameters (where `c' takes on the
%% values `RED', `GREEN', `BLUE', and `ALPHA'). These parameters are
%% set by {@link gl:pixelTransferf/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyConvolutionFilter2D.xml">external</a> documentation.
-spec copyConvolutionFilter2D(Target, Internalformat, X, Y, Width, Height) -> 'ok' when Target :: enum(),Internalformat :: enum(),X :: integer(),Y :: integer(),Width :: integer(),Height :: integer().
copyConvolutionFilter2D(Target,Internalformat,X,Y,Width,Height) ->
cast(5342, <<Target:?GLenum,Internalformat:?GLenum,X:?GLint,Y:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Get current 1D or 2D convolution filter kernel
%%
%% ``gl:getConvolutionFilter'' returns the current 1D or 2D convolution filter kernel as
%% an image. The one- or two-dimensional image is placed in `Image' according to the
%% specifications in `Format' and `Type' . No pixel transfer operations are performed
%% on this image, but the relevant pixel storage modes are applied.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a convolution filter is requested, `Image' is
%% treated as a byte offset into the buffer object's data store.
%%
%% Color components that are present in `Format' but not included in the internal format
%% of the filter are returned as zero. The assignments of internal color components to the
%% components of `Format' are as follows. <table><tbody><tr><td>` Internal Component '
%% </td><td>` Resulting Component '</td></tr></tbody><tbody><tr><td> Red </td><td> Red </td>
%% </tr><tr><td> Green </td><td> Green </td></tr><tr><td> Blue </td><td> Blue </td></tr><tr><td>
%% Alpha </td><td> Alpha </td></tr><tr><td> Luminance </td><td> Red </td></tr><tr><td> Intensity
%% </td><td> Red </td></tr></tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetConvolutionFilter.xml">external</a> documentation.
-spec getConvolutionFilter(Target, Format, Type, Image) -> 'ok' when Target :: enum(),Format :: enum(),Type :: enum(),Image :: mem().
getConvolutionFilter(Target,Format,Type,Image) ->
send_bin(Image),
call(5343, <<Target:?GLenum,Format:?GLenum,Type:?GLenum>>).
%% @doc Get convolution parameters
%%
%% ``gl:getConvolutionParameter'' retrieves convolution parameters. `Target' determines
%% which convolution filter is queried. `Pname' determines which parameter is returned:
%%
%%
%% `?GL_CONVOLUTION_BORDER_MODE': The convolution border mode. See {@link gl:convolutionParameterf/3}
%% for a list of border modes.
%%
%% `?GL_CONVOLUTION_BORDER_COLOR': The current convolution border color. `Params'
%% must be a pointer to an array of four elements, which will receive the red, green, blue,
%% and alpha border colors.
%%
%% `?GL_CONVOLUTION_FILTER_SCALE': The current filter scale factors. `Params'
%% must be a pointer to an array of four elements, which will receive the red, green, blue,
%% and alpha filter scale factors in that order.
%%
%% `?GL_CONVOLUTION_FILTER_BIAS': The current filter bias factors. `Params' must
%% be a pointer to an array of four elements, which will receive the red, green, blue, and
%% alpha filter bias terms in that order.
%%
%% `?GL_CONVOLUTION_FORMAT': The current internal format. See {@link gl:convolutionFilter1D/6}
%% , {@link gl:convolutionFilter2D/7} , and {@link gl:separableFilter2D/8} for lists of allowable
%% formats.
%%
%% `?GL_CONVOLUTION_WIDTH': The current filter image width.
%%
%% `?GL_CONVOLUTION_HEIGHT': The current filter image height.
%%
%% `?GL_MAX_CONVOLUTION_WIDTH': The maximum acceptable filter image width.
%%
%% `?GL_MAX_CONVOLUTION_HEIGHT': The maximum acceptable filter image height.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetConvolutionParameter.xml">external</a> documentation.
-spec getConvolutionParameterfv(Target, Pname) -> {float(),float(),float(),float()} when Target :: enum(),Pname :: enum().
getConvolutionParameterfv(Target,Pname) ->
call(5344, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getConvolutionParameterfv/2}
-spec getConvolutionParameteriv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getConvolutionParameteriv(Target,Pname) ->
call(5345, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Define a separable two-dimensional convolution filter
%%
%% ``gl:separableFilter2D'' builds a two-dimensional separable convolution filter kernel
%% from two arrays of pixels.
%%
%% The pixel arrays specified by ( `Width' , `Format' , `Type' , `Row' )
%% and ( `Height' , `Format' , `Type' , `Column' ) are processed just as if
%% they had been passed to {@link gl:drawPixels/5} , but processing stops after the final expansion
%% to RGBA is completed.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a convolution filter is specified, `Row' and `Column'
%% are treated as byte offsets into the buffer object's data store.
%%
%% Next, the R, G, B, and A components of all pixels in both arrays are scaled by the four
%% separable 2D `?GL_CONVOLUTION_FILTER_SCALE' parameters and biased by the four separable
%% 2D `?GL_CONVOLUTION_FILTER_BIAS' parameters. (The scale and bias parameters are set
%% by {@link gl:convolutionParameterf/3} using the `?GL_SEPARABLE_2D' target and the names
%% `?GL_CONVOLUTION_FILTER_SCALE' and `?GL_CONVOLUTION_FILTER_BIAS'. The parameters
%% themselves are vectors of four values that are applied to red, green, blue, and alpha,
%% in that order.) The R, G, B, and A values are not clamped to [0,1] at any time during
%% this process.
%%
%% Each pixel is then converted to the internal format specified by `Internalformat' .
%% This conversion simply maps the component values of the pixel (R, G, B, and A) to the
%% values included in the internal format (red, green, blue, alpha, luminance, and intensity).
%% The mapping is as follows: <table><tbody><tr><td>` Internal Format '</td><td>` Red '
%% </td><td>` Green '</td><td>` Blue '</td><td>` Alpha '</td><td>` Luminance '
%% </td><td>` Intensity '</td></tr></tbody><tbody><tr><td>`?GL_LUMINANCE'</td><td></td>
%% <td></td><td></td><td></td><td> R </td><td></td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td>
%% <td></td><td></td><td></td><td> A </td><td> R </td><td></td></tr><tr><td>`?GL_INTENSITY'
%% </td><td></td><td></td><td></td><td></td><td></td><td> R </td></tr><tr><td>`?GL_RGB'</td>
%% <td> R </td><td> G </td><td> B </td><td></td><td></td><td></td></tr><tr><td>`?GL_RGBA'
%% </td><td> R </td><td> G </td><td> B </td><td> A </td><td></td><td></td></tr></tbody></table>
%%
%%
%% The red, green, blue, alpha, luminance, and/or intensity components of the resulting
%% pixels are stored in floating-point rather than integer format. They form two one-dimensional
%% filter kernel images. The row image is indexed by coordinate `i' starting at zero
%% and increasing from left to right. Each location in the row image is derived from element
%% `i' of `Row' . The column image is indexed by coordinate `j' starting at
%% zero and increasing from bottom to top. Each location in the column image is derived from
%% element `j' of `Column' .
%%
%% Note that after a convolution is performed, the resulting color components are also scaled
%% by their corresponding `?GL_POST_CONVOLUTION_c_SCALE' parameters and biased by their
%% corresponding `?GL_POST_CONVOLUTION_c_BIAS' parameters (where `c' takes on the
%% values `RED', `GREEN', `BLUE', and `ALPHA'). These parameters are
%% set by {@link gl:pixelTransferf/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSeparableFilter2D.xml">external</a> documentation.
-spec separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column) -> 'ok' when Target :: enum(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Format :: enum(),Type :: enum(),Row :: offset()|mem(),Column :: offset()|mem().
separableFilter2D(Target,Internalformat,Width,Height,Format,Type,Row,Column) when is_integer(Row), is_integer(Column) ->
cast(5346, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum,Row:?GLuint,Column:?GLuint>>);
separableFilter2D(Target,Internalformat,Width,Height,Format,Type,Row,Column) ->
send_bin(Row),
send_bin(Column),
cast(5347, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,Type:?GLenum>>).
%% @doc Get histogram table
%%
%% ``gl:getHistogram'' returns the current histogram table as a one-dimensional image with
%% the same width as the histogram. No pixel transfer operations are performed on this image,
%% but pixel storage modes that are applicable to 1D images are honored.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a histogram table is requested, `Values' is treated
%% as a byte offset into the buffer object's data store.
%%
%% Color components that are requested in the specified `Format' , but which are not
%% included in the internal format of the histogram, are returned as zero. The assignments
%% of internal color components to the components requested by `Format' are: <table><tbody>
%% <tr><td>` Internal Component '</td><td>` Resulting Component '</td></tr></tbody>
%% <tbody><tr><td> Red </td><td> Red </td></tr><tr><td> Green </td><td> Green </td></tr><tr><td>
%% Blue </td><td> Blue </td></tr><tr><td> Alpha </td><td> Alpha </td></tr><tr><td> Luminance
%% </td><td> Red </td></tr></tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetHistogram.xml">external</a> documentation.
-spec getHistogram(Target, Reset, Format, Type, Values) -> 'ok' when Target :: enum(),Reset :: 0|1,Format :: enum(),Type :: enum(),Values :: mem().
getHistogram(Target,Reset,Format,Type,Values) ->
send_bin(Values),
call(5348, <<Target:?GLenum,Reset:?GLboolean,0:24,Format:?GLenum,Type:?GLenum>>).
%% @doc Get histogram parameters
%%
%% ``gl:getHistogramParameter'' is used to query parameter values for the current histogram
%% or for a proxy. The histogram state information may be queried by calling ``gl:getHistogramParameter''
%% with a `Target' of `?GL_HISTOGRAM' (to obtain information for the current histogram
%% table) or `?GL_PROXY_HISTOGRAM' (to obtain information from the most recent proxy
%% request) and one of the following values for the `Pname' argument:
%%
%% <table><tbody><tr><td>` Parameter '</td><td>` Description '</td></tr></tbody><tbody>
%% <tr><td>`?GL_HISTOGRAM_WIDTH'</td><td> Histogram table width </td></tr><tr><td>`?GL_HISTOGRAM_FORMAT'
%% </td><td> Internal format </td></tr><tr><td>`?GL_HISTOGRAM_RED_SIZE'</td><td> Red
%% component counter size, in bits </td></tr><tr><td>`?GL_HISTOGRAM_GREEN_SIZE'</td><td>
%% Green component counter size, in bits </td></tr><tr><td>`?GL_HISTOGRAM_BLUE_SIZE'</td>
%% <td> Blue component counter size, in bits </td></tr><tr><td>`?GL_HISTOGRAM_ALPHA_SIZE'
%% </td><td> Alpha component counter size, in bits </td></tr><tr><td>`?GL_HISTOGRAM_LUMINANCE_SIZE'
%% </td><td> Luminance component counter size, in bits </td></tr><tr><td>`?GL_HISTOGRAM_SINK'
%% </td><td> Value of the `sink' parameter </td></tr></tbody></table>
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetHistogramParameter.xml">external</a> documentation.
-spec getHistogramParameterfv(Target, Pname) -> {float()} when Target :: enum(),Pname :: enum().
getHistogramParameterfv(Target,Pname) ->
call(5349, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getHistogramParameterfv/2}
-spec getHistogramParameteriv(Target, Pname) -> {integer()} when Target :: enum(),Pname :: enum().
getHistogramParameteriv(Target,Pname) ->
call(5350, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Get minimum and maximum pixel values
%%
%% ``gl:getMinmax'' returns the accumulated minimum and maximum pixel values (computed
%% on a per-component basis) in a one-dimensional image of width 2. The first set of return
%% values are the minima, and the second set of return values are the maxima. The format
%% of the return values is determined by `Format' , and their type is determined by `Types'
%% .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while minimum and maximum pixel values are requested, `Values'
%% is treated as a byte offset into the buffer object's data store.
%%
%% No pixel transfer operations are performed on the return values, but pixel storage modes
%% that are applicable to one-dimensional images are performed. Color components that are
%% requested in the specified `Format' , but that are not included in the internal format
%% of the minmax table, are returned as zero. The assignment of internal color components
%% to the components requested by `Format' are as follows:
%%
%% <table><tbody><tr><td>` Internal Component '</td><td>` Resulting Component '</td>
%% </tr></tbody><tbody><tr><td> Red </td><td> Red </td></tr><tr><td> Green </td><td> Green </td>
%% </tr><tr><td> Blue </td><td> Blue </td></tr><tr><td> Alpha </td><td> Alpha </td></tr><tr><td>
%% Luminance </td><td> Red </td></tr></tbody></table>
%%
%% If `Reset' is `?GL_TRUE', the minmax table entries corresponding to the return
%% values are reset to their initial values. Minimum and maximum values that are not returned
%% are not modified, even if `Reset' is `?GL_TRUE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetMinmax.xml">external</a> documentation.
-spec getMinmax(Target, Reset, Format, Types, Values) -> 'ok' when Target :: enum(),Reset :: 0|1,Format :: enum(),Types :: enum(),Values :: mem().
getMinmax(Target,Reset,Format,Types,Values) ->
send_bin(Values),
call(5351, <<Target:?GLenum,Reset:?GLboolean,0:24,Format:?GLenum,Types:?GLenum>>).
%% @doc Get minmax parameters
%%
%% ``gl:getMinmaxParameter'' retrieves parameters for the current minmax table by setting `Pname'
%% to one of the following values:
%%
%% <table><tbody><tr><td>` Parameter '</td><td>` Description '</td></tr></tbody><tbody>
%% <tr><td>`?GL_MINMAX_FORMAT'</td><td> Internal format of minmax table </td></tr><tr><td>
%% `?GL_MINMAX_SINK'</td><td> Value of the `sink' parameter </td></tr></tbody></table>
%%
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetMinmaxParameter.xml">external</a> documentation.
-spec getMinmaxParameterfv(Target, Pname) -> {float()} when Target :: enum(),Pname :: enum().
getMinmaxParameterfv(Target,Pname) ->
call(5352, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc
%% See {@link getMinmaxParameterfv/2}
-spec getMinmaxParameteriv(Target, Pname) -> {integer()} when Target :: enum(),Pname :: enum().
getMinmaxParameteriv(Target,Pname) ->
call(5353, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Define histogram table
%%
%% When `?GL_HISTOGRAM' is enabled, RGBA color components are converted to histogram
%% table indices by clamping to the range [0,1], multiplying by the width of the histogram
%% table, and rounding to the nearest integer. The table entries selected by the RGBA indices
%% are then incremented. (If the internal format of the histogram table includes luminance,
%% then the index derived from the R color component determines the luminance table entry
%% to be incremented.) If a histogram table entry is incremented beyond its maximum value,
%% then its value becomes undefined. (This is not an error.)
%%
%% Histogramming is performed only for RGBA pixels (though these may be specified originally
%% as color indices and converted to RGBA by index table lookup). Histogramming is enabled
%% with {@link gl:enable/1} and disabled with {@link gl:enable/1} .
%%
%% When `Target' is `?GL_HISTOGRAM', ``gl:histogram'' redefines the current
%% histogram table to have `Width' entries of the format specified by `Internalformat'
%% . The entries are indexed 0 through width-1, and all entries are initialized to zero.
%% The values in the previous histogram table, if any, are lost. If `Sink' is `?GL_TRUE'
%% , then pixels are discarded after histogramming; no further processing of the pixels takes
%% place, and no drawing, texture loading, or pixel readback will result.
%%
%% When `Target' is `?GL_PROXY_HISTOGRAM', ``gl:histogram'' computes all state
%% information as if the histogram table were to be redefined, but does not actually define
%% the new table. If the requested histogram table is too large to be supported, then the
%% state information will be set to zero. This provides a way to determine if a histogram
%% table with the given parameters can be supported.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glHistogram.xml">external</a> documentation.
-spec histogram(Target, Width, Internalformat, Sink) -> 'ok' when Target :: enum(),Width :: integer(),Internalformat :: enum(),Sink :: 0|1.
histogram(Target,Width,Internalformat,Sink) ->
cast(5354, <<Target:?GLenum,Width:?GLsizei,Internalformat:?GLenum,Sink:?GLboolean>>).
%% @doc Define minmax table
%%
%% When `?GL_MINMAX' is enabled, the RGBA components of incoming pixels are compared
%% to the minimum and maximum values for each component, which are stored in the two-element
%% minmax table. (The first element stores the minima, and the second element stores the
%% maxima.) If a pixel component is greater than the corresponding component in the maximum
%% element, then the maximum element is updated with the pixel component value. If a pixel
%% component is less than the corresponding component in the minimum element, then the minimum
%% element is updated with the pixel component value. (In both cases, if the internal format
%% of the minmax table includes luminance, then the R color component of incoming pixels
%% is used for comparison.) The contents of the minmax table may be retrieved at a later
%% time by calling {@link gl:getMinmax/5} . The minmax operation is enabled or disabled by
%% calling {@link gl:enable/1} or {@link gl:enable/1} , respectively, with an argument of `?GL_MINMAX'
%% .
%%
%% ``gl:minmax'' redefines the current minmax table to have entries of the format specified
%% by `Internalformat' . The maximum element is initialized with the smallest possible
%% component values, and the minimum element is initialized with the largest possible component
%% values. The values in the previous minmax table, if any, are lost. If `Sink' is `?GL_TRUE'
%% , then pixels are discarded after minmax; no further processing of the pixels takes place,
%% and no drawing, texture loading, or pixel readback will result.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMinmax.xml">external</a> documentation.
-spec minmax(Target, Internalformat, Sink) -> 'ok' when Target :: enum(),Internalformat :: enum(),Sink :: 0|1.
minmax(Target,Internalformat,Sink) ->
cast(5355, <<Target:?GLenum,Internalformat:?GLenum,Sink:?GLboolean>>).
%% @doc Reset histogram table entries to zero
%%
%% ``gl:resetHistogram'' resets all the elements of the current histogram table to zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glResetHistogram.xml">external</a> documentation.
-spec resetHistogram(Target) -> 'ok' when Target :: enum().
resetHistogram(Target) ->
cast(5356, <<Target:?GLenum>>).
%% @doc Reset minmax table entries to initial values
%%
%% ``gl:resetMinmax'' resets the elements of the current minmax table to their initial
%% values: the ``maximum'' element receives the minimum possible component values, and the
%% ``minimum'' element receives the maximum possible component values.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glResetMinmax.xml">external</a> documentation.
-spec resetMinmax(Target) -> 'ok' when Target :: enum().
resetMinmax(Target) ->
cast(5357, <<Target:?GLenum>>).
%% @doc Select active texture unit
%%
%% ``gl:activeTexture'' selects which texture unit subsequent texture state calls will
%% affect. The number of texture units an implementation supports is implementation dependent,
%% but must be at least 80.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glActiveTexture.xml">external</a> documentation.
-spec activeTexture(Texture) -> 'ok' when Texture :: enum().
activeTexture(Texture) ->
cast(5358, <<Texture:?GLenum>>).
%% @doc Specify multisample coverage parameters
%%
%% Multisampling samples a pixel multiple times at various implementation-dependent subpixel
%% locations to generate antialiasing effects. Multisampling transparently antialiases points,
%% lines, polygons, and images if it is enabled.
%%
%% `Value' is used in constructing a temporary mask used in determining which samples
%% will be used in resolving the final fragment color. This mask is bitwise-anded with the
%% coverage mask generated from the multisampling computation. If the `Invert' flag
%% is set, the temporary mask is inverted (all bits flipped) and then the bitwise-and is
%% computed.
%%
%% If an implementation does not have any multisample buffers available, or multisampling
%% is disabled, rasterization occurs with only a single sample computing a pixel's final
%% RGB color.
%%
%% Provided an implementation supports multisample buffers, and multisampling is enabled,
%% then a pixel's final color is generated by combining several samples per pixel. Each sample
%% contains color, depth, and stencil information, allowing those operations to be performed
%% on each sample.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSampleCoverage.xml">external</a> documentation.
-spec sampleCoverage(Value, Invert) -> 'ok' when Value :: clamp(),Invert :: 0|1.
sampleCoverage(Value,Invert) ->
cast(5359, <<Value:?GLclampf,Invert:?GLboolean>>).
%% @doc Specify a three-dimensional texture image in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexImage3D'' loads a previously defined, and retrieved, compressed three-dimensional
%% texture image if `Target' is `?GL_TEXTURE_3D' (see {@link gl:texImage3D/10} ).
%%
%% If `Target' is `?GL_TEXTURE_2D_ARRAY', `Data' is treated as an array of
%% compressed 2D textures.
%%
%% If `Target' is `?GL_PROXY_TEXTURE_3D' or `?GL_PROXY_TEXTURE_2D_ARRAY',
%% no data is read from `Data' , but all of the texture image state is recalculated,
%% checked for consistency, and checked against the implementation's capabilities. If the
%% implementation cannot handle a texture of the requested texture size, it sets all of the
%% image state to 0, but does not generate an error (see {@link gl:getError/0} ). To query
%% for an entire mipmap array, use an image array level greater than or equal to 1.
%%
%% `Internalformat' must be a known compressed image format (such as `?GL_RGTC')
%% or an extension-specified compressed-texture format. When a texture is loaded with {@link gl:texImage2D/9}
%% using a generic compressed texture format (e.g., `?GL_COMPRESSED_RGB'), the GL selects
%% from one of its extensions supporting compressed textures. In order to load the compressed
%% texture image using ``gl:compressedTexImage3D'', query the compressed texture image's
%% size and format using {@link gl:getTexLevelParameterfv/3} .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% If the compressed data are arranged into fixed-size blocks of texels, the pixel storage
%% modes can be used to select a sub-rectangle from a larger containing rectangle. These
%% pixel storage modes operate in the same way as they do for {@link gl:texImage1D/8} . In
%% the following description, denote by b s, b w, b h, and b d, the values of pixel storage
%% modes `?GL_UNPACK_COMPRESSED_BLOCK_SIZE', `?GL_UNPACK_COMPRESSED_BLOCK_WIDTH', `?GL_UNPACK_COMPRESSED_BLOCK_HEIGHT'
%% , and `?GL_UNPACK_COMPRESSED_BLOCK_DEPTH', respectively. b s is the compressed block
%% size in bytes; b w, b h, and b d are the compressed block width, height, and depth
%% in pixels.
%%
%% By default the pixel storage modes `?GL_UNPACK_ROW_LENGTH', `?GL_UNPACK_SKIP_ROWS'
%% , `?GL_UNPACK_SKIP_PIXELS', `?GL_UNPACK_IMAGE_HEIGHT' and `?GL_UNPACK_SKIP_IMAGES'
%% are ignored for compressed images. To enable `?GL_UNPACK_SKIP_PIXELS' and `?GL_UNPACK_ROW_LENGTH'
%% , b s and b w must both be non-zero. To also enable `?GL_UNPACK_SKIP_ROWS' and `?GL_UNPACK_IMAGE_HEIGHT'
%% , b h must be non-zero. To also enable `?GL_UNPACK_SKIP_IMAGES', b d must be non-zero.
%% All parameters must be consistent with the compressed format to produce the desired results.
%%
%%
%% When selecting a sub-rectangle from a compressed image: the value of `?GL_UNPACK_SKIP_PIXELS'
%% must be a multiple of b w;the value of `?GL_UNPACK_SKIP_ROWS' must be a multiple
%% of b w;the value of `?GL_UNPACK_SKIP_IMAGES' must be a multiple of b w.
%%
%% `ImageSize' must be equal to:
%%
%% b s×|width b/w|×|height b/h|×|depth b/d|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage3D.xml">external</a> documentation.
-spec compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Depth :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexImage3D(Target,Level,Internalformat,Width,Height,Depth,Border,ImageSize,Data) when is_integer(Data) ->
cast(5360, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Border:?GLint,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexImage3D(Target,Level,Internalformat,Width,Height,Depth,Border,ImageSize,Data) ->
send_bin(Data),
cast(5361, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Border:?GLint,ImageSize:?GLsizei>>).
%% @doc Specify a two-dimensional texture image in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexImage2D'' loads a previously defined, and retrieved, compressed two-dimensional
%% texture image if `Target' is `?GL_TEXTURE_2D', or one of the cube map faces
%% such as `?GL_TEXTURE_CUBE_MAP_POSITIVE_X'. (see {@link gl:texImage2D/9} ).
%%
%% If `Target' is `?GL_TEXTURE_1D_ARRAY', `Data' is treated as an array of
%% compressed 1D textures.
%%
%% If `Target' is `?GL_PROXY_TEXTURE_2D', `?GL_PROXY_TEXTURE_1D_ARRAY' or `?GL_PROXY_CUBE_MAP'
%% , no data is read from `Data' , but all of the texture image state is recalculated,
%% checked for consistency, and checked against the implementation's capabilities. If the
%% implementation cannot handle a texture of the requested texture size, it sets all of the
%% image state to 0, but does not generate an error (see {@link gl:getError/0} ). To query
%% for an entire mipmap array, use an image array level greater than or equal to 1.
%%
%% `Internalformat' must be a known compressed image format (such as `?GL_RGTC')
%% or an extension-specified compressed-texture format. When a texture is loaded with {@link gl:texImage2D/9}
%% using a generic compressed texture format (e.g., `?GL_COMPRESSED_RGB'), the GL selects
%% from one of its extensions supporting compressed textures. In order to load the compressed
%% texture image using ``gl:compressedTexImage2D'', query the compressed texture image's
%% size and format using {@link gl:getTexLevelParameterfv/3} .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% If the compressed data are arranged into fixed-size blocks of texels, the pixel storage
%% modes can be used to select a sub-rectangle from a larger containing rectangle. These
%% pixel storage modes operate in the same way as they do for {@link gl:texImage2D/9} . In
%% the following description, denote by b s, b w, b h, and b d, the values of pixel storage
%% modes `?GL_UNPACK_COMPRESSED_BLOCK_SIZE', `?GL_UNPACK_COMPRESSED_BLOCK_WIDTH', `?GL_UNPACK_COMPRESSED_BLOCK_HEIGHT'
%% , and `?GL_UNPACK_COMPRESSED_BLOCK_DEPTH', respectively. b s is the compressed block
%% size in bytes; b w, b h, and b d are the compressed block width, height, and depth
%% in pixels.
%%
%% By default the pixel storage modes `?GL_UNPACK_ROW_LENGTH', `?GL_UNPACK_SKIP_ROWS'
%% , `?GL_UNPACK_SKIP_PIXELS', `?GL_UNPACK_IMAGE_HEIGHT' and `?GL_UNPACK_SKIP_IMAGES'
%% are ignored for compressed images. To enable `?GL_UNPACK_SKIP_PIXELS' and `?GL_UNPACK_ROW_LENGTH'
%% , b s and b w must both be non-zero. To also enable `?GL_UNPACK_SKIP_ROWS' and `?GL_UNPACK_IMAGE_HEIGHT'
%% , b h must be non-zero. To also enable `?GL_UNPACK_SKIP_IMAGES', b d must be non-zero.
%% All parameters must be consistent with the compressed format to produce the desired results.
%%
%%
%% When selecting a sub-rectangle from a compressed image: the value of `?GL_UNPACK_SKIP_PIXELS'
%% must be a multiple of b w;the value of `?GL_UNPACK_SKIP_ROWS' must be a multiple
%% of b w.
%%
%% `ImageSize' must be equal to:
%%
%% b s×|width b/w|×|height b/h|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage2D.xml">external</a> documentation.
-spec compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexImage2D(Target,Level,Internalformat,Width,Height,Border,ImageSize,Data) when is_integer(Data) ->
cast(5362, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Border:?GLint,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexImage2D(Target,Level,Internalformat,Width,Height,Border,ImageSize,Data) ->
send_bin(Data),
cast(5363, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Border:?GLint,ImageSize:?GLsizei>>).
%% @doc Specify a one-dimensional texture image in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexImage1D'' loads a previously defined, and retrieved, compressed one-dimensional
%% texture image if `Target' is `?GL_TEXTURE_1D' (see {@link gl:texImage1D/8} ).
%%
%% If `Target' is `?GL_PROXY_TEXTURE_1D', no data is read from `Data' , but
%% all of the texture image state is recalculated, checked for consistency, and checked against
%% the implementation's capabilities. If the implementation cannot handle a texture of the
%% requested texture size, it sets all of the image state to 0, but does not generate an
%% error (see {@link gl:getError/0} ). To query for an entire mipmap array, use an image array
%% level greater than or equal to 1.
%%
%% `Internalformat' must be an extension-specified compressed-texture format. When a
%% texture is loaded with {@link gl:texImage1D/8} using a generic compressed texture format
%% (e.g., `?GL_COMPRESSED_RGB') the GL selects from one of its extensions supporting
%% compressed textures. In order to load the compressed texture image using ``gl:compressedTexImage1D''
%% , query the compressed texture image's size and format using {@link gl:getTexLevelParameterfv/3}
%% .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% If the compressed data are arranged into fixed-size blocks of texels, the pixel storage
%% modes can be used to select a sub-rectangle from a larger containing rectangle. These
%% pixel storage modes operate in the same way as they do for {@link gl:texImage1D/8} . In
%% the following description, denote by b s, b w, b h, and b d, the values of pixel storage
%% modes `?GL_UNPACK_COMPRESSED_BLOCK_SIZE', `?GL_UNPACK_COMPRESSED_BLOCK_WIDTH', `?GL_UNPACK_COMPRESSED_BLOCK_HEIGHT'
%% , and `?GL_UNPACK_COMPRESSED_BLOCK_DEPTH', respectively. b s is the compressed block
%% size in bytes; b w, b h, and b d are the compressed block width, height, and depth
%% in pixels.
%%
%% By default the pixel storage modes `?GL_UNPACK_ROW_LENGTH', `?GL_UNPACK_SKIP_ROWS'
%% , `?GL_UNPACK_SKIP_PIXELS', `?GL_UNPACK_IMAGE_HEIGHT' and `?GL_UNPACK_SKIP_IMAGES'
%% are ignored for compressed images. To enable `?GL_UNPACK_SKIP_PIXELS' and `?GL_UNPACK_ROW_LENGTH'
%% , b s and b w must both be non-zero. To also enable `?GL_UNPACK_SKIP_ROWS' and `?GL_UNPACK_IMAGE_HEIGHT'
%% , b h must be non-zero. To also enable `?GL_UNPACK_SKIP_IMAGES', b d must be non-zero.
%% All parameters must be consistent with the compressed format to produce the desired results.
%%
%%
%% When selecting a sub-rectangle from a compressed image: the value of `?GL_UNPACK_SKIP_PIXELS'
%% must be a multiple of b w;
%%
%% `ImageSize' must be equal to:
%%
%% b s×|width b/w|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage1D.xml">external</a> documentation.
-spec compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexImage1D(Target,Level,Internalformat,Width,Border,ImageSize,Data) when is_integer(Data) ->
cast(5364, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Border:?GLint,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexImage1D(Target,Level,Internalformat,Width,Border,ImageSize,Data) ->
send_bin(Data),
cast(5365, <<Target:?GLenum,Level:?GLint,Internalformat:?GLenum,Width:?GLsizei,Border:?GLint,ImageSize:?GLsizei>>).
%% @doc Specify a three-dimensional texture subimage in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexSubImage3D'' redefines a contiguous subregion of an existing three-dimensional
%% texture image. The texels referenced by `Data' replace the portion of the existing
%% texture array with x indices `Xoffset' and xoffset+width-1, and the y indices `Yoffset'
%% and yoffset+height-1, and the z indices `Zoffset' and zoffset+depth-1, inclusive.
%% This region may not include any texels outside the range of the texture array as it was
%% originally specified. It is not an error to specify a subtexture with width of 0, but
%% such a specification has no effect.
%%
%% `Internalformat' must be a known compressed image format (such as `?GL_RGTC')
%% or an extension-specified compressed-texture format. The `Format' of the compressed
%% texture image is selected by the GL implementation that compressed it (see {@link gl:texImage3D/10}
%% ) and should be queried at the time the texture was compressed with {@link gl:getTexLevelParameterfv/3}
%% .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexSubImage3D.xml">external</a> documentation.
-spec compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),Zoffset :: integer(),Width :: integer(),Height :: integer(),Depth :: integer(),Format :: enum(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexSubImage3D(Target,Level,Xoffset,Yoffset,Zoffset,Width,Height,Depth,Format,ImageSize,Data) when is_integer(Data) ->
cast(5366, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Zoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Format:?GLenum,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexSubImage3D(Target,Level,Xoffset,Yoffset,Zoffset,Width,Height,Depth,Format,ImageSize,Data) ->
send_bin(Data),
cast(5367, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Zoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Format:?GLenum,ImageSize:?GLsizei>>).
%% @doc Specify a two-dimensional texture subimage in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexSubImage2D'' redefines a contiguous subregion of an existing two-dimensional
%% texture image. The texels referenced by `Data' replace the portion of the existing
%% texture array with x indices `Xoffset' and xoffset+width-1, and the y indices `Yoffset'
%% and yoffset+height-1, inclusive. This region may not include any texels outside the
%% range of the texture array as it was originally specified. It is not an error to specify
%% a subtexture with width of 0, but such a specification has no effect.
%%
%% `Internalformat' must be a known compressed image format (such as `?GL_RGTC')
%% or an extension-specified compressed-texture format. The `Format' of the compressed
%% texture image is selected by the GL implementation that compressed it (see {@link gl:texImage2D/9}
%% ) and should be queried at the time the texture was compressed with {@link gl:getTexLevelParameterfv/3}
%% .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexSubImage2D.xml">external</a> documentation.
-spec compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Yoffset :: integer(),Width :: integer(),Height :: integer(),Format :: enum(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexSubImage2D(Target,Level,Xoffset,Yoffset,Width,Height,Format,ImageSize,Data) when is_integer(Data) ->
cast(5368, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexSubImage2D(Target,Level,Xoffset,Yoffset,Width,Height,Format,ImageSize,Data) ->
send_bin(Data),
cast(5369, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Yoffset:?GLint,Width:?GLsizei,Height:?GLsizei,Format:?GLenum,ImageSize:?GLsizei>>).
%% @doc Specify a one-dimensional texture subimage in a compressed format
%%
%% Texturing allows elements of an image array to be read by shaders.
%%
%% ``gl:compressedTexSubImage1D'' redefines a contiguous subregion of an existing one-dimensional
%% texture image. The texels referenced by `Data' replace the portion of the existing
%% texture array with x indices `Xoffset' and xoffset+width-1, inclusive. This region
%% may not include any texels outside the range of the texture array as it was originally
%% specified. It is not an error to specify a subtexture with width of 0, but such a specification
%% has no effect.
%%
%% `Internalformat' must be a known compressed image format (such as `?GL_RGTC')
%% or an extension-specified compressed-texture format. The `Format' of the compressed
%% texture image is selected by the GL implementation that compressed it (see {@link gl:texImage1D/8}
%% ), and should be queried at the time the texture was compressed with {@link gl:getTexLevelParameterfv/3}
%% .
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexSubImage1D.xml">external</a> documentation.
-spec compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data) -> 'ok' when Target :: enum(),Level :: integer(),Xoffset :: integer(),Width :: integer(),Format :: enum(),ImageSize :: integer(),Data :: offset()|mem().
compressedTexSubImage1D(Target,Level,Xoffset,Width,Format,ImageSize,Data) when is_integer(Data) ->
cast(5370, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Width:?GLsizei,Format:?GLenum,ImageSize:?GLsizei,Data:?GLuint>>);
compressedTexSubImage1D(Target,Level,Xoffset,Width,Format,ImageSize,Data) ->
send_bin(Data),
cast(5371, <<Target:?GLenum,Level:?GLint,Xoffset:?GLint,Width:?GLsizei,Format:?GLenum,ImageSize:?GLsizei>>).
%% @doc Return a compressed texture image
%%
%% ``gl:getCompressedTexImage'' returns the compressed texture image associated with `Target'
%% and `Lod' into `Img' . `Img' should be an array of `?GL_TEXTURE_COMPRESSED_IMAGE_SIZE'
%% bytes. `Target' specifies whether the desired texture image was one specified by {@link gl:texImage1D/8}
%% (`?GL_TEXTURE_1D'), {@link gl:texImage2D/9} (`?GL_TEXTURE_2D' or any of `?GL_TEXTURE_CUBE_MAP_*'
%% ), or {@link gl:texImage3D/10} (`?GL_TEXTURE_3D'). `Lod' specifies the level-of-detail
%% number of the desired image.
%%
%% If a non-zero named buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target
%% (see {@link gl:bindBuffer/2} ) while a texture image is requested, `Img' is treated
%% as a byte offset into the buffer object's data store.
%%
%% To minimize errors, first verify that the texture is compressed by calling {@link gl:getTexLevelParameterfv/3}
%% with argument `?GL_TEXTURE_COMPRESSED'. If the texture is compressed, then determine
%% the amount of memory required to store the compressed texture by calling {@link gl:getTexLevelParameterfv/3}
%% with argument `?GL_TEXTURE_COMPRESSED_IMAGE_SIZE'. Finally, retrieve the internal
%% format of the texture by calling {@link gl:getTexLevelParameterfv/3} with argument `?GL_TEXTURE_INTERNAL_FORMAT'
%% . To store the texture for later use, associate the internal format and size with the
%% retrieved texture image. These data can be used by the respective texture or subtexture
%% loading routine used for loading `Target' textures.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetCompressedTexImage.xml">external</a> documentation.
-spec getCompressedTexImage(Target, Lod, Img) -> 'ok' when Target :: enum(),Lod :: integer(),Img :: mem().
getCompressedTexImage(Target,Lod,Img) ->
send_bin(Img),
call(5372, <<Target:?GLenum,Lod:?GLint>>).
%% @doc Select active texture unit
%%
%% ``gl:clientActiveTexture'' selects the vertex array client state parameters to be modified
%% by {@link gl:texCoordPointer/4} , and enabled or disabled with {@link gl:enableClientState/1}
%% or {@link gl:enableClientState/1} , respectively, when called with a parameter of `?GL_TEXTURE_COORD_ARRAY'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClientActiveTexture.xml">external</a> documentation.
-spec clientActiveTexture(Texture) -> 'ok' when Texture :: enum().
clientActiveTexture(Texture) ->
cast(5373, <<Texture:?GLenum>>).
%% @doc Set the current texture coordinates
%%
%% ``gl:multiTexCoord'' specifies texture coordinates in one, two, three, or four dimensions.
%% ``gl:multiTexCoord1'' sets the current texture coordinates to (s 0 0 1); a call to ``gl:multiTexCoord2''
%% sets them to (s t 0 1). Similarly, ``gl:multiTexCoord3'' specifies the texture coordinates as (s
%% t r 1),
%% and ``gl:multiTexCoord4'' defines all four components explicitly as (s t r q).
%%
%% The current texture coordinates are part of the data that is associated with each vertex
%% and with the current raster position. Initially, the values for (s t r q) are (0 0 0 1).
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultiTexCoord.xml">external</a> documentation.
-spec multiTexCoord1d(Target, S) -> 'ok' when Target :: enum(),S :: float().
multiTexCoord1d(Target,S) ->
cast(5374, <<Target:?GLenum,0:32,S:?GLdouble>>).
%% @equiv multiTexCoord1d(Target,S)
-spec multiTexCoord1dv(Target :: enum(),V) -> 'ok' when V :: {S :: float()}.
multiTexCoord1dv(Target,{S}) -> multiTexCoord1d(Target,S).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord1f(Target, S) -> 'ok' when Target :: enum(),S :: float().
multiTexCoord1f(Target,S) ->
cast(5375, <<Target:?GLenum,S:?GLfloat>>).
%% @equiv multiTexCoord1f(Target,S)
-spec multiTexCoord1fv(Target :: enum(),V) -> 'ok' when V :: {S :: float()}.
multiTexCoord1fv(Target,{S}) -> multiTexCoord1f(Target,S).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord1i(Target, S) -> 'ok' when Target :: enum(),S :: integer().
multiTexCoord1i(Target,S) ->
cast(5376, <<Target:?GLenum,S:?GLint>>).
%% @equiv multiTexCoord1i(Target,S)
-spec multiTexCoord1iv(Target :: enum(),V) -> 'ok' when V :: {S :: integer()}.
multiTexCoord1iv(Target,{S}) -> multiTexCoord1i(Target,S).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord1s(Target, S) -> 'ok' when Target :: enum(),S :: integer().
multiTexCoord1s(Target,S) ->
cast(5377, <<Target:?GLenum,S:?GLshort>>).
%% @equiv multiTexCoord1s(Target,S)
-spec multiTexCoord1sv(Target :: enum(),V) -> 'ok' when V :: {S :: integer()}.
multiTexCoord1sv(Target,{S}) -> multiTexCoord1s(Target,S).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord2d(Target, S, T) -> 'ok' when Target :: enum(),S :: float(),T :: float().
multiTexCoord2d(Target,S,T) ->
cast(5378, <<Target:?GLenum,0:32,S:?GLdouble,T:?GLdouble>>).
%% @equiv multiTexCoord2d(Target,S,T)
-spec multiTexCoord2dv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float()}.
multiTexCoord2dv(Target,{S,T}) -> multiTexCoord2d(Target,S,T).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord2f(Target, S, T) -> 'ok' when Target :: enum(),S :: float(),T :: float().
multiTexCoord2f(Target,S,T) ->
cast(5379, <<Target:?GLenum,S:?GLfloat,T:?GLfloat>>).
%% @equiv multiTexCoord2f(Target,S,T)
-spec multiTexCoord2fv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float()}.
multiTexCoord2fv(Target,{S,T}) -> multiTexCoord2f(Target,S,T).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord2i(Target, S, T) -> 'ok' when Target :: enum(),S :: integer(),T :: integer().
multiTexCoord2i(Target,S,T) ->
cast(5380, <<Target:?GLenum,S:?GLint,T:?GLint>>).
%% @equiv multiTexCoord2i(Target,S,T)
-spec multiTexCoord2iv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer()}.
multiTexCoord2iv(Target,{S,T}) -> multiTexCoord2i(Target,S,T).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord2s(Target, S, T) -> 'ok' when Target :: enum(),S :: integer(),T :: integer().
multiTexCoord2s(Target,S,T) ->
cast(5381, <<Target:?GLenum,S:?GLshort,T:?GLshort>>).
%% @equiv multiTexCoord2s(Target,S,T)
-spec multiTexCoord2sv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer()}.
multiTexCoord2sv(Target,{S,T}) -> multiTexCoord2s(Target,S,T).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord3d(Target, S, T, R) -> 'ok' when Target :: enum(),S :: float(),T :: float(),R :: float().
multiTexCoord3d(Target,S,T,R) ->
cast(5382, <<Target:?GLenum,0:32,S:?GLdouble,T:?GLdouble,R:?GLdouble>>).
%% @equiv multiTexCoord3d(Target,S,T,R)
-spec multiTexCoord3dv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float()}.
multiTexCoord3dv(Target,{S,T,R}) -> multiTexCoord3d(Target,S,T,R).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord3f(Target, S, T, R) -> 'ok' when Target :: enum(),S :: float(),T :: float(),R :: float().
multiTexCoord3f(Target,S,T,R) ->
cast(5383, <<Target:?GLenum,S:?GLfloat,T:?GLfloat,R:?GLfloat>>).
%% @equiv multiTexCoord3f(Target,S,T,R)
-spec multiTexCoord3fv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float()}.
multiTexCoord3fv(Target,{S,T,R}) -> multiTexCoord3f(Target,S,T,R).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord3i(Target, S, T, R) -> 'ok' when Target :: enum(),S :: integer(),T :: integer(),R :: integer().
multiTexCoord3i(Target,S,T,R) ->
cast(5384, <<Target:?GLenum,S:?GLint,T:?GLint,R:?GLint>>).
%% @equiv multiTexCoord3i(Target,S,T,R)
-spec multiTexCoord3iv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer()}.
multiTexCoord3iv(Target,{S,T,R}) -> multiTexCoord3i(Target,S,T,R).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord3s(Target, S, T, R) -> 'ok' when Target :: enum(),S :: integer(),T :: integer(),R :: integer().
multiTexCoord3s(Target,S,T,R) ->
cast(5385, <<Target:?GLenum,S:?GLshort,T:?GLshort,R:?GLshort>>).
%% @equiv multiTexCoord3s(Target,S,T,R)
-spec multiTexCoord3sv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer()}.
multiTexCoord3sv(Target,{S,T,R}) -> multiTexCoord3s(Target,S,T,R).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord4d(Target, S, T, R, Q) -> 'ok' when Target :: enum(),S :: float(),T :: float(),R :: float(),Q :: float().
multiTexCoord4d(Target,S,T,R,Q) ->
cast(5386, <<Target:?GLenum,0:32,S:?GLdouble,T:?GLdouble,R:?GLdouble,Q:?GLdouble>>).
%% @equiv multiTexCoord4d(Target,S,T,R,Q)
-spec multiTexCoord4dv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float(),Q :: float()}.
multiTexCoord4dv(Target,{S,T,R,Q}) -> multiTexCoord4d(Target,S,T,R,Q).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord4f(Target, S, T, R, Q) -> 'ok' when Target :: enum(),S :: float(),T :: float(),R :: float(),Q :: float().
multiTexCoord4f(Target,S,T,R,Q) ->
cast(5387, <<Target:?GLenum,S:?GLfloat,T:?GLfloat,R:?GLfloat,Q:?GLfloat>>).
%% @equiv multiTexCoord4f(Target,S,T,R,Q)
-spec multiTexCoord4fv(Target :: enum(),V) -> 'ok' when V :: {S :: float(),T :: float(),R :: float(),Q :: float()}.
multiTexCoord4fv(Target,{S,T,R,Q}) -> multiTexCoord4f(Target,S,T,R,Q).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord4i(Target, S, T, R, Q) -> 'ok' when Target :: enum(),S :: integer(),T :: integer(),R :: integer(),Q :: integer().
multiTexCoord4i(Target,S,T,R,Q) ->
cast(5388, <<Target:?GLenum,S:?GLint,T:?GLint,R:?GLint,Q:?GLint>>).
%% @equiv multiTexCoord4i(Target,S,T,R,Q)
-spec multiTexCoord4iv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer(),Q :: integer()}.
multiTexCoord4iv(Target,{S,T,R,Q}) -> multiTexCoord4i(Target,S,T,R,Q).
%% @doc
%% See {@link multiTexCoord1d/2}
-spec multiTexCoord4s(Target, S, T, R, Q) -> 'ok' when Target :: enum(),S :: integer(),T :: integer(),R :: integer(),Q :: integer().
multiTexCoord4s(Target,S,T,R,Q) ->
cast(5389, <<Target:?GLenum,S:?GLshort,T:?GLshort,R:?GLshort,Q:?GLshort>>).
%% @equiv multiTexCoord4s(Target,S,T,R,Q)
-spec multiTexCoord4sv(Target :: enum(),V) -> 'ok' when V :: {S :: integer(),T :: integer(),R :: integer(),Q :: integer()}.
multiTexCoord4sv(Target,{S,T,R,Q}) -> multiTexCoord4s(Target,S,T,R,Q).
%% @doc Replace the current matrix with the specified row-major ordered matrix
%%
%% ``gl:loadTransposeMatrix'' replaces the current matrix with the one whose elements are
%% specified by `M' . The current matrix is the projection matrix, modelview matrix,
%% or texture matrix, depending on the current matrix mode (see {@link gl:matrixMode/1} ).
%%
%% The current matrix, M, defines a transformation of coordinates. For instance, assume
%% M refers to the modelview matrix. If v=(v[0] v[1] v[2] v[3]) is the set of object coordinates of a vertex,
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
%% M(v)=(m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
%% Calling ``gl:loadTransposeMatrix'' with matrix M is identical in operation to {@link gl:loadMatrixd/1}
%% with M T, where T represents the transpose.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadTransposeMatrix.xml">external</a> documentation.
-spec loadTransposeMatrixf(M) -> 'ok' when M :: matrix().
loadTransposeMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5390, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
loadTransposeMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5390, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc
%% See {@link loadTransposeMatrixf/1}
-spec loadTransposeMatrixd(M) -> 'ok' when M :: matrix().
loadTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5391, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
loadTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5391, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc Multiply the current matrix with the specified row-major ordered matrix
%%
%% ``gl:multTransposeMatrix'' multiplies the current matrix with the one specified using `M'
%% , and replaces the current matrix with the product.
%%
%% The current matrix is determined by the current matrix mode (see {@link gl:matrixMode/1} ).
%% It is either the projection matrix, modelview matrix, or the texture matrix.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultTransposeMatrix.xml">external</a> documentation.
-spec multTransposeMatrixf(M) -> 'ok' when M :: matrix().
multTransposeMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5392, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
multTransposeMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5392, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc
%% See {@link multTransposeMatrixf/1}
-spec multTransposeMatrixd(M) -> 'ok' when M :: matrix().
multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5393, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5393, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc Specify pixel arithmetic for RGB and alpha components separately
%%
%% Pixels can be drawn using a function that blends the incoming (source) RGBA values with
%% the RGBA values that are already in the frame buffer (the destination values). Blending
%% is initially disabled. Use {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_BLEND'
%% to enable and disable blending.
%%
%% ``gl:blendFuncSeparate'' defines the operation of blending for all draw buffers when
%% it is enabled. ``gl:blendFuncSeparatei'' defines the operation of blending for a single
%% draw buffer specified by `Buf' when enabled for that draw buffer. `SrcRGB' specifies
%% which method is used to scale the source RGB-color components. `DstRGB' specifies
%% which method is used to scale the destination RGB-color components. Likewise, `SrcAlpha'
%% specifies which method is used to scale the source alpha color component, and `DstAlpha'
%% specifies which method is used to scale the destination alpha component. The possible
%% methods are described in the following table. Each method defines four scale factors,
%% one each for red, green, blue, and alpha.
%%
%% In the table and in subsequent equations, first source, second source and destination
%% color components are referred to as (R s0 G s0 B s0 A s0), (R s1 G s1 B s1 A s1), and (R d G d B d A d), respectively. The color specified by {@link gl:blendColor/4}
%% is referred to as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B
%% k A), where
%%
%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
%% Source and destination scale factors are referred to as (s R s G s B s A) and (d R d G d B d A). All scale factors have
%% range [0 1].
%%
%% <table><tbody><tr><td>` Parameter '</td><td>` RGB Factor '</td><td>` Alpha Factor '
%% </td></tr></tbody><tbody><tr><td>`?GL_ZERO'</td><td>(0 0 0)</td><td> 0</td></tr><tr><td>`?GL_ONE'
%% </td><td>(1 1 1)</td><td> 1</td></tr><tr><td>`?GL_SRC_COLOR'</td><td>(R s0 k/R G s0 k/G B s0
%% k/B)</td><td> A s0 k/A</td>
%% </tr><tr><td>`?GL_ONE_MINUS_SRC_COLOR'</td><td>(1 1 1 1)-(R s0 k/R G s0 k/G B s0 k/B)</td><td> 1-A s0 k/A</td></tr><tr><td>
%% `?GL_DST_COLOR'</td><td>(R d k/R G d k/G B d k/B)</td><td> A d k/A</td></tr><tr><td>`?GL_ONE_MINUS_DST_COLOR'
%% </td><td>(1 1 1)-(R d k/R G d k/G B d k/B)</td><td> 1-A d k/A</td></tr><tr><td>`?GL_SRC_ALPHA'</td><td>(A s0 k/A A s0
%% k/A A s0 k/A)</td><td> A
%% s0 k/A</td></tr><tr><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td>(1 1 1)-(A s0 k/A A s0 k/A A s0 k/A
%% )</td><td> 1-A s0 k/A</td></tr>
%% <tr><td>`?GL_DST_ALPHA'</td><td>(A d k/A A d k/A A d k/A)</td><td> A d k/A</td></tr><tr><td>`?GL_ONE_MINUS_DST_ALPHA'
%% </td><td>(1 1 1)-(A d k/A A d k/A A d k/A)</td><td> 1-A d k/A</td></tr><tr><td>`?GL_CONSTANT_COLOR'</td><td>(R c G c
%% B c)</td><td>
%% A c</td></tr><tr><td>`?GL_ONE_MINUS_CONSTANT_COLOR'</td><td>(1 1 1)-(R c G c B c)</td><td> 1-A c</td></tr>
%% <tr><td>`?GL_CONSTANT_ALPHA'</td><td>(A c A c A c)</td><td> A c</td></tr><tr><td>`?GL_ONE_MINUS_CONSTANT_ALPHA'
%% </td><td>(1 1 1)-(A c A c A c)</td><td> 1-A c</td></tr><tr><td>`?GL_SRC_ALPHA_SATURATE'</td><td>(i i i)</td><td>
%% 1</td></tr><tr><td>`?GL_SRC1_COLOR'</td><td>(R s1 k/R G s1 k/G B s1 k/B)</td><td> A s1 k/A</td></tr><tr><td>`?GL_ONE_MINUS_SRC_COLOR'
%% </td><td>(1 1 1 1)-(R s1 k/R G s1 k/G B s1 k/B)</td><td> 1-A s1 k/A</td></tr><tr><td>`?GL_SRC1_ALPHA'</td><td>(A s1 k/A A
%% s1 k/A A s1 k/A)</td><td> A
%% s1 k/A</td></tr><tr><td>`?GL_ONE_MINUS_SRC_ALPHA'</td><td>(1 1 1)-(A s1 k/A A s1 k/A A s1 k/A
%% )</td><td> 1-A s1 k/A</td></tr>
%% </tbody></table>
%%
%% In the table,
%%
%% i=min(A s 1-(A d))
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
%% factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a blend
%% factor equal to 0 reduces its multiplicand to 0. For example, when `SrcRGB' is `?GL_SRC_ALPHA'
%% , `DstRGB' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendFuncSeparate.xml">external</a> documentation.
-spec blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha) -> 'ok' when SfactorRGB :: enum(),DfactorRGB :: enum(),SfactorAlpha :: enum(),DfactorAlpha :: enum().
blendFuncSeparate(SfactorRGB,DfactorRGB,SfactorAlpha,DfactorAlpha) ->
cast(5394, <<SfactorRGB:?GLenum,DfactorRGB:?GLenum,SfactorAlpha:?GLenum,DfactorAlpha:?GLenum>>).
%% @doc Render multiple sets of primitives from array data
%%
%% ``gl:multiDrawArrays'' specifies multiple sets of geometric primitives with very few
%% subroutine calls. Instead of calling a GL procedure to pass each individual vertex, normal,
%% texture coordinate, edge flag, or color, you can prespecify separate arrays of vertices,
%% normals, and colors and use them to construct a sequence of primitives with a single call
%% to ``gl:multiDrawArrays''.
%%
%% ``gl:multiDrawArrays'' behaves identically to {@link gl:drawArrays/3} except that `Primcount'
%% separate ranges of elements are specified instead.
%%
%% When ``gl:multiDrawArrays'' is called, it uses `Count' sequential elements from
%% each enabled array to construct a sequence of geometric primitives, beginning with element
%% `First' . `Mode' specifies what kind of primitives are constructed, and how the
%% array elements construct those primitives.
%%
%% Vertex attributes that are modified by ``gl:multiDrawArrays'' have an unspecified value
%% after ``gl:multiDrawArrays'' returns. Attributes that aren't modified remain well defined.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultiDrawArrays.xml">external</a> documentation.
-spec multiDrawArrays(Mode, First, Count) -> 'ok' when Mode :: enum(),First :: [integer()],Count :: [integer()].
multiDrawArrays(Mode,First,Count) ->
cast(5395, <<Mode:?GLenum,(length(First)):?GLuint,
(<< <<C:?GLint>> || C <- First>>)/binary,0:(((length(First)) rem 2)*32),(length(Count)):?GLuint,
(<< <<C:?GLsizei>> || C <- Count>>)/binary,0:(((1+length(Count)) rem 2)*32)>>).
%% @doc Specify point parameters
%%
%% The following values are accepted for `Pname' :
%%
%% `?GL_POINT_FADE_THRESHOLD_SIZE': `Params' is a single floating-point value that
%% specifies the threshold value to which point sizes are clamped if they exceed the specified
%% value. The default value is 1.0.
%%
%% `?GL_POINT_SPRITE_COORD_ORIGIN': `Params' is a single enum specifying the point
%% sprite texture coordinate origin, either `?GL_LOWER_LEFT' or `?GL_UPPER_LEFT'.
%% The default value is `?GL_UPPER_LEFT'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPointParameter.xml">external</a> documentation.
-spec pointParameterf(Pname, Param) -> 'ok' when Pname :: enum(),Param :: float().
pointParameterf(Pname,Param) ->
cast(5396, <<Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link pointParameterf/2}
-spec pointParameterfv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
pointParameterfv(Pname,Params) ->
cast(5397, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link pointParameterf/2}
-spec pointParameteri(Pname, Param) -> 'ok' when Pname :: enum(),Param :: integer().
pointParameteri(Pname,Param) ->
cast(5398, <<Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link pointParameterf/2}
-spec pointParameteriv(Pname, Params) -> 'ok' when Pname :: enum(),Params :: tuple().
pointParameteriv(Pname,Params) ->
cast(5399, <<Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((0+size(Params)) rem 2)*32)>>).
%% @doc Set the current fog coordinates
%%
%% ``gl:fogCoord'' specifies the fog coordinate that is associated with each vertex and
%% the current raster position. The value specified is interpolated and used in computing
%% the fog color (see {@link gl:fogf/2} ).
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFogCoord.xml">external</a> documentation.
-spec fogCoordf(Coord) -> 'ok' when Coord :: float().
fogCoordf(Coord) ->
cast(5400, <<Coord:?GLfloat>>).
%% @equiv fogCoordf(Coord)
-spec fogCoordfv(Coord) -> 'ok' when Coord :: {Coord :: float()}.
fogCoordfv({Coord}) -> fogCoordf(Coord).
%% @doc
%% See {@link fogCoordf/1}
-spec fogCoordd(Coord) -> 'ok' when Coord :: float().
fogCoordd(Coord) ->
cast(5401, <<Coord:?GLdouble>>).
%% @equiv fogCoordd(Coord)
-spec fogCoorddv(Coord) -> 'ok' when Coord :: {Coord :: float()}.
fogCoorddv({Coord}) -> fogCoordd(Coord).
%% @doc Define an array of fog coordinates
%%
%% ``gl:fogCoordPointer'' specifies the location and data format of an array of fog coordinates
%% to use when rendering. `Type' specifies the data type of each fog coordinate, and `Stride'
%% specifies the byte stride from one fog coordinate to the next, allowing vertices and
%% attributes to be packed into a single array or stored in separate arrays.
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a fog coordinate array is specified, `Pointer' is treated as a byte offset
%% into the buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as fog coordinate vertex array client-side state (`?GL_FOG_COORD_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When a fog coordinate array is specified, `Type' , `Stride' , and `Pointer'
%% are saved as client-side state, in addition to the current vertex array buffer object
%% binding.
%%
%% To enable and disable the fog coordinate array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_FOG_COORD_ARRAY'. If enabled, the fog coordinate array is
%% used when {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4} , see `glMultiDrawElements'
%% , {@link gl:drawRangeElements/6} , or {@link gl:arrayElement/1} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFogCoordPointer.xml">external</a> documentation.
-spec fogCoordPointer(Type, Stride, Pointer) -> 'ok' when Type :: enum(),Stride :: integer(),Pointer :: offset()|mem().
fogCoordPointer(Type,Stride,Pointer) when is_integer(Pointer) ->
cast(5402, <<Type:?GLenum,Stride:?GLsizei,Pointer:?GLuint>>);
fogCoordPointer(Type,Stride,Pointer) ->
send_bin(Pointer),
cast(5403, <<Type:?GLenum,Stride:?GLsizei>>).
%% @doc Set the current secondary color
%%
%% The GL stores both a primary four-valued RGBA color and a secondary four-valued RGBA
%% color (where alpha is always set to 0.0) that is associated with every vertex.
%%
%% The secondary color is interpolated and applied to each fragment during rasterization
%% when `?GL_COLOR_SUM' is enabled. When lighting is enabled, and `?GL_SEPARATE_SPECULAR_COLOR'
%% is specified, the value of the secondary color is assigned the value computed from the
%% specular term of the lighting computation. Both the primary and secondary current colors
%% are applied to each fragment, regardless of the state of `?GL_COLOR_SUM', under such
%% conditions. When `?GL_SEPARATE_SPECULAR_COLOR' is specified, the value returned from
%% querying the current secondary color is undefined.
%%
%% ``gl:secondaryColor3b'', ``gl:secondaryColor3s'', and ``gl:secondaryColor3i'' take
%% three signed byte, short, or long integers as arguments. When `v' is appended to
%% the name, the color commands can take a pointer to an array of such values.
%%
%% Color values are stored in floating-point format, with unspecified mantissa and exponent
%% sizes. Unsigned integer color components, when specified, are linearly mapped to floating-point
%% values such that the largest representable value maps to 1.0 (full intensity), and 0 maps
%% to 0.0 (zero intensity). Signed integer color components, when specified, are linearly
%% mapped to floating-point values such that the most positive representable value maps to
%% 1.0, and the most negative representable value maps to -1.0. (Note that this mapping
%% does not convert 0 precisely to 0.0). Floating-point values are mapped directly.
%%
%% Neither floating-point nor signed integer values are clamped to the range [0 1] before the
%% current color is updated. However, color components are clamped to this range before they
%% are interpolated or written into a color buffer.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSecondaryColor.xml">external</a> documentation.
-spec secondaryColor3b(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3b(Red,Green,Blue) ->
cast(5404, <<Red:?GLbyte,Green:?GLbyte,Blue:?GLbyte>>).
%% @equiv secondaryColor3b(Red,Green,Blue)
-spec secondaryColor3bv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3bv({Red,Green,Blue}) -> secondaryColor3b(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3d(Red, Green, Blue) -> 'ok' when Red :: float(),Green :: float(),Blue :: float().
secondaryColor3d(Red,Green,Blue) ->
cast(5405, <<Red:?GLdouble,Green:?GLdouble,Blue:?GLdouble>>).
%% @equiv secondaryColor3d(Red,Green,Blue)
-spec secondaryColor3dv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float()}.
secondaryColor3dv({Red,Green,Blue}) -> secondaryColor3d(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3f(Red, Green, Blue) -> 'ok' when Red :: float(),Green :: float(),Blue :: float().
secondaryColor3f(Red,Green,Blue) ->
cast(5406, <<Red:?GLfloat,Green:?GLfloat,Blue:?GLfloat>>).
%% @equiv secondaryColor3f(Red,Green,Blue)
-spec secondaryColor3fv(V) -> 'ok' when V :: {Red :: float(),Green :: float(),Blue :: float()}.
secondaryColor3fv({Red,Green,Blue}) -> secondaryColor3f(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3i(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3i(Red,Green,Blue) ->
cast(5407, <<Red:?GLint,Green:?GLint,Blue:?GLint>>).
%% @equiv secondaryColor3i(Red,Green,Blue)
-spec secondaryColor3iv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3iv({Red,Green,Blue}) -> secondaryColor3i(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3s(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3s(Red,Green,Blue) ->
cast(5408, <<Red:?GLshort,Green:?GLshort,Blue:?GLshort>>).
%% @equiv secondaryColor3s(Red,Green,Blue)
-spec secondaryColor3sv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3sv({Red,Green,Blue}) -> secondaryColor3s(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3ub(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3ub(Red,Green,Blue) ->
cast(5409, <<Red:?GLubyte,Green:?GLubyte,Blue:?GLubyte>>).
%% @equiv secondaryColor3ub(Red,Green,Blue)
-spec secondaryColor3ubv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3ubv({Red,Green,Blue}) -> secondaryColor3ub(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3ui(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3ui(Red,Green,Blue) ->
cast(5410, <<Red:?GLuint,Green:?GLuint,Blue:?GLuint>>).
%% @equiv secondaryColor3ui(Red,Green,Blue)
-spec secondaryColor3uiv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3uiv({Red,Green,Blue}) -> secondaryColor3ui(Red,Green,Blue).
%% @doc
%% See {@link secondaryColor3b/3}
-spec secondaryColor3us(Red, Green, Blue) -> 'ok' when Red :: integer(),Green :: integer(),Blue :: integer().
secondaryColor3us(Red,Green,Blue) ->
cast(5411, <<Red:?GLushort,Green:?GLushort,Blue:?GLushort>>).
%% @equiv secondaryColor3us(Red,Green,Blue)
-spec secondaryColor3usv(V) -> 'ok' when V :: {Red :: integer(),Green :: integer(),Blue :: integer()}.
secondaryColor3usv({Red,Green,Blue}) -> secondaryColor3us(Red,Green,Blue).
%% @doc Define an array of secondary colors
%%
%% ``gl:secondaryColorPointer'' specifies the location and data format of an array of color
%% components to use when rendering. `Size' specifies the number of components per color,
%% and must be 3. `Type' specifies the data type of each color component, and `Stride'
%% specifies the byte stride from one color to the next, allowing vertices and attributes
%% to be packed into a single array or stored in separate arrays.
%%
%% If a non-zero named buffer object is bound to the `?GL_ARRAY_BUFFER' target (see {@link gl:bindBuffer/2}
%% ) while a secondary color array is specified, `Pointer' is treated as a byte offset
%% into the buffer object's data store. Also, the buffer object binding (`?GL_ARRAY_BUFFER_BINDING'
%% ) is saved as secondary color vertex array client-side state (`?GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING'
%% ).
%%
%% When a secondary color array is specified, `Size' , `Type' , `Stride' , and `Pointer'
%% are saved as client-side state, in addition to the current vertex array buffer object
%% binding.
%%
%% To enable and disable the secondary color array, call {@link gl:enableClientState/1} and {@link gl:enableClientState/1}
%% with the argument `?GL_SECONDARY_COLOR_ARRAY'. If enabled, the secondary color array
%% is used when {@link gl:arrayElement/1} , {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} ,
%% {@link gl:drawElements/4} , see `glMultiDrawElements', or {@link gl:drawRangeElements/6}
%% is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSecondaryColorPointer.xml">external</a> documentation.
-spec secondaryColorPointer(Size, Type, Stride, Pointer) -> 'ok' when Size :: integer(),Type :: enum(),Stride :: integer(),Pointer :: offset()|mem().
secondaryColorPointer(Size,Type,Stride,Pointer) when is_integer(Pointer) ->
cast(5412, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei,Pointer:?GLuint>>);
secondaryColorPointer(Size,Type,Stride,Pointer) ->
send_bin(Pointer),
cast(5413, <<Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc Specify the raster position in window coordinates for pixel operations
%%
%% The GL maintains a 3D position in window coordinates. This position, called the raster
%% position, is used to position pixel and bitmap write operations. It is maintained with
%% subpixel accuracy. See {@link gl:bitmap/7} , {@link gl:drawPixels/5} , and {@link gl:copyPixels/5}
%% .
%%
%% ``gl:windowPos2'' specifies the x and y coordinates, while z is implicitly set
%% to 0. ``gl:windowPos3'' specifies all three coordinates. The w coordinate of the current
%% raster position is always set to 1.0.
%%
%% ``gl:windowPos'' directly updates the x and y coordinates of the current raster
%% position with the values specified. That is, the values are neither transformed by the
%% current modelview and projection matrices, nor by the viewport-to-window transform. The
%% z coordinate of the current raster position is updated in the following manner:
%%
%% z={n f(n+z×(f-n)) if z<= 0 if z>= 1(otherwise))
%%
%% where n is `?GL_DEPTH_RANGE''s near value, and f is `?GL_DEPTH_RANGE''s
%% far value. See {@link gl:depthRange/2} .
%%
%% The specified coordinates are not clip-tested, causing the raster position to always
%% be valid.
%%
%% The current raster position also includes some associated color data and texture coordinates.
%% If lighting is enabled, then `?GL_CURRENT_RASTER_COLOR' (in RGBA mode) or `?GL_CURRENT_RASTER_INDEX'
%% (in color index mode) is set to the color produced by the lighting calculation (see {@link gl:lightf/3}
%% , {@link gl:lightModelf/2} , and {@link gl:shadeModel/1} ). If lighting is disabled, current
%% color (in RGBA mode, state variable `?GL_CURRENT_COLOR') or color index (in color
%% index mode, state variable `?GL_CURRENT_INDEX') is used to update the current raster
%% color. `?GL_CURRENT_RASTER_SECONDARY_COLOR' (in RGBA mode) is likewise updated.
%%
%% Likewise, `?GL_CURRENT_RASTER_TEXTURE_COORDS' is updated as a function of `?GL_CURRENT_TEXTURE_COORDS'
%% , based on the texture matrix and the texture generation functions (see {@link gl:texGend/3} ).
%% The `?GL_CURRENT_RASTER_DISTANCE' is set to the `?GL_CURRENT_FOG_COORD'.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWindowPos.xml">external</a> documentation.
-spec windowPos2d(X, Y) -> 'ok' when X :: float(),Y :: float().
windowPos2d(X,Y) ->
cast(5414, <<X:?GLdouble,Y:?GLdouble>>).
%% @equiv windowPos2d(X,Y)
-spec windowPos2dv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
windowPos2dv({X,Y}) -> windowPos2d(X,Y).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos2f(X, Y) -> 'ok' when X :: float(),Y :: float().
windowPos2f(X,Y) ->
cast(5415, <<X:?GLfloat,Y:?GLfloat>>).
%% @equiv windowPos2f(X,Y)
-spec windowPos2fv(V) -> 'ok' when V :: {X :: float(),Y :: float()}.
windowPos2fv({X,Y}) -> windowPos2f(X,Y).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos2i(X, Y) -> 'ok' when X :: integer(),Y :: integer().
windowPos2i(X,Y) ->
cast(5416, <<X:?GLint,Y:?GLint>>).
%% @equiv windowPos2i(X,Y)
-spec windowPos2iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
windowPos2iv({X,Y}) -> windowPos2i(X,Y).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos2s(X, Y) -> 'ok' when X :: integer(),Y :: integer().
windowPos2s(X,Y) ->
cast(5417, <<X:?GLshort,Y:?GLshort>>).
%% @equiv windowPos2s(X,Y)
-spec windowPos2sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
windowPos2sv({X,Y}) -> windowPos2s(X,Y).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos3d(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
windowPos3d(X,Y,Z) ->
cast(5418, <<X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @equiv windowPos3d(X,Y,Z)
-spec windowPos3dv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
windowPos3dv({X,Y,Z}) -> windowPos3d(X,Y,Z).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos3f(X, Y, Z) -> 'ok' when X :: float(),Y :: float(),Z :: float().
windowPos3f(X,Y,Z) ->
cast(5419, <<X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @equiv windowPos3f(X,Y,Z)
-spec windowPos3fv(V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
windowPos3fv({X,Y,Z}) -> windowPos3f(X,Y,Z).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos3i(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
windowPos3i(X,Y,Z) ->
cast(5420, <<X:?GLint,Y:?GLint,Z:?GLint>>).
%% @equiv windowPos3i(X,Y,Z)
-spec windowPos3iv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
windowPos3iv({X,Y,Z}) -> windowPos3i(X,Y,Z).
%% @doc
%% See {@link windowPos2d/2}
-spec windowPos3s(X, Y, Z) -> 'ok' when X :: integer(),Y :: integer(),Z :: integer().
windowPos3s(X,Y,Z) ->
cast(5421, <<X:?GLshort,Y:?GLshort,Z:?GLshort>>).
%% @equiv windowPos3s(X,Y,Z)
-spec windowPos3sv(V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
windowPos3sv({X,Y,Z}) -> windowPos3s(X,Y,Z).
%% @doc Generate query object names
%%
%% ``gl:genQueries'' returns `N' query object names in `Ids' . There is no guarantee
%% that the names form a contiguous set of integers; however, it is guaranteed that none
%% of the returned names was in use immediately before the call to ``gl:genQueries''.
%%
%% Query object names returned by a call to ``gl:genQueries'' are not returned by subsequent
%% calls, unless they are first deleted with {@link gl:deleteQueries/1} .
%%
%% No query objects are associated with the returned query object names until they are first
%% used by calling {@link gl:beginQuery/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenQueries.xml">external</a> documentation.
-spec genQueries(N) -> [integer()] when N :: integer().
genQueries(N) ->
call(5422, <<N:?GLsizei>>).
%% @doc Delete named query objects
%%
%% ``gl:deleteQueries'' deletes `N' query objects named by the elements of the array `Ids'
%% . After a query object is deleted, it has no contents, and its name is free for reuse
%% (for example by {@link gl:genQueries/1} ).
%%
%% ``gl:deleteQueries'' silently ignores 0's and names that do not correspond to existing
%% query objects.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteQueries.xml">external</a> documentation.
-spec deleteQueries(Ids) -> 'ok' when Ids :: [integer()].
deleteQueries(Ids) ->
cast(5423, <<(length(Ids)):?GLuint,
(<< <<C:?GLuint>> || C <- Ids>>)/binary,0:(((1+length(Ids)) rem 2)*32)>>).
%% @doc Determine if a name corresponds to a query object
%%
%% ``gl:isQuery'' returns `?GL_TRUE' if `Id' is currently the name of a query
%% object. If `Id' is zero, or is a non-zero value that is not currently the name of
%% a query object, or if an error occurs, ``gl:isQuery'' returns `?GL_FALSE'.
%%
%% A name returned by {@link gl:genQueries/1} , but not yet associated with a query object
%% by calling {@link gl:beginQuery/2} , is not the name of a query object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsQuery.xml">external</a> documentation.
-spec isQuery(Id) -> 0|1 when Id :: integer().
isQuery(Id) ->
call(5424, <<Id:?GLuint>>).
%% @doc Delimit the boundaries of a query object
%%
%% ``gl:beginQuery'' and {@link gl:beginQuery/2} delimit the boundaries of a query object. `Query'
%% must be a name previously returned from a call to {@link gl:genQueries/1} . If a query
%% object with name `Id' does not yet exist it is created with the type determined by `Target'
%% . `Target' must be one of `?GL_SAMPLES_PASSED', `?GL_ANY_SAMPLES_PASSED', `?GL_PRIMITIVES_GENERATED'
%% , `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN', or `?GL_TIME_ELAPSED'. The behavior
%% of the query object depends on its type and is as follows.
%%
%% If `Target' is `?GL_SAMPLES_PASSED', `Id' must be an unused name, or the
%% name of an existing occlusion query object. When ``gl:beginQuery'' is executed, the
%% query object's samples-passed counter is reset to 0. Subsequent rendering will increment
%% the counter for every sample that passes the depth test. If the value of `?GL_SAMPLE_BUFFERS'
%% is 0, then the samples-passed count is incremented by 1 for each fragment. If the value
%% of `?GL_SAMPLE_BUFFERS' is 1, then the samples-passed count is incremented by the
%% number of samples whose coverage bit is set. However, implementations, at their discression
%% may instead increase the samples-passed count by the value of `?GL_SAMPLES' if any
%% sample in the fragment is covered. When ``gl:endQuery'' is executed, the samples-passed
%% counter is assigned to the query object's result value. This value can be queried by calling
%% {@link gl:getQueryObjectiv/2} with `Pname' `?GL_QUERY_RESULT'.
%%
%% If `Target' is `?GL_ANY_SAMPLES_PASSED', `Id' must be an unused name,
%% or the name of an existing boolean occlusion query object. When ``gl:beginQuery'' is
%% executed, the query object's samples-passed flag is reset to `?GL_FALSE'. Subsequent
%% rendering causes the flag to be set to `?GL_TRUE' if any sample passes the depth
%% test. When ``gl:endQuery'' is executed, the samples-passed flag is assigned to the query
%% object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'.
%%
%% If `Target' is `?GL_PRIMITIVES_GENERATED', `Id' must be an unused name,
%% or the name of an existing primitive query object previously bound to the `?GL_PRIMITIVES_GENERATED'
%% query binding. When ``gl:beginQuery'' is executed, the query object's primitives-generated
%% counter is reset to 0. Subsequent rendering will increment the counter once for every
%% vertex that is emitted from the geometry shader, or from the vertex shader if no geometry
%% shader is present. When ``gl:endQuery'' is executed, the primitives-generated counter
%% is assigned to the query object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'.
%%
%% If `Target' is `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN', `Id' must
%% be an unused name, or the name of an existing primitive query object previously bound
%% to the `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN' query binding. When ``gl:beginQuery''
%% is executed, the query object's primitives-written counter is reset to 0. Subsequent
%% rendering will increment the counter once for every vertex that is written into the bound
%% transform feedback buffer(s). If transform feedback mode is not activated between the
%% call to ``gl:beginQuery'' and ``gl:endQuery'', the counter will not be incremented.
%% When ``gl:endQuery'' is executed, the primitives-written counter is assigned to the
%% query object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'.
%%
%% If `Target' is `?GL_TIME_ELAPSED', `Id' must be an unused name, or the
%% name of an existing timer query object previously bound to the `?GL_TIME_ELAPSED'
%% query binding. When ``gl:beginQuery'' is executed, the query object's time counter is
%% reset to 0. When ``gl:endQuery'' is executed, the elapsed server time that has passed
%% since the call to ``gl:beginQuery'' is written into the query object's time counter.
%% This value can be queried by calling {@link gl:getQueryObjectiv/2} with `Pname' `?GL_QUERY_RESULT'
%% .
%%
%% Querying the `?GL_QUERY_RESULT' implicitly flushes the GL pipeline until the rendering
%% delimited by the query object has completed and the result is available. `?GL_QUERY_RESULT_AVAILABLE'
%% can be queried to determine if the result is immediately available or if the rendering
%% is not yet complete.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginQuery.xml">external</a> documentation.
-spec beginQuery(Target, Id) -> 'ok' when Target :: enum(),Id :: integer().
beginQuery(Target,Id) ->
cast(5425, <<Target:?GLenum,Id:?GLuint>>).
%% @doc
%% See {@link beginQuery/2}
-spec endQuery(Target) -> 'ok' when Target :: enum().
endQuery(Target) ->
cast(5426, <<Target:?GLenum>>).
%% @doc glGetQuery
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetQuery.xml">external</a> documentation.
-spec getQueryiv(Target, Pname) -> integer() when Target :: enum(),Pname :: enum().
getQueryiv(Target,Pname) ->
call(5427, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Return parameters of a query object
%%
%% ``gl:getQueryObject'' returns in `Params' a selected parameter of the query object
%% specified by `Id' .
%%
%% `Pname' names a specific query object parameter. `Pname' can be as follows:
%%
%% `?GL_QUERY_RESULT': `Params' returns the value of the query object's passed
%% samples counter. The initial value is 0.
%%
%% `?GL_QUERY_RESULT_AVAILABLE': `Params' returns whether the passed samples counter
%% is immediately available. If a delay would occur waiting for the query result, `?GL_FALSE'
%% is returned. Otherwise, `?GL_TRUE' is returned, which also indicates that the results
%% of all previous queries are available as well.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetQueryObject.xml">external</a> documentation.
-spec getQueryObjectiv(Id, Pname) -> integer() when Id :: integer(),Pname :: enum().
getQueryObjectiv(Id,Pname) ->
call(5428, <<Id:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link getQueryObjectiv/2}
-spec getQueryObjectuiv(Id, Pname) -> integer() when Id :: integer(),Pname :: enum().
getQueryObjectuiv(Id,Pname) ->
call(5429, <<Id:?GLuint,Pname:?GLenum>>).
%% @doc Bind a named buffer object
%%
%% ``gl:bindBuffer'' binds a buffer object to the specified buffer binding point. Calling ``gl:bindBuffer''
%% with `Target' set to one of the accepted symbolic constants and `Buffer' set
%% to the name of a buffer object binds that buffer object name to the target. If no buffer
%% object with name `Buffer' exists, one is created with that name. When a buffer object
%% is bound to a target, the previous binding for that target is automatically broken.
%%
%% Buffer object names are unsigned integers. The value zero is reserved, but there is no
%% default buffer object for each buffer object target. Instead, `Buffer' set to zero
%% effectively unbinds any buffer object previously bound, and restores client memory usage
%% for that buffer object target (if supported for that target). Buffer object names and
%% the corresponding buffer object contents are local to the shared object space of the current
%% GL rendering context; two rendering contexts share buffer object names only if they explicitly
%% enable sharing between contexts through the appropriate GL windows interfaces functions.
%%
%% {@link gl:genBuffers/1} must be used to generate a set of unused buffer object names.
%%
%% The state of a buffer object immediately after it is first bound is an unmapped zero-sized
%% memory buffer with `?GL_READ_WRITE' access and `?GL_STATIC_DRAW' usage.
%%
%% While a non-zero buffer object name is bound, GL operations on the target to which it
%% is bound affect the bound buffer object, and queries of the target to which it is bound
%% return state from the bound buffer object. While buffer object name zero is bound, as
%% in the initial state, attempts to modify or query state on the target to which it is bound
%% generates an `?GL_INVALID_OPERATION' error.
%%
%% When a non-zero buffer object is bound to the `?GL_ARRAY_BUFFER' target, the vertex
%% array pointer parameter is interpreted as an offset within the buffer object measured
%% in basic machine units.
%%
%% When a non-zero buffer object is bound to the `?GL_DRAW_INDIRECT_BUFFER' target,
%% parameters for draws issued through {@link gl:drawArraysIndirect/2} and {@link gl:drawElementsIndirect/3}
%% are sourced from that buffer object.
%%
%% While a non-zero buffer object is bound to the `?GL_ELEMENT_ARRAY_BUFFER' target,
%% the indices parameter of {@link gl:drawElements/4} , {@link gl:drawElementsInstanced/5} , {@link gl:drawElementsBaseVertex/5}
%% , {@link gl:drawRangeElements/6} , {@link gl:drawRangeElementsBaseVertex/7} , see `glMultiDrawElements'
%% , or see `glMultiDrawElementsBaseVertex' is interpreted as an offset within the
%% buffer object measured in basic machine units.
%%
%% While a non-zero buffer object is bound to the `?GL_PIXEL_PACK_BUFFER' target,
%% the following commands are affected: {@link gl:getCompressedTexImage/3} , {@link gl:getTexImage/5}
%% , and {@link gl:readPixels/7} . The pointer parameter is interpreted as an offset within
%% the buffer object measured in basic machine units.
%%
%% While a non-zero buffer object is bound to the `?GL_PIXEL_UNPACK_BUFFER' target,
%% the following commands are affected: {@link gl:compressedTexImage1D/7} , {@link gl:compressedTexImage2D/8}
%% , {@link gl:compressedTexImage3D/9} , {@link gl:compressedTexSubImage1D/7} , {@link gl:compressedTexSubImage2D/9}
%% , {@link gl:compressedTexSubImage3D/11} , {@link gl:texImage1D/8} , {@link gl:texImage2D/9} , {@link gl:texImage3D/10}
%% , {@link gl:texSubImage1D/7} , {@link gl:texSubImage1D/7} , and {@link gl:texSubImage1D/7} .
%% The pointer parameter is interpreted as an offset within the buffer object measured in
%% basic machine units.
%%
%% The buffer targets `?GL_COPY_READ_BUFFER' and `?GL_COPY_WRITE_BUFFER' are provided
%% to allow {@link gl:copyBufferSubData/5} to be used without disturbing the state of other
%% bindings. However, {@link gl:copyBufferSubData/5} may be used with any pair of buffer binding
%% points.
%%
%% The `?GL_TRANSFORM_FEEDBACK_BUFFER' buffer binding point may be passed to ``gl:bindBuffer''
%% , but will not directly affect transform feedback state. Instead, the indexed `?GL_TRANSFORM_FEEDBACK_BUFFER'
%% bindings must be used through a call to {@link gl:bindBufferBase/3} or {@link gl:bindBufferRange/5}
%% . This will affect the generic `?GL_TRANSFORM_FEEDABCK_BUFFER' binding.
%%
%% Likewise, the `?GL_UNIFORM_BUFFER' and `?GL_ATOMIC_COUNTER_BUFFER' buffer binding
%% points may be used, but do not directly affect uniform buffer or atomic counter buffer
%% state, respectively. {@link gl:bindBufferBase/3} or {@link gl:bindBufferRange/5} must be
%% used to bind a buffer to an indexed uniform buffer or atomic counter buffer binding point.
%%
%%
%% A buffer object binding created with ``gl:bindBuffer'' remains active until a different
%% buffer object name is bound to the same target, or until the bound buffer object is deleted
%% with {@link gl:deleteBuffers/1} .
%%
%% Once created, a named buffer object may be re-bound to any target as often as needed.
%% However, the GL implementation may make choices about how to optimize the storage of a
%% buffer object based on its initial binding target.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindBuffer.xml">external</a> documentation.
-spec bindBuffer(Target, Buffer) -> 'ok' when Target :: enum(),Buffer :: integer().
bindBuffer(Target,Buffer) ->
cast(5430, <<Target:?GLenum,Buffer:?GLuint>>).
%% @doc Delete named buffer objects
%%
%% ``gl:deleteBuffers'' deletes `N' buffer objects named by the elements of the array
%% `Buffers' . After a buffer object is deleted, it has no contents, and its name is
%% free for reuse (for example by {@link gl:genBuffers/1} ). If a buffer object that is currently
%% bound is deleted, the binding reverts to 0 (the absence of any buffer object).
%%
%% ``gl:deleteBuffers'' silently ignores 0's and names that do not correspond to existing
%% buffer objects.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteBuffers.xml">external</a> documentation.
-spec deleteBuffers(Buffers) -> 'ok' when Buffers :: [integer()].
deleteBuffers(Buffers) ->
cast(5431, <<(length(Buffers)):?GLuint,
(<< <<C:?GLuint>> || C <- Buffers>>)/binary,0:(((1+length(Buffers)) rem 2)*32)>>).
%% @doc Generate buffer object names
%%
%% ``gl:genBuffers'' returns `N' buffer object names in `Buffers' . There is no
%% guarantee that the names form a contiguous set of integers; however, it is guaranteed
%% that none of the returned names was in use immediately before the call to ``gl:genBuffers''
%% .
%%
%% Buffer object names returned by a call to ``gl:genBuffers'' are not returned by subsequent
%% calls, unless they are first deleted with {@link gl:deleteBuffers/1} .
%%
%% No buffer objects are associated with the returned buffer object names until they are
%% first bound by calling {@link gl:bindBuffer/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenBuffers.xml">external</a> documentation.
-spec genBuffers(N) -> [integer()] when N :: integer().
genBuffers(N) ->
call(5432, <<N:?GLsizei>>).
%% @doc Determine if a name corresponds to a buffer object
%%
%% ``gl:isBuffer'' returns `?GL_TRUE' if `Buffer' is currently the name of a
%% buffer object. If `Buffer' is zero, or is a non-zero value that is not currently
%% the name of a buffer object, or if an error occurs, ``gl:isBuffer'' returns `?GL_FALSE'
%% .
%%
%% A name returned by {@link gl:genBuffers/1} , but not yet associated with a buffer object
%% by calling {@link gl:bindBuffer/2} , is not the name of a buffer object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsBuffer.xml">external</a> documentation.
-spec isBuffer(Buffer) -> 0|1 when Buffer :: integer().
isBuffer(Buffer) ->
call(5433, <<Buffer:?GLuint>>).
%% @doc Creates and initializes a buffer object's data store
%%
%% ``gl:bufferData'' creates a new data store for the buffer object currently bound to `Target'
%% . Any pre-existing data store is deleted. The new data store is created with the specified
%% `Size' in bytes and `Usage' . If `Data' is not `?NULL', the data store
%% is initialized with data from this pointer. In its initial state, the new data store
%% is not mapped, it has a `?NULL' mapped pointer, and its mapped access is `?GL_READ_WRITE'
%% .
%%
%% `Usage' is a hint to the GL implementation as to how a buffer object's data store
%% will be accessed. This enables the GL implementation to make more intelligent decisions
%% that may significantly impact buffer object performance. It does not, however, constrain
%% the actual usage of the data store. `Usage' can be broken down into two parts: first,
%% the frequency of access (modification and usage), and second, the nature of that access.
%% The frequency of access may be one of these:
%%
%% STREAM: The data store contents will be modified once and used at most a few times.
%%
%% STATIC: The data store contents will be modified once and used many times.
%%
%% DYNAMIC: The data store contents will be modified repeatedly and used many times.
%%
%% The nature of access may be one of these:
%%
%% DRAW: The data store contents are modified by the application, and used as the source
%% for GL drawing and image specification commands.
%%
%% READ: The data store contents are modified by reading data from the GL, and used to return
%% that data when queried by the application.
%%
%% COPY: The data store contents are modified by reading data from the GL, and used as the
%% source for GL drawing and image specification commands.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBufferData.xml">external</a> documentation.
-spec bufferData(Target, Size, Data, Usage) -> 'ok' when Target :: enum(),Size :: integer(),Data :: offset()|mem(),Usage :: enum().
bufferData(Target,Size,Data,Usage) when is_integer(Data) ->
cast(5434, <<Target:?GLenum,0:32,Size:?GLsizeiptr,Data:?GLuint,Usage:?GLenum>>);
bufferData(Target,Size,Data,Usage) ->
send_bin(Data),
cast(5435, <<Target:?GLenum,0:32,Size:?GLsizeiptr,Usage:?GLenum>>).
%% @doc Updates a subset of a buffer object's data store
%%
%% ``gl:bufferSubData'' redefines some or all of the data store for the buffer object currently
%% bound to `Target' . Data starting at byte offset `Offset' and extending for `Size'
%% bytes is copied to the data store from the memory pointed to by `Data' . An error
%% is thrown if `Offset' and `Size' together define a range beyond the bounds of
%% the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBufferSubData.xml">external</a> documentation.
-spec bufferSubData(Target, Offset, Size, Data) -> 'ok' when Target :: enum(),Offset :: integer(),Size :: integer(),Data :: offset()|mem().
bufferSubData(Target,Offset,Size,Data) when is_integer(Data) ->
cast(5436, <<Target:?GLenum,0:32,Offset:?GLintptr,Size:?GLsizeiptr,Data:?GLuint>>);
bufferSubData(Target,Offset,Size,Data) ->
send_bin(Data),
cast(5437, <<Target:?GLenum,0:32,Offset:?GLintptr,Size:?GLsizeiptr>>).
%% @doc Returns a subset of a buffer object's data store
%%
%% ``gl:getBufferSubData'' returns some or all of the data from the buffer object currently
%% bound to `Target' . Data starting at byte offset `Offset' and extending for `Size'
%% bytes is copied from the data store to the memory pointed to by `Data' . An error
%% is thrown if the buffer object is currently mapped, or if `Offset' and `Size'
%% together define a range beyond the bounds of the buffer object's data store.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetBufferSubData.xml">external</a> documentation.
-spec getBufferSubData(Target, Offset, Size, Data) -> 'ok' when Target :: enum(),Offset :: integer(),Size :: integer(),Data :: mem().
getBufferSubData(Target,Offset,Size,Data) ->
send_bin(Data),
call(5438, <<Target:?GLenum,0:32,Offset:?GLintptr,Size:?GLsizeiptr>>).
%% @doc Return parameters of a buffer object
%%
%% ``gl:getBufferParameteriv'' returns in `Data' a selected parameter of the buffer
%% object specified by `Target' .
%%
%% `Value' names a specific buffer object parameter, as follows:
%%
%% `?GL_BUFFER_ACCESS': `Params' returns the access policy set while mapping the
%% buffer object. The initial value is `?GL_READ_WRITE'.
%%
%% `?GL_BUFFER_MAPPED': `Params' returns a flag indicating whether the buffer object
%% is currently mapped. The initial value is `?GL_FALSE'.
%%
%% `?GL_BUFFER_SIZE': `Params' returns the size of the buffer object, measured
%% in bytes. The initial value is 0.
%%
%% `?GL_BUFFER_USAGE': `Params' returns the buffer object's usage pattern. The
%% initial value is `?GL_STATIC_DRAW'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetBufferParameteriv.xml">external</a> documentation.
-spec getBufferParameteriv(Target, Pname) -> integer() when Target :: enum(),Pname :: enum().
getBufferParameteriv(Target,Pname) ->
call(5439, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Set the RGB blend equation and the alpha blend equation separately
%%
%% The blend equations determines how a new pixel (the ''source'' color) is combined with
%% a pixel already in the framebuffer (the ''destination'' color). These functions specifie
%% one blend equation for the RGB-color components and one blend equation for the alpha
%% component. ``gl:blendEquationSeparatei'' specifies the blend equations for a single
%% draw buffer whereas ``gl:blendEquationSeparate'' sets the blend equations for all draw
%% buffers.
%%
%% The blend equations use the source and destination blend factors specified by either {@link gl:blendFunc/2}
%% or {@link gl:blendFuncSeparate/4} . See {@link gl:blendFunc/2} or {@link gl:blendFuncSeparate/4}
%% for a description of the various blend factors.
%%
%% In the equations that follow, source and destination color components are referred to
%% as (R s G s B s A s) and (R d G d B d A d), respectively. The result color is referred to as (R r G r B r A r). The source and destination
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
%% The `?GL_MIN' and `?GL_MAX' equations are useful for applications that analyze
%% image data (image thresholding against a constant color, for example). The `?GL_FUNC_ADD'
%% equation is useful for antialiasing and transparency, among other things.
%%
%% Initially, both the RGB blend equation and the alpha blend equation are set to `?GL_FUNC_ADD'
%% .
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendEquationSeparate.xml">external</a> documentation.
-spec blendEquationSeparate(ModeRGB, ModeAlpha) -> 'ok' when ModeRGB :: enum(),ModeAlpha :: enum().
blendEquationSeparate(ModeRGB,ModeAlpha) ->
cast(5440, <<ModeRGB:?GLenum,ModeAlpha:?GLenum>>).
%% @doc Specifies a list of color buffers to be drawn into
%%
%% ``gl:drawBuffers'' defines an array of buffers into which outputs from the fragment
%% shader data will be written. If a fragment shader writes a value to one or more user defined
%% output variables, then the value of each variable will be written into the buffer specified
%% at a location within `Bufs' corresponding to the location assigned to that user defined
%% output. The draw buffer used for user defined outputs assigned to locations greater than
%% or equal to `N' is implicitly set to `?GL_NONE' and any data written to such
%% an output is discarded.
%%
%% The symbolic constants contained in `Bufs' may be any of the following:
%%
%% `?GL_NONE': The fragment shader output value is not written into any color buffer.
%%
%% `?GL_FRONT_LEFT': The fragment shader output value is written into the front left
%% color buffer.
%%
%% `?GL_FRONT_RIGHT': The fragment shader output value is written into the front right
%% color buffer.
%%
%% `?GL_BACK_LEFT': The fragment shader output value is written into the back left color
%% buffer.
%%
%% `?GL_BACK_RIGHT': The fragment shader output value is written into the back right
%% color buffer.
%%
%% `?GL_COLOR_ATTACHMENT'`n': The fragment shader output value is written into
%% the `n'th color attachment of the current framebuffer. `n' may range from 0
%% to the value of `?GL_MAX_COLOR_ATTACHMENTS'.
%%
%% Except for `?GL_NONE', the preceding symbolic constants may not appear more than
%% once in `Bufs' . The maximum number of draw buffers supported is implementation dependent
%% and can be queried by calling {@link gl:getBooleanv/1} with the argument `?GL_MAX_DRAW_BUFFERS'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawBuffers.xml">external</a> documentation.
-spec drawBuffers(Bufs) -> 'ok' when Bufs :: [enum()].
drawBuffers(Bufs) ->
cast(5441, <<(length(Bufs)):?GLuint,
(<< <<C:?GLenum>> || C <- Bufs>>)/binary,0:(((1+length(Bufs)) rem 2)*32)>>).
%% @doc Set front and/or back stencil test actions
%%
%% Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
%% You draw into the stencil planes using GL drawing primitives, then render geometry and
%% images, using the stencil planes to mask out portions of the screen. Stenciling is typically
%% used in multipass rendering algorithms to achieve special effects, such as decals, outlining,
%% and constructive solid geometry rendering.
%%
%% The stencil test conditionally eliminates a pixel based on the outcome of a comparison
%% between the value in the stencil buffer and a reference value. To enable and disable the
%% test, call {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_STENCIL_TEST'
%% ; to control it, call {@link gl:stencilFunc/3} or {@link gl:stencilFuncSeparate/4} .
%%
%% There can be two separate sets of `Sfail' , `Dpfail' , and `Dppass' parameters;
%% one affects back-facing polygons, and the other affects front-facing polygons as well
%% as other non-polygon primitives. {@link gl:stencilOp/3} sets both front and back stencil
%% state to the same values, as if {@link gl:stencilOpSeparate/4} were called with `Face'
%% set to `?GL_FRONT_AND_BACK'.
%%
%% ``gl:stencilOpSeparate'' takes three arguments that indicate what happens to the stored
%% stencil value while stenciling is enabled. If the stencil test fails, no change is made
%% to the pixel's color or depth buffers, and `Sfail' specifies what happens to the
%% stencil buffer contents. The following eight actions are possible.
%%
%% `?GL_KEEP': Keeps the current value.
%%
%% `?GL_ZERO': Sets the stencil buffer value to 0.
%%
%% `?GL_REPLACE': Sets the stencil buffer value to `ref', as specified by {@link gl:stencilFunc/3}
%% .
%%
%% `?GL_INCR': Increments the current stencil buffer value. Clamps to the maximum representable
%% unsigned value.
%%
%% `?GL_INCR_WRAP': Increments the current stencil buffer value. Wraps stencil buffer
%% value to zero when incrementing the maximum representable unsigned value.
%%
%% `?GL_DECR': Decrements the current stencil buffer value. Clamps to 0.
%%
%% `?GL_DECR_WRAP': Decrements the current stencil buffer value. Wraps stencil buffer
%% value to the maximum representable unsigned value when decrementing a stencil buffer value
%% of zero.
%%
%% `?GL_INVERT': Bitwise inverts the current stencil buffer value.
%%
%% Stencil buffer values are treated as unsigned integers. When incremented and decremented,
%% values are clamped to 0 and 2 n-1, where n is the value returned by querying `?GL_STENCIL_BITS'
%% .
%%
%% The other two arguments to ``gl:stencilOpSeparate'' specify stencil buffer actions
%% that depend on whether subsequent depth buffer tests succeed ( `Dppass' ) or fail ( `Dpfail'
%% ) (see {@link gl:depthFunc/1} ). The actions are specified using the same eight symbolic
%% constants as `Sfail' . Note that `Dpfail' is ignored when there is no depth buffer,
%% or when the depth buffer is not enabled. In these cases, `Sfail' and `Dppass'
%% specify stencil action when the stencil test fails and passes, respectively.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilOpSeparate.xml">external</a> documentation.
-spec stencilOpSeparate(Face, Sfail, Dpfail, Dppass) -> 'ok' when Face :: enum(),Sfail :: enum(),Dpfail :: enum(),Dppass :: enum().
stencilOpSeparate(Face,Sfail,Dpfail,Dppass) ->
cast(5442, <<Face:?GLenum,Sfail:?GLenum,Dpfail:?GLenum,Dppass:?GLenum>>).
%% @doc Set front and/or back function and reference value for stencil testing
%%
%% Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis.
%% You draw into the stencil planes using GL drawing primitives, then render geometry and
%% images, using the stencil planes to mask out portions of the screen. Stenciling is typically
%% used in multipass rendering algorithms to achieve special effects, such as decals, outlining,
%% and constructive solid geometry rendering.
%%
%% The stencil test conditionally eliminates a pixel based on the outcome of a comparison
%% between the reference value and the value in the stencil buffer. To enable and disable
%% the test, call {@link gl:enable/1} and {@link gl:enable/1} with argument `?GL_STENCIL_TEST'
%% . To specify actions based on the outcome of the stencil test, call {@link gl:stencilOp/3}
%% or {@link gl:stencilOpSeparate/4} .
%%
%% There can be two separate sets of `Func' , `Ref' , and `Mask' parameters;
%% one affects back-facing polygons, and the other affects front-facing polygons as well
%% as other non-polygon primitives. {@link gl:stencilFunc/3} sets both front and back stencil
%% state to the same values, as if {@link gl:stencilFuncSeparate/4} were called with `Face'
%% set to `?GL_FRONT_AND_BACK'.
%%
%% `Func' is a symbolic constant that determines the stencil comparison function. It
%% accepts one of eight values, shown in the following list. `Ref' is an integer reference
%% value that is used in the stencil comparison. It is clamped to the range [0 2 n-1], where n
%% is the number of bitplanes in the stencil buffer. `Mask' is bitwise ANDed with both
%% the reference value and the stored stencil value, with the ANDed values participating
%% in the comparison.
%%
%% If `stencil' represents the value stored in the corresponding stencil buffer location,
%% the following list shows the effect of each comparison function that can be specified by `Func'
%% . Only if the comparison succeeds is the pixel passed through to the next stage in the
%% rasterization process (see {@link gl:stencilOp/3} ). All tests treat `stencil' values
%% as unsigned integers in the range [0 2 n-1], where n is the number of bitplanes in the stencil
%% buffer.
%%
%% The following values are accepted by `Func' :
%%
%% `?GL_NEVER': Always fails.
%%
%% `?GL_LESS': Passes if ( `Ref' & `Mask' ) < ( `stencil' & `Mask'
%% ).
%%
%% `?GL_LEQUAL': Passes if ( `Ref' & `Mask' ) <= ( `stencil'
%% & `Mask' ).
%%
%% `?GL_GREATER': Passes if ( `Ref' & `Mask' ) > ( `stencil'
%% & `Mask' ).
%%
%% `?GL_GEQUAL': Passes if ( `Ref' & `Mask' ) >= ( `stencil'
%% & `Mask' ).
%%
%% `?GL_EQUAL': Passes if ( `Ref' & `Mask' ) = ( `stencil' & `Mask'
%% ).
%%
%% `?GL_NOTEQUAL': Passes if ( `Ref' & `Mask' ) != ( `stencil' &
%% `Mask' ).
%%
%% `?GL_ALWAYS': Always passes.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilFuncSeparate.xml">external</a> documentation.
-spec stencilFuncSeparate(Face, Func, Ref, Mask) -> 'ok' when Face :: enum(),Func :: enum(),Ref :: integer(),Mask :: integer().
stencilFuncSeparate(Face,Func,Ref,Mask) ->
cast(5443, <<Face:?GLenum,Func:?GLenum,Ref:?GLint,Mask:?GLuint>>).
%% @doc Control the front and/or back writing of individual bits in the stencil planes
%%
%% ``gl:stencilMaskSeparate'' controls the writing of individual bits in the stencil planes.
%% The least significant n bits of `Mask' , where n is the number of bits in the
%% stencil buffer, specify a mask. Where a 1 appears in the mask, it's possible to write
%% to the corresponding bit in the stencil buffer. Where a 0 appears, the corresponding bit
%% is write-protected. Initially, all bits are enabled for writing.
%%
%% There can be two separate `Mask' writemasks; one affects back-facing polygons, and
%% the other affects front-facing polygons as well as other non-polygon primitives. {@link gl:stencilMask/1}
%% sets both front and back stencil writemasks to the same values, as if {@link gl:stencilMaskSeparate/2}
%% were called with `Face' set to `?GL_FRONT_AND_BACK'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilMaskSeparate.xml">external</a> documentation.
-spec stencilMaskSeparate(Face, Mask) -> 'ok' when Face :: enum(),Mask :: integer().
stencilMaskSeparate(Face,Mask) ->
cast(5444, <<Face:?GLenum,Mask:?GLuint>>).
%% @doc Attaches a shader object to a program object
%%
%% In order to create a complete shader program, there must be a way to specify the list
%% of things that will be linked together. Program objects provide this mechanism. Shaders
%% that are to be linked together in a program object must first be attached to that program
%% object. ``gl:attachShader'' attaches the shader object specified by `Shader' to
%% the program object specified by `Program' . This indicates that `Shader' will
%% be included in link operations that will be performed on `Program' .
%%
%% All operations that can be performed on a shader object are valid whether or not the
%% shader object is attached to a program object. It is permissible to attach a shader object
%% to a program object before source code has been loaded into the shader object or before
%% the shader object has been compiled. It is permissible to attach multiple shader objects
%% of the same type because each may contain a portion of the complete shader. It is also
%% permissible to attach a shader object to more than one program object. If a shader object
%% is deleted while it is attached to a program object, it will be flagged for deletion,
%% and deletion will not occur until {@link gl:detachShader/2} is called to detach it from
%% all program objects to which it is attached.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glAttachShader.xml">external</a> documentation.
-spec attachShader(Program, Shader) -> 'ok' when Program :: integer(),Shader :: integer().
attachShader(Program,Shader) ->
cast(5445, <<Program:?GLuint,Shader:?GLuint>>).
%% @doc Associates a generic vertex attribute index with a named attribute variable
%%
%% ``gl:bindAttribLocation'' is used to associate a user-defined attribute variable in
%% the program object specified by `Program' with a generic vertex attribute index.
%% The name of the user-defined attribute variable is passed as a null terminated string in `Name'
%% . The generic vertex attribute index to be bound to this variable is specified by `Index'
%% . When `Program' is made part of current state, values provided via the generic vertex
%% attribute `Index' will modify the value of the user-defined attribute variable specified
%% by `Name' .
%%
%% If `Name' refers to a matrix attribute variable, `Index' refers to the first
%% column of the matrix. Other matrix columns are then automatically bound to locations `Index+1'
%% for a matrix of type `mat2'; `Index+1' and `Index+2' for a matrix of type
%% `mat3'; and `Index+1' , `Index+2' , and `Index+3' for a matrix of type `mat4'
%% .
%%
%% This command makes it possible for vertex shaders to use descriptive names for attribute
%% variables rather than generic variables that are numbered from 0 to `?GL_MAX_VERTEX_ATTRIBS'
%% -1. The values sent to each generic attribute index are part of current state. If a different
%% program object is made current by calling {@link gl:useProgram/1} , the generic vertex attributes
%% are tracked in such a way that the same values will be observed by attributes in the new
%% program object that are also bound to `Index' .
%%
%% Attribute variable name-to-generic attribute index bindings for a program object can be
%% explicitly assigned at any time by calling ``gl:bindAttribLocation''. Attribute bindings
%% do not go into effect until {@link gl:linkProgram/1} is called. After a program object
%% has been linked successfully, the index values for generic attributes remain fixed (and
%% their values can be queried) until the next link command occurs.
%%
%% Any attribute binding that occurs after the program object has been linked will not take
%% effect until the next time the program object is linked.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindAttribLocation.xml">external</a> documentation.
-spec bindAttribLocation(Program, Index, Name) -> 'ok' when Program :: integer(),Index :: integer(),Name :: string().
bindAttribLocation(Program,Index,Name) ->
cast(5446, <<Program:?GLuint,Index:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc Compiles a shader object
%%
%% ``gl:compileShader'' compiles the source code strings that have been stored in the shader
%% object specified by `Shader' .
%%
%% The compilation status will be stored as part of the shader object's state. This value
%% will be set to `?GL_TRUE' if the shader was compiled without errors and is ready
%% for use, and `?GL_FALSE' otherwise. It can be queried by calling {@link gl:getShaderiv/2}
%% with arguments `Shader' and `?GL_COMPILE_STATUS'.
%%
%% Compilation of a shader can fail for a number of reasons as specified by the OpenGL Shading
%% Language Specification. Whether or not the compilation was successful, information about
%% the compilation can be obtained from the shader object's information log by calling {@link gl:getShaderInfoLog/2}
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompileShader.xml">external</a> documentation.
-spec compileShader(Shader) -> 'ok' when Shader :: integer().
compileShader(Shader) ->
cast(5447, <<Shader:?GLuint>>).
%% @doc Creates a program object
%%
%% ``gl:createProgram'' creates an empty program object and returns a non-zero value by
%% which it can be referenced. A program object is an object to which shader objects can
%% be attached. This provides a mechanism to specify the shader objects that will be linked
%% to create a program. It also provides a means for checking the compatibility of the
%% shaders that will be used to create a program (for instance, checking the compatibility
%% between a vertex shader and a fragment shader). When no longer needed as part of a program
%% object, shader objects can be detached.
%%
%% One or more executables are created in a program object by successfully attaching shader
%% objects to it with {@link gl:attachShader/2} , successfully compiling the shader objects
%% with {@link gl:compileShader/1} , and successfully linking the program object with {@link gl:linkProgram/1}
%% . These executables are made part of current state when {@link gl:useProgram/1} is called.
%% Program objects can be deleted by calling {@link gl:deleteProgram/1} . The memory associated
%% with the program object will be deleted when it is no longer part of current rendering
%% state for any context.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCreateProgram.xml">external</a> documentation.
-spec createProgram() -> integer().
createProgram() ->
call(5448, <<>>).
%% @doc Creates a shader object
%%
%% ``gl:createShader'' creates an empty shader object and returns a non-zero value by
%% which it can be referenced. A shader object is used to maintain the source code strings
%% that define a shader. `ShaderType' indicates the type of shader to be created. Five
%% types of shader are supported. A shader of type `?GL_VERTEX_SHADER' is a shader
%% that is intended to run on the programmable vertex processor. A shader of type `?GL_TESS_CONTROL_SHADER'
%% is a shader that is intended to run on the programmable tessellation processor in the
%% control stage. A shader of type `?GL_TESS_EVALUATION_SHADER' is a shader that is
%% intended to run on the programmable tessellation processor in the evaluation stage. A
%% shader of type `?GL_GEOMETRY_SHADER' is a shader that is intended to run on the
%% programmable geometry processor. A shader of type `?GL_FRAGMENT_SHADER' is a shader
%% that is intended to run on the programmable fragment processor.
%%
%% When created, a shader object's `?GL_SHADER_TYPE' parameter is set to either `?GL_VERTEX_SHADER'
%% , `?GL_TESS_CONTROL_SHADER', `?GL_TESS_EVALUATION_SHADER', `?GL_GEOMETRY_SHADER'
%% or `?GL_FRAGMENT_SHADER', depending on the value of `ShaderType' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCreateShader.xml">external</a> documentation.
-spec createShader(Type) -> integer() when Type :: enum().
createShader(Type) ->
call(5449, <<Type:?GLenum>>).
%% @doc Deletes a program object
%%
%% ``gl:deleteProgram'' frees the memory and invalidates the name associated with the program
%% object specified by `Program.' This command effectively undoes the effects of a call
%% to {@link gl:createProgram/0} .
%%
%% If a program object is in use as part of current rendering state, it will be flagged for
%% deletion, but it will not be deleted until it is no longer part of current state for any
%% rendering context. If a program object to be deleted has shader objects attached to it,
%% those shader objects will be automatically detached but not deleted unless they have already
%% been flagged for deletion by a previous call to {@link gl:deleteShader/1} . A value of 0
%% for `Program' will be silently ignored.
%%
%% To determine whether a program object has been flagged for deletion, call {@link gl:getProgramiv/2}
%% with arguments `Program' and `?GL_DELETE_STATUS'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteProgram.xml">external</a> documentation.
-spec deleteProgram(Program) -> 'ok' when Program :: integer().
deleteProgram(Program) ->
cast(5450, <<Program:?GLuint>>).
%% @doc Deletes a shader object
%%
%% ``gl:deleteShader'' frees the memory and invalidates the name associated with the shader
%% object specified by `Shader' . This command effectively undoes the effects of a call
%% to {@link gl:createShader/1} .
%%
%% If a shader object to be deleted is attached to a program object, it will be flagged for
%% deletion, but it will not be deleted until it is no longer attached to any program object,
%% for any rendering context (i.e., it must be detached from wherever it was attached before
%% it will be deleted). A value of 0 for `Shader' will be silently ignored.
%%
%% To determine whether an object has been flagged for deletion, call {@link gl:getShaderiv/2}
%% with arguments `Shader' and `?GL_DELETE_STATUS'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteShader.xml">external</a> documentation.
-spec deleteShader(Shader) -> 'ok' when Shader :: integer().
deleteShader(Shader) ->
cast(5451, <<Shader:?GLuint>>).
%% @doc Detaches a shader object from a program object to which it is attached
%%
%% ``gl:detachShader'' detaches the shader object specified by `Shader' from the program
%% object specified by `Program' . This command can be used to undo the effect of the
%% command {@link gl:attachShader/2} .
%%
%% If `Shader' has already been flagged for deletion by a call to {@link gl:deleteShader/1}
%% and it is not attached to any other program object, it will be deleted after it has been
%% detached.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDetachShader.xml">external</a> documentation.
-spec detachShader(Program, Shader) -> 'ok' when Program :: integer(),Shader :: integer().
detachShader(Program,Shader) ->
cast(5452, <<Program:?GLuint,Shader:?GLuint>>).
%% @doc Enable or disable a generic vertex attribute array
%%
%% ``gl:enableVertexAttribArray'' enables the generic vertex attribute array specified by `Index'
%% . ``gl:disableVertexAttribArray'' disables the generic vertex attribute array specified
%% by `Index' . By default, all client-side capabilities are disabled, including all
%% generic vertex attribute arrays. If enabled, the values in the generic vertex attribute
%% array will be accessed and used for rendering when calls are made to vertex array commands
%% such as {@link gl:drawArrays/3} , {@link gl:drawElements/4} , {@link gl:drawRangeElements/6} , see `glMultiDrawElements'
%% , or {@link gl:multiDrawArrays/3} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEnableVertexAttribArray.xml">external</a> documentation.
-spec disableVertexAttribArray(Index) -> 'ok' when Index :: integer().
disableVertexAttribArray(Index) ->
cast(5453, <<Index:?GLuint>>).
%% @doc
%% See {@link disableVertexAttribArray/1}
-spec enableVertexAttribArray(Index) -> 'ok' when Index :: integer().
enableVertexAttribArray(Index) ->
cast(5454, <<Index:?GLuint>>).
%% @doc Returns information about an active attribute variable for the specified program object
%%
%% ``gl:getActiveAttrib'' returns information about an active attribute variable in the
%% program object specified by `Program' . The number of active attributes can be obtained
%% by calling {@link gl:getProgramiv/2} with the value `?GL_ACTIVE_ATTRIBUTES'. A value
%% of 0 for `Index' selects the first active attribute variable. Permissible values
%% for `Index' range from 0 to the number of active attribute variables minus 1.
%%
%% A vertex shader may use either built-in attribute variables, user-defined attribute variables,
%% or both. Built-in attribute variables have a prefix of "gl_" and reference conventional
%% OpenGL vertex attribtes (e.g., `Gl_Vertex' , `Gl_Normal' , etc., see the OpenGL
%% Shading Language specification for a complete list.) User-defined attribute variables
%% have arbitrary names and obtain their values through numbered generic vertex attributes.
%% An attribute variable (either built-in or user-defined) is considered active if it is
%% determined during the link operation that it may be accessed during program execution.
%% Therefore, `Program' should have previously been the target of a call to {@link gl:linkProgram/1}
%% , but it is not necessary for it to have been linked successfully.
%%
%% The size of the character buffer required to store the longest attribute variable name
%% in `Program' can be obtained by calling {@link gl:getProgramiv/2} with the value `?GL_ACTIVE_ATTRIBUTE_MAX_LENGTH'
%% . This value should be used to allocate a buffer of sufficient size to store the returned
%% attribute name. The size of this character buffer is passed in `BufSize' , and a pointer
%% to this character buffer is passed in `Name' .
%%
%% ``gl:getActiveAttrib'' returns the name of the attribute variable indicated by `Index'
%% , storing it in the character buffer specified by `Name' . The string returned will
%% be null terminated. The actual number of characters written into this buffer is returned
%% in `Length' , and this count does not include the null termination character. If the
%% length of the returned string is not required, a value of `?NULL' can be passed in
%% the `Length' argument.
%%
%% The `Type' argument specifies a pointer to a variable into which the attribute variable's
%% data type will be written. The symbolic constants `?GL_FLOAT', `?GL_FLOAT_VEC2',
%% `?GL_FLOAT_VEC3', `?GL_FLOAT_VEC4', `?GL_FLOAT_MAT2', `?GL_FLOAT_MAT3',
%% `?GL_FLOAT_MAT4', `?GL_FLOAT_MAT2x3', `?GL_FLOAT_MAT2x4', `?GL_FLOAT_MAT3x2'
%% , `?GL_FLOAT_MAT3x4', `?GL_FLOAT_MAT4x2', `?GL_FLOAT_MAT4x3', `?GL_INT'
%% , `?GL_INT_VEC2', `?GL_INT_VEC3', `?GL_INT_VEC4', `?GL_UNSIGNED_INT_VEC'
%% , `?GL_UNSIGNED_INT_VEC2', `?GL_UNSIGNED_INT_VEC3', `?GL_UNSIGNED_INT_VEC4',
%% `?DOUBLE', `?DOUBLE_VEC2', `?DOUBLE_VEC3', `?DOUBLE_VEC4', `?DOUBLE_MAT2'
%% , `?DOUBLE_MAT3', `?DOUBLE_MAT4', `?DOUBLE_MAT2x3', `?DOUBLE_MAT2x4',
%% `?DOUBLE_MAT3x2', `?DOUBLE_MAT3x4', `?DOUBLE_MAT4x2', or `?DOUBLE_MAT4x3'
%% may be returned. The `Size' argument will return the size of the attribute, in units
%% of the type returned in `Type' .
%%
%% The list of active attribute variables may include both built-in attribute variables (which
%% begin with the prefix "gl_") as well as user-defined attribute variable names.
%%
%% This function will return as much information as it can about the specified active attribute
%% variable. If no information is available, `Length' will be 0, and `Name' will
%% be an empty string. This situation could occur if this function is called after a link
%% operation that failed. If an error occurs, the return values `Length' , `Size' , `Type'
%% , and `Name' will be unmodified.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveAttrib.xml">external</a> documentation.
-spec getActiveAttrib(Program, Index, BufSize) -> {Size :: integer(),Type :: enum(),Name :: string()} when Program :: integer(),Index :: integer(),BufSize :: integer().
getActiveAttrib(Program,Index,BufSize) ->
call(5455, <<Program:?GLuint,Index:?GLuint,BufSize:?GLsizei>>).
%% @doc Returns information about an active uniform variable for the specified program object
%%
%% ``gl:getActiveUniform'' returns information about an active uniform variable in the
%% program object specified by `Program' . The number of active uniform variables can
%% be obtained by calling {@link gl:getProgramiv/2} with the value `?GL_ACTIVE_UNIFORMS'.
%% A value of 0 for `Index' selects the first active uniform variable. Permissible values
%% for `Index' range from 0 to the number of active uniform variables minus 1.
%%
%% Shaders may use either built-in uniform variables, user-defined uniform variables, or
%% both. Built-in uniform variables have a prefix of "gl_" and reference existing OpenGL
%% state or values derived from such state (e.g., `Gl_DepthRangeParameters' , see the
%% OpenGL Shading Language specification for a complete list.) User-defined uniform variables
%% have arbitrary names and obtain their values from the application through calls to {@link gl:uniform1f/2}
%% . A uniform variable (either built-in or user-defined) is considered active if it is determined
%% during the link operation that it may be accessed during program execution. Therefore, `Program'
%% should have previously been the target of a call to {@link gl:linkProgram/1} , but it is
%% not necessary for it to have been linked successfully.
%%
%% The size of the character buffer required to store the longest uniform variable name in `Program'
%% can be obtained by calling {@link gl:getProgramiv/2} with the value `?GL_ACTIVE_UNIFORM_MAX_LENGTH'
%% . This value should be used to allocate a buffer of sufficient size to store the returned
%% uniform variable name. The size of this character buffer is passed in `BufSize' ,
%% and a pointer to this character buffer is passed in `Name.'
%%
%% ``gl:getActiveUniform'' returns the name of the uniform variable indicated by `Index'
%% , storing it in the character buffer specified by `Name' . The string returned will
%% be null terminated. The actual number of characters written into this buffer is returned
%% in `Length' , and this count does not include the null termination character. If the
%% length of the returned string is not required, a value of `?NULL' can be passed in
%% the `Length' argument.
%%
%% The `Type' argument will return a pointer to the uniform variable's data type. The
%% symbolic constants returned for uniform types are shown in the table below. <table><tbody>
%% <tr><td>` Returned Symbolic Contant '</td><td>` Shader Uniform Type '</td></tr></tbody>
%% <tbody><tr><td>`?GL_FLOAT'</td><td>`?float'</td></tr><tr><td>`?GL_FLOAT_VEC2'
%% </td><td>`?vec2'</td></tr><tr><td>`?GL_FLOAT_VEC3'</td><td>`?vec3'</td></tr>
%% <tr><td>`?GL_FLOAT_VEC4'</td><td>`?vec4'</td></tr><tr><td>`?GL_DOUBLE'</td>
%% <td>`?double'</td></tr><tr><td>`?GL_DOUBLE_VEC2'</td><td>`?dvec2'</td></tr>
%% <tr><td>`?GL_DOUBLE_VEC3'</td><td>`?dvec3'</td></tr><tr><td>`?GL_DOUBLE_VEC4'
%% </td><td>`?dvec4'</td></tr><tr><td>`?GL_INT'</td><td>`?int'</td></tr><tr><td>
%% `?GL_INT_VEC2'</td><td>`?ivec2'</td></tr><tr><td>`?GL_INT_VEC3'</td><td>`?ivec3'
%% </td></tr><tr><td>`?GL_INT_VEC4'</td><td>`?ivec4'</td></tr><tr><td>`?GL_UNSIGNED_INT'
%% </td><td>`?unsigned int'</td></tr><tr><td>`?GL_UNSIGNED_INT_VEC2'</td><td>`?uvec2'
%% </td></tr><tr><td>`?GL_UNSIGNED_INT_VEC3'</td><td>`?uvec3'</td></tr><tr><td>`?GL_UNSIGNED_INT_VEC4'
%% </td><td>`?uvec4'</td></tr><tr><td>`?GL_BOOL'</td><td>`?bool'</td></tr><tr>
%% <td>`?GL_BOOL_VEC2'</td><td>`?bvec2'</td></tr><tr><td>`?GL_BOOL_VEC3'</td><td>
%% `?bvec3'</td></tr><tr><td>`?GL_BOOL_VEC4'</td><td>`?bvec4'</td></tr><tr><td>
%% `?GL_FLOAT_MAT2'</td><td>`?mat2'</td></tr><tr><td>`?GL_FLOAT_MAT3'</td><td>
%% `?mat3'</td></tr><tr><td>`?GL_FLOAT_MAT4'</td><td>`?mat4'</td></tr><tr><td>
%% `?GL_FLOAT_MAT2x3'</td><td>`?mat2x3'</td></tr><tr><td>`?GL_FLOAT_MAT2x4'</td>
%% <td>`?mat2x4'</td></tr><tr><td>`?GL_FLOAT_MAT3x2'</td><td>`?mat3x2'</td></tr>
%% <tr><td>`?GL_FLOAT_MAT3x4'</td><td>`?mat3x4'</td></tr><tr><td>`?GL_FLOAT_MAT4x2'
%% </td><td>`?mat4x2'</td></tr><tr><td>`?GL_FLOAT_MAT4x3'</td><td>`?mat4x3'</td>
%% </tr><tr><td>`?GL_DOUBLE_MAT2'</td><td>`?dmat2'</td></tr><tr><td>`?GL_DOUBLE_MAT3'
%% </td><td>`?dmat3'</td></tr><tr><td>`?GL_DOUBLE_MAT4'</td><td>`?dmat4'</td></tr>
%% <tr><td>`?GL_DOUBLE_MAT2x3'</td><td>`?dmat2x3'</td></tr><tr><td>`?GL_DOUBLE_MAT2x4'
%% </td><td>`?dmat2x4'</td></tr><tr><td>`?GL_DOUBLE_MAT3x2'</td><td>`?dmat3x2'</td>
%% </tr><tr><td>`?GL_DOUBLE_MAT3x4'</td><td>`?dmat3x4'</td></tr><tr><td>`?GL_DOUBLE_MAT4x2'
%% </td><td>`?dmat4x2'</td></tr><tr><td>`?GL_DOUBLE_MAT4x3'</td><td>`?dmat4x3'</td>
%% </tr><tr><td>`?GL_SAMPLER_1D'</td><td>`?sampler1D'</td></tr><tr><td>`?GL_SAMPLER_2D'
%% </td><td>`?sampler2D'</td></tr><tr><td>`?GL_SAMPLER_3D'</td><td>`?sampler3D'
%% </td></tr><tr><td>`?GL_SAMPLER_CUBE'</td><td>`?samplerCube'</td></tr><tr><td>`?GL_SAMPLER_1D_SHADOW'
%% </td><td>`?sampler1DShadow'</td></tr><tr><td>`?GL_SAMPLER_2D_SHADOW'</td><td>`?sampler2DShadow'
%% </td></tr><tr><td>`?GL_SAMPLER_1D_ARRAY'</td><td>`?sampler1DArray'</td></tr><tr>
%% <td>`?GL_SAMPLER_2D_ARRAY'</td><td>`?sampler2DArray'</td></tr><tr><td>`?GL_SAMPLER_1D_ARRAY_SHADOW'
%% </td><td>`?sampler1DArrayShadow'</td></tr><tr><td>`?GL_SAMPLER_2D_ARRAY_SHADOW'</td>
%% <td>`?sampler2DArrayShadow'</td></tr><tr><td>`?GL_SAMPLER_2D_MULTISAMPLE'</td><td>
%% `?sampler2DMS'</td></tr><tr><td>`?GL_SAMPLER_2D_MULTISAMPLE_ARRAY'</td><td>`?sampler2DMSArray'
%% </td></tr><tr><td>`?GL_SAMPLER_CUBE_SHADOW'</td><td>`?samplerCubeShadow'</td></tr>
%% <tr><td>`?GL_SAMPLER_BUFFER'</td><td>`?samplerBuffer'</td></tr><tr><td>`?GL_SAMPLER_2D_RECT'
%% </td><td>`?sampler2DRect'</td></tr><tr><td>`?GL_SAMPLER_2D_RECT_SHADOW'</td><td>
%% `?sampler2DRectShadow'</td></tr><tr><td>`?GL_INT_SAMPLER_1D'</td><td>`?isampler1D'
%% </td></tr><tr><td>`?GL_INT_SAMPLER_2D'</td><td>`?isampler2D'</td></tr><tr><td>`?GL_INT_SAMPLER_3D'
%% </td><td>`?isampler3D'</td></tr><tr><td>`?GL_INT_SAMPLER_CUBE'</td><td>`?isamplerCube'
%% </td></tr><tr><td>`?GL_INT_SAMPLER_1D_ARRAY'</td><td>`?isampler1DArray'</td></tr>
%% <tr><td>`?GL_INT_SAMPLER_2D_ARRAY'</td><td>`?isampler2DArray'</td></tr><tr><td>`?GL_INT_SAMPLER_2D_MULTISAMPLE'
%% </td><td>`?isampler2DMS'</td></tr><tr><td>`?GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY'</td>
%% <td>`?isampler2DMSArray'</td></tr><tr><td>`?GL_INT_SAMPLER_BUFFER'</td><td>`?isamplerBuffer'
%% </td></tr><tr><td>`?GL_INT_SAMPLER_2D_RECT'</td><td>`?isampler2DRect'</td></tr><tr>
%% <td>`?GL_UNSIGNED_INT_SAMPLER_1D'</td><td>`?usampler1D'</td></tr><tr><td>`?GL_UNSIGNED_INT_SAMPLER_2D'
%% </td><td>`?usampler2D'</td></tr><tr><td>`?GL_UNSIGNED_INT_SAMPLER_3D'</td><td>`?usampler3D'
%% </td></tr><tr><td>`?GL_UNSIGNED_INT_SAMPLER_CUBE'</td><td>`?usamplerCube'</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_SAMPLER_1D_ARRAY'</td><td>`?usampler2DArray'</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_SAMPLER_2D_ARRAY'</td><td>`?usampler2DArray'</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE'</td><td>`?usampler2DMS'</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY'</td><td>`?usampler2DMSArray'
%% </td></tr><tr><td>`?GL_UNSIGNED_INT_SAMPLER_BUFFER'</td><td>`?usamplerBuffer'</td>
%% </tr><tr><td>`?GL_UNSIGNED_INT_SAMPLER_2D_RECT'</td><td>`?usampler2DRect'</td></tr>
%% <tr><td>`?GL_IMAGE_1D'</td><td>`?image1D'</td></tr><tr><td>`?GL_IMAGE_2D'</td>
%% <td>`?image2D'</td></tr><tr><td>`?GL_IMAGE_3D'</td><td>`?image3D'</td></tr>
%% <tr><td>`?GL_IMAGE_2D_RECT'</td><td>`?image2DRect'</td></tr><tr><td>`?GL_IMAGE_CUBE'
%% </td><td>`?imageCube'</td></tr><tr><td>`?GL_IMAGE_BUFFER'</td><td>`?imageBuffer'
%% </td></tr><tr><td>`?GL_IMAGE_1D_ARRAY'</td><td>`?image1DArray'</td></tr><tr><td>
%% `?GL_IMAGE_2D_ARRAY'</td><td>`?image2DArray'</td></tr><tr><td>`?GL_IMAGE_2D_MULTISAMPLE'
%% </td><td>`?image2DMS'</td></tr><tr><td>`?GL_IMAGE_2D_MULTISAMPLE_ARRAY'</td><td>
%% `?image2DMSArray'</td></tr><tr><td>`?GL_INT_IMAGE_1D'</td><td>`?iimage1D'</td>
%% </tr><tr><td>`?GL_INT_IMAGE_2D'</td><td>`?iimage2D'</td></tr><tr><td>`?GL_INT_IMAGE_3D'
%% </td><td>`?iimage3D'</td></tr><tr><td>`?GL_INT_IMAGE_2D_RECT'</td><td>`?iimage2DRect'
%% </td></tr><tr><td>`?GL_INT_IMAGE_CUBE'</td><td>`?iimageCube'</td></tr><tr><td>`?GL_INT_IMAGE_BUFFER'
%% </td><td>`?iimageBuffer'</td></tr><tr><td>`?GL_INT_IMAGE_1D_ARRAY'</td><td>`?iimage1DArray'
%% </td></tr><tr><td>`?GL_INT_IMAGE_2D_ARRAY'</td><td>`?iimage2DArray'</td></tr><tr>
%% <td>`?GL_INT_IMAGE_2D_MULTISAMPLE'</td><td>`?iimage2DMS'</td></tr><tr><td>`?GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY'
%% </td><td>`?iimage2DMSArray'</td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_1D'</td><td>
%% `?uimage1D'</td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_2D'</td><td>`?uimage2D'
%% </td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_3D'</td><td>`?uimage3D'</td></tr><tr><td>
%% `?GL_UNSIGNED_INT_IMAGE_2D_RECT'</td><td>`?uimage2DRect'</td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_CUBE'
%% </td><td>`?uimageCube'</td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_BUFFER'</td><td>
%% `?uimageBuffer'</td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_1D_ARRAY'</td><td>`?uimage1DArray'
%% </td></tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_2D_ARRAY'</td><td>`?uimage2DArray'</td>
%% </tr><tr><td>`?GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE'</td><td>`?uimage2DMS'</td></tr>
%% <tr><td>`?GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY'</td><td>`?uimage2DMSArray'</td>
%% </tr><tr><td>`?GL_UNSIGNED_INT_ATOMIC_COUNTER'</td><td>`?atomic_uint'</td></tr></tbody>
%% </table>
%%
%% If one or more elements of an array are active, the name of the array is returned in `Name'
%% , the type is returned in `Type' , and the `Size' parameter returns the highest
%% array element index used, plus one, as determined by the compiler and/or linker. Only
%% one active uniform variable will be reported for a uniform array.
%%
%% Uniform variables that are declared as structures or arrays of structures will not be
%% returned directly by this function. Instead, each of these uniform variables will be reduced
%% to its fundamental components containing the "." and "[]" operators such that each of
%% the names is valid as an argument to {@link gl:getUniformLocation/2} . Each of these reduced
%% uniform variables is counted as one active uniform variable and is assigned an index.
%% A valid name cannot be a structure, an array of structures, or a subcomponent of a vector
%% or matrix.
%%
%% The size of the uniform variable will be returned in `Size' . Uniform variables other
%% than arrays will have a size of 1. Structures and arrays of structures will be reduced
%% as described earlier, such that each of the names returned will be a data type in the
%% earlier list. If this reduction results in an array, the size returned will be as described
%% for uniform arrays; otherwise, the size returned will be 1.
%%
%% The list of active uniform variables may include both built-in uniform variables (which
%% begin with the prefix "gl_") as well as user-defined uniform variable names.
%%
%% This function will return as much information as it can about the specified active uniform
%% variable. If no information is available, `Length' will be 0, and `Name' will
%% be an empty string. This situation could occur if this function is called after a link
%% operation that failed. If an error occurs, the return values `Length' , `Size' , `Type'
%% , and `Name' will be unmodified.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniform.xml">external</a> documentation.
-spec getActiveUniform(Program, Index, BufSize) -> {Size :: integer(),Type :: enum(),Name :: string()} when Program :: integer(),Index :: integer(),BufSize :: integer().
getActiveUniform(Program,Index,BufSize) ->
call(5456, <<Program:?GLuint,Index:?GLuint,BufSize:?GLsizei>>).
%% @doc Returns the handles of the shader objects attached to a program object
%%
%% ``gl:getAttachedShaders'' returns the names of the shader objects attached to `Program'
%% . The names of shader objects that are attached to `Program' will be returned in `Shaders.'
%% The actual number of shader names written into `Shaders' is returned in `Count.'
%% If no shader objects are attached to `Program' , `Count' is set to 0. The maximum
%% number of shader names that may be returned in `Shaders' is specified by `MaxCount'
%% .
%%
%% If the number of names actually returned is not required (for instance, if it has just
%% been obtained by calling {@link gl:getProgramiv/2} ), a value of `?NULL' may be passed
%% for count. If no shader objects are attached to `Program' , a value of 0 will be returned
%% in `Count' . The actual number of attached shaders can be obtained by calling {@link gl:getProgramiv/2}
%% with the value `?GL_ATTACHED_SHADERS'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetAttachedShaders.xml">external</a> documentation.
-spec getAttachedShaders(Program, MaxCount) -> [integer()] when Program :: integer(),MaxCount :: integer().
getAttachedShaders(Program,MaxCount) ->
call(5457, <<Program:?GLuint,MaxCount:?GLsizei>>).
%% @doc Returns the location of an attribute variable
%%
%% ``gl:getAttribLocation'' queries the previously linked program object specified by `Program'
%% for the attribute variable specified by `Name' and returns the index of the generic
%% vertex attribute that is bound to that attribute variable. If `Name' is a matrix
%% attribute variable, the index of the first column of the matrix is returned. If the named
%% attribute variable is not an active attribute in the specified program object or if `Name'
%% starts with the reserved prefix "gl_", a value of -1 is returned.
%%
%% The association between an attribute variable name and a generic attribute index can be
%% specified at any time by calling {@link gl:bindAttribLocation/3} . Attribute bindings do
%% not go into effect until {@link gl:linkProgram/1} is called. After a program object has
%% been linked successfully, the index values for attribute variables remain fixed until
%% the next link command occurs. The attribute values can only be queried after a link if
%% the link was successful. ``gl:getAttribLocation'' returns the binding that actually
%% went into effect the last time {@link gl:linkProgram/1} was called for the specified program
%% object. Attribute bindings that have been specified since the last link operation are
%% not returned by ``gl:getAttribLocation''.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetAttribLocation.xml">external</a> documentation.
-spec getAttribLocation(Program, Name) -> integer() when Program :: integer(),Name :: string().
getAttribLocation(Program,Name) ->
call(5458, <<Program:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc Returns a parameter from a program object
%%
%% ``gl:getProgram'' returns in `Params' the value of a parameter for a specific program
%% object. The following parameters are defined:
%%
%% `?GL_DELETE_STATUS': `Params' returns `?GL_TRUE' if `Program' is currently
%% flagged for deletion, and `?GL_FALSE' otherwise.
%%
%% `?GL_LINK_STATUS': `Params' returns `?GL_TRUE' if the last link operation
%% on `Program' was successful, and `?GL_FALSE' otherwise.
%%
%% `?GL_VALIDATE_STATUS': `Params' returns `?GL_TRUE' or if the last validation
%% operation on `Program' was successful, and `?GL_FALSE' otherwise.
%%
%% `?GL_INFO_LOG_LENGTH': `Params' returns the number of characters in the information
%% log for `Program' including the null termination character (i.e., the size of the
%% character buffer required to store the information log). If `Program' has no information
%% log, a value of 0 is returned.
%%
%% `?GL_ATTACHED_SHADERS': `Params' returns the number of shader objects attached
%% to `Program' .
%%
%% `?GL_ACTIVE_ATOMIC_COUNTER_BUFFERS': `Params' returns the number of active attribute
%% atomic counter buffers used by `Program' .
%%
%% `?GL_ACTIVE_ATTRIBUTES': `Params' returns the number of active attribute variables
%% for `Program' .
%%
%% `?GL_ACTIVE_ATTRIBUTE_MAX_LENGTH': `Params' returns the length of the longest
%% active attribute name for `Program' , including the null termination character (i.e.,
%% the size of the character buffer required to store the longest attribute name). If no
%% active attributes exist, 0 is returned.
%%
%% `?GL_ACTIVE_UNIFORMS': `Params' returns the number of active uniform variables
%% for `Program' .
%%
%% `?GL_ACTIVE_UNIFORM_MAX_LENGTH': `Params' returns the length of the longest
%% active uniform variable name for `Program' , including the null termination character
%% (i.e., the size of the character buffer required to store the longest uniform variable
%% name). If no active uniform variables exist, 0 is returned.
%%
%% `?GL_PROGRAM_BINARY_LENGTH': `Params' returns the length of the program binary,
%% in bytes that will be returned by a call to {@link gl:getProgramBinary/2} . When a progam's
%% `?GL_LINK_STATUS' is `?GL_FALSE', its program binary length is zero.
%%
%% `?GL_TRANSFORM_FEEDBACK_BUFFER_MODE': `Params' returns a symbolic constant indicating
%% the buffer mode used when transform feedback is active. This may be `?GL_SEPARATE_ATTRIBS'
%% or `?GL_INTERLEAVED_ATTRIBS'.
%%
%% `?GL_TRANSFORM_FEEDBACK_VARYINGS': `Params' returns the number of varying variables
%% to capture in transform feedback mode for the program.
%%
%% `?GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH': `Params' returns the length of
%% the longest variable name to be used for transform feedback, including the null-terminator.
%%
%%
%% `?GL_GEOMETRY_VERTICES_OUT': `Params' returns the maximum number of vertices
%% that the geometry shader in `Program' will output.
%%
%% `?GL_GEOMETRY_INPUT_TYPE': `Params' returns a symbolic constant indicating the
%% primitive type accepted as input to the geometry shader contained in `Program' .
%%
%% `?GL_GEOMETRY_OUTPUT_TYPE': `Params' returns a symbolic constant indicating
%% the primitive type that will be output by the geometry shader contained in `Program' .
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgram.xml">external</a> documentation.
-spec getProgramiv(Program, Pname) -> integer() when Program :: integer(),Pname :: enum().
getProgramiv(Program,Pname) ->
call(5459, <<Program:?GLuint,Pname:?GLenum>>).
%% @doc Returns the information log for a program object
%%
%% ``gl:getProgramInfoLog'' returns the information log for the specified program object.
%% The information log for a program object is modified when the program object is linked
%% or validated. The string that is returned will be null terminated.
%%
%% ``gl:getProgramInfoLog'' returns in `InfoLog' as much of the information log as
%% it can, up to a maximum of `MaxLength' characters. The number of characters actually
%% returned, excluding the null termination character, is specified by `Length' . If
%% the length of the returned string is not required, a value of `?NULL' can be passed
%% in the `Length' argument. The size of the buffer required to store the returned
%% information log can be obtained by calling {@link gl:getProgramiv/2} with the value `?GL_INFO_LOG_LENGTH'
%% .
%%
%% The information log for a program object is either an empty string, or a string containing
%% information about the last link operation, or a string containing information about the
%% last validation operation. It may contain diagnostic messages, warning messages, and
%% other information. When a program object is created, its information log will be a string
%% of length 0.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramInfoLog.xml">external</a> documentation.
-spec getProgramInfoLog(Program, BufSize) -> string() when Program :: integer(),BufSize :: integer().
getProgramInfoLog(Program,BufSize) ->
call(5460, <<Program:?GLuint,BufSize:?GLsizei>>).
%% @doc Returns a parameter from a shader object
%%
%% ``gl:getShader'' returns in `Params' the value of a parameter for a specific
%% shader object. The following parameters are defined:
%%
%% `?GL_SHADER_TYPE': `Params' returns `?GL_VERTEX_SHADER' if `Shader'
%% is a vertex shader object, `?GL_GEOMETRY_SHADER' if `Shader' is a geometry
%% shader object, and `?GL_FRAGMENT_SHADER' if `Shader' is a fragment shader
%% object.
%%
%% `?GL_DELETE_STATUS': `Params' returns `?GL_TRUE' if `Shader' is
%% currently flagged for deletion, and `?GL_FALSE' otherwise.
%%
%% `?GL_COMPILE_STATUS': `Params' returns `?GL_TRUE' if the last compile
%% operation on `Shader' was successful, and `?GL_FALSE' otherwise.
%%
%% `?GL_INFO_LOG_LENGTH': `Params' returns the number of characters in the information
%% log for `Shader' including the null termination character (i.e., the size of
%% the character buffer required to store the information log). If `Shader' has
%% no information log, a value of 0 is returned.
%%
%% `?GL_SHADER_SOURCE_LENGTH': `Params' returns the length of the concatenation
%% of the source strings that make up the shader source for the `Shader' , including
%% the null termination character. (i.e., the size of the character buffer required to
%% store the shader source). If no source code exists, 0 is returned.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetShader.xml">external</a> documentation.
-spec getShaderiv(Shader, Pname) -> integer() when Shader :: integer(),Pname :: enum().
getShaderiv(Shader,Pname) ->
call(5461, <<Shader:?GLuint,Pname:?GLenum>>).
%% @doc Returns the information log for a shader object
%%
%% ``gl:getShaderInfoLog'' returns the information log for the specified shader object.
%% The information log for a shader object is modified when the shader is compiled. The
%% string that is returned will be null terminated.
%%
%% ``gl:getShaderInfoLog'' returns in `InfoLog' as much of the information log as
%% it can, up to a maximum of `MaxLength' characters. The number of characters actually
%% returned, excluding the null termination character, is specified by `Length' . If
%% the length of the returned string is not required, a value of `?NULL' can be passed
%% in the `Length' argument. The size of the buffer required to store the returned
%% information log can be obtained by calling {@link gl:getShaderiv/2} with the value `?GL_INFO_LOG_LENGTH'
%% .
%%
%% The information log for a shader object is a string that may contain diagnostic messages,
%% warning messages, and other information about the last compile operation. When a shader
%% object is created, its information log will be a string of length 0.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetShaderInfoLog.xml">external</a> documentation.
-spec getShaderInfoLog(Shader, BufSize) -> string() when Shader :: integer(),BufSize :: integer().
getShaderInfoLog(Shader,BufSize) ->
call(5462, <<Shader:?GLuint,BufSize:?GLsizei>>).
%% @doc Returns the source code string from a shader object
%%
%% ``gl:getShaderSource'' returns the concatenation of the source code strings from the
%% shader object specified by `Shader' . The source code strings for a shader object
%% are the result of a previous call to {@link gl:shaderSource/2} . The string returned by
%% the function will be null terminated.
%%
%% ``gl:getShaderSource'' returns in `Source' as much of the source code string as
%% it can, up to a maximum of `BufSize' characters. The number of characters actually
%% returned, excluding the null termination character, is specified by `Length' . If
%% the length of the returned string is not required, a value of `?NULL' can be passed
%% in the `Length' argument. The size of the buffer required to store the returned source
%% code string can be obtained by calling {@link gl:getShaderiv/2} with the value `?GL_SHADER_SOURCE_LENGTH'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetShaderSource.xml">external</a> documentation.
-spec getShaderSource(Shader, BufSize) -> string() when Shader :: integer(),BufSize :: integer().
getShaderSource(Shader,BufSize) ->
call(5463, <<Shader:?GLuint,BufSize:?GLsizei>>).
%% @doc Returns the location of a uniform variable
%%
%% ``gl:getUniformLocation '' returns an integer that represents the location of a specific
%% uniform variable within a program object. `Name' must be a null terminated string
%% that contains no white space. `Name' must be an active uniform variable name in `Program'
%% that is not a structure, an array of structures, or a subcomponent of a vector or a matrix.
%% This function returns -1 if `Name' does not correspond to an active uniform variable
%% in `Program' , if `Name' starts with the reserved prefix "gl_", or if `Name'
%% is associated with an atomic counter or a named uniform block.
%%
%% Uniform variables that are structures or arrays of structures may be queried by calling ``gl:getUniformLocation''
%% for each field within the structure. The array element operator "[]" and the structure
%% field operator "." may be used in `Name' in order to select elements within an array
%% or fields within a structure. The result of using these operators is not allowed to be
%% another structure, an array of structures, or a subcomponent of a vector or a matrix.
%% Except if the last part of `Name' indicates a uniform variable array, the location
%% of the first element of an array can be retrieved by using the name of the array, or by
%% using the name appended by "[0]".
%%
%% The actual locations assigned to uniform variables are not known until the program object
%% is linked successfully. After linking has occurred, the command ``gl:getUniformLocation''
%% can be used to obtain the location of a uniform variable. This location value can then
%% be passed to {@link gl:uniform1f/2} to set the value of the uniform variable or to {@link gl:getUniformfv/2}
%% in order to query the current value of the uniform variable. After a program object has
%% been linked successfully, the index values for uniform variables remain fixed until the
%% next link command occurs. Uniform variable locations and values can only be queried after
%% a link if the link was successful.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformLocation.xml">external</a> documentation.
-spec getUniformLocation(Program, Name) -> integer() when Program :: integer(),Name :: string().
getUniformLocation(Program,Name) ->
call(5464, <<Program:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc Returns the value of a uniform variable
%%
%% ``gl:getUniform'' returns in `Params' the value(s) of the specified uniform variable.
%% The type of the uniform variable specified by `Location' determines the number of
%% values returned. If the uniform variable is defined in the shader as a boolean, int, or
%% float, a single value will be returned. If it is defined as a vec2, ivec2, or bvec2, two
%% values will be returned. If it is defined as a vec3, ivec3, or bvec3, three values will
%% be returned, and so on. To query values stored in uniform variables declared as arrays,
%% call ``gl:getUniform'' for each element of the array. To query values stored in uniform
%% variables declared as structures, call ``gl:getUniform'' for each field in the structure.
%% The values for uniform variables declared as a matrix will be returned in column major
%% order.
%%
%% The locations assigned to uniform variables are not known until the program object is
%% linked. After linking has occurred, the command {@link gl:getUniformLocation/2} can be
%% used to obtain the location of a uniform variable. This location value can then be passed
%% to ``gl:getUniform'' in order to query the current value of the uniform variable. After
%% a program object has been linked successfully, the index values for uniform variables
%% remain fixed until the next link command occurs. The uniform variable values can only
%% be queried after a link if the link was successful.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniform.xml">external</a> documentation.
-spec getUniformfv(Program, Location) -> matrix() when Program :: integer(),Location :: integer().
getUniformfv(Program,Location) ->
call(5465, <<Program:?GLuint,Location:?GLint>>).
%% @doc
%% See {@link getUniformfv/2}
-spec getUniformiv(Program, Location) -> {integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer()} when Program :: integer(),Location :: integer().
getUniformiv(Program,Location) ->
call(5466, <<Program:?GLuint,Location:?GLint>>).
%% @doc Return a generic vertex attribute parameter
%%
%% ``gl:getVertexAttrib'' returns in `Params' the value of a generic vertex attribute
%% parameter. The generic vertex attribute to be queried is specified by `Index' , and
%% the parameter to be queried is specified by `Pname' .
%%
%% The accepted parameter names are as follows:
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING': `Params' returns a single value, the
%% name of the buffer object currently bound to the binding point corresponding to generic
%% vertex attribute array `Index' . If no buffer object is bound, 0 is returned. The
%% initial value is 0.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_ENABLED': `Params' returns a single value that is non-zero
%% (true) if the vertex attribute array for `Index' is enabled and 0 (false) if it is
%% disabled. The initial value is `?GL_FALSE'.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_SIZE': `Params' returns a single value, the size of
%% the vertex attribute array for `Index' . The size is the number of values for each
%% element of the vertex attribute array, and it will be 1, 2, 3, or 4. The initial value
%% is 4.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_STRIDE': `Params' returns a single value, the array
%% stride for (number of bytes between successive elements in) the vertex attribute array
%% for `Index' . A value of 0 indicates that the array elements are stored sequentially
%% in memory. The initial value is 0.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_TYPE': `Params' returns a single value, a symbolic
%% constant indicating the array type for the vertex attribute array for `Index' . Possible
%% values are `?GL_BYTE', `?GL_UNSIGNED_BYTE', `?GL_SHORT', `?GL_UNSIGNED_SHORT'
%% , `?GL_INT', `?GL_UNSIGNED_INT', `?GL_FLOAT', and `?GL_DOUBLE'. The
%% initial value is `?GL_FLOAT'.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_NORMALIZED': `Params' returns a single value that is
%% non-zero (true) if fixed-point data types for the vertex attribute array indicated by `Index'
%% are normalized when they are converted to floating point, and 0 (false) otherwise. The
%% initial value is `?GL_FALSE'.
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_INTEGER': `Params' returns a single value that is non-zero
%% (true) if fixed-point data types for the vertex attribute array indicated by `Index'
%% have integer data types, and 0 (false) otherwise. The initial value is 0 (`?GL_FALSE').
%%
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_DIVISOR': `Params' returns a single value that is the
%% frequency divisor used for instanced rendering. See {@link gl:vertexAttribDivisor/2} . The
%% initial value is 0.
%%
%% `?GL_CURRENT_VERTEX_ATTRIB': `Params' returns four values that represent the
%% current value for the generic vertex attribute specified by index. Generic vertex attribute
%% 0 is unique in that it has no current state, so an error will be generated if `Index'
%% is 0. The initial value for all other generic vertex attributes is (0,0,0,1).
%%
%% ``gl:getVertexAttribdv'' and ``gl:getVertexAttribfv'' return the current attribute
%% values as four single-precision floating-point values; ``gl:getVertexAttribiv'' reads
%% them as floating-point values and converts them to four integer values; ``gl:getVertexAttribIiv''
%% and ``gl:getVertexAttribIuiv'' read and return them as signed or unsigned integer values,
%% respectively; ``gl:getVertexAttribLdv'' reads and returns them as four double-precision
%% floating-point values.
%%
%% All of the parameters except `?GL_CURRENT_VERTEX_ATTRIB' represent state stored in
%% the currently bound vertex array object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetVertexAttrib.xml">external</a> documentation.
-spec getVertexAttribdv(Index, Pname) -> {float(),float(),float(),float()} when Index :: integer(),Pname :: enum().
getVertexAttribdv(Index,Pname) ->
call(5467, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link getVertexAttribdv/2}
-spec getVertexAttribfv(Index, Pname) -> {float(),float(),float(),float()} when Index :: integer(),Pname :: enum().
getVertexAttribfv(Index,Pname) ->
call(5468, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link getVertexAttribdv/2}
-spec getVertexAttribiv(Index, Pname) -> {integer(),integer(),integer(),integer()} when Index :: integer(),Pname :: enum().
getVertexAttribiv(Index,Pname) ->
call(5469, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc Determines if a name corresponds to a program object
%%
%% ``gl:isProgram'' returns `?GL_TRUE' if `Program' is the name of a program
%% object previously created with {@link gl:createProgram/0} and not yet deleted with {@link gl:deleteProgram/1}
%% . If `Program' is zero or a non-zero value that is not the name of a program object,
%% or if an error occurs, ``gl:isProgram'' returns `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsProgram.xml">external</a> documentation.
-spec isProgram(Program) -> 0|1 when Program :: integer().
isProgram(Program) ->
call(5470, <<Program:?GLuint>>).
%% @doc Determines if a name corresponds to a shader object
%%
%% ``gl:isShader'' returns `?GL_TRUE' if `Shader' is the name of a shader object
%% previously created with {@link gl:createShader/1} and not yet deleted with {@link gl:deleteShader/1}
%% . If `Shader' is zero or a non-zero value that is not the name of a shader object,
%% or if an error occurs, ``gl:isShader '' returns `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsShader.xml">external</a> documentation.
-spec isShader(Shader) -> 0|1 when Shader :: integer().
isShader(Shader) ->
call(5471, <<Shader:?GLuint>>).
%% @doc Links a program object
%%
%% ``gl:linkProgram'' links the program object specified by `Program' . If any shader
%% objects of type `?GL_VERTEX_SHADER' are attached to `Program' , they will be
%% used to create an executable that will run on the programmable vertex processor. If any
%% shader objects of type `?GL_GEOMETRY_SHADER' are attached to `Program' , they
%% will be used to create an executable that will run on the programmable geometry processor.
%% If any shader objects of type `?GL_FRAGMENT_SHADER' are attached to `Program' ,
%% they will be used to create an executable that will run on the programmable fragment processor.
%%
%%
%% The status of the link operation will be stored as part of the program object's state.
%% This value will be set to `?GL_TRUE' if the program object was linked without errors
%% and is ready for use, and `?GL_FALSE' otherwise. It can be queried by calling {@link gl:getProgramiv/2}
%% with arguments `Program' and `?GL_LINK_STATUS'.
%%
%% As a result of a successful link operation, all active user-defined uniform variables
%% belonging to `Program' will be initialized to 0, and each of the program object's
%% active uniform variables will be assigned a location that can be queried by calling {@link gl:getUniformLocation/2}
%% . Also, any active user-defined attribute variables that have not been bound to a generic
%% vertex attribute index will be bound to one at this time.
%%
%% Linking of a program object can fail for a number of reasons as specified in the `OpenGL Shading Language Specification'
%% . The following lists some of the conditions that will cause a link error.
%%
%% The number of active attribute variables supported by the implementation has been exceeded.
%%
%%
%% The storage limit for uniform variables has been exceeded.
%%
%% The number of active uniform variables supported by the implementation has been exceeded.
%%
%% The `main' function is missing for the vertex, geometry or fragment shader.
%%
%% A varying variable actually used in the fragment shader is not declared in the same way
%% (or is not declared at all) in the vertex shader, or geometry shader shader if present.
%%
%% A reference to a function or variable name is unresolved.
%%
%% A shared global is declared with two different types or two different initial values.
%%
%% One or more of the attached shader objects has not been successfully compiled.
%%
%% Binding a generic attribute matrix caused some rows of the matrix to fall outside the
%% allowed maximum of `?GL_MAX_VERTEX_ATTRIBS'.
%%
%% Not enough contiguous vertex attribute slots could be found to bind attribute matrices.
%%
%% The program object contains objects to form a fragment shader but does not contain objects
%% to form a vertex shader.
%%
%% The program object contains objects to form a geometry shader but does not contain objects
%% to form a vertex shader.
%%
%% The program object contains objects to form a geometry shader and the input primitive
%% type, output primitive type, or maximum output vertex count is not specified in any compiled
%% geometry shader object.
%%
%% The program object contains objects to form a geometry shader and the input primitive
%% type, output primitive type, or maximum output vertex count is specified differently in
%% multiple geometry shader objects.
%%
%% The number of active outputs in the fragment shader is greater than the value of `?GL_MAX_DRAW_BUFFERS'
%% .
%%
%% The program has an active output assigned to a location greater than or equal to the value
%% of `?GL_MAX_DUAL_SOURCE_DRAW_BUFFERS' and has an active output assigned an index
%% greater than or equal to one.
%%
%% More than one varying out variable is bound to the same number and index.
%%
%% The explicit binding assigments do not leave enough space for the linker to automatically
%% assign a location for a varying out array, which requires multiple contiguous locations.
%%
%% The `Count' specified by {@link gl:transformFeedbackVaryings/3} is non-zero, but the
%% program object has no vertex or geometry shader.
%%
%% Any variable name specified to {@link gl:transformFeedbackVaryings/3} in the `Varyings'
%% array is not declared as an output in the vertex shader (or the geometry shader, if active).
%%
%%
%% Any two entries in the `Varyings' array given {@link gl:transformFeedbackVaryings/3}
%% specify the same varying variable.
%%
%% The total number of components to capture in any transform feedback varying variable is
%% greater than the constant `?GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS' and the
%% buffer mode is `?SEPARATE_ATTRIBS'.
%%
%% When a program object has been successfully linked, the program object can be made part
%% of current state by calling {@link gl:useProgram/1} . Whether or not the link operation
%% was successful, the program object's information log will be overwritten. The information
%% log can be retrieved by calling {@link gl:getProgramInfoLog/2} .
%%
%% ``gl:linkProgram'' will also install the generated executables as part of the current
%% rendering state if the link operation was successful and the specified program object
%% is already currently in use as a result of a previous call to {@link gl:useProgram/1} .
%% If the program object currently in use is relinked unsuccessfully, its link status will
%% be set to `?GL_FALSE' , but the executables and associated state will remain part
%% of the current state until a subsequent call to ``gl:useProgram'' removes it from use.
%% After it is removed from use, it cannot be made part of current state until it has been
%% successfully relinked.
%%
%% If `Program' contains shader objects of type `?GL_VERTEX_SHADER', and optionally
%% of type `?GL_GEOMETRY_SHADER', but does not contain shader objects of type `?GL_FRAGMENT_SHADER'
%% , the vertex shader executable will be installed on the programmable vertex processor,
%% the geometry shader executable, if present, will be installed on the programmable geometry
%% processor, but no executable will be installed on the fragment processor. The results
%% of rasterizing primitives with such a program will be undefined.
%%
%% The program object's information log is updated and the program is generated at the time
%% of the link operation. After the link operation, applications are free to modify attached
%% shader objects, compile attached shader objects, detach shader objects, delete shader
%% objects, and attach additional shader objects. None of these operations affects the information
%% log or the program that is part of the program object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLinkProgram.xml">external</a> documentation.
-spec linkProgram(Program) -> 'ok' when Program :: integer().
linkProgram(Program) ->
cast(5472, <<Program:?GLuint>>).
%% @doc Replaces the source code in a shader object
%%
%% ``gl:shaderSource'' sets the source code in `Shader' to the source code in the
%% array of strings specified by `String' . Any source code previously stored in the
%% shader object is completely replaced. The number of strings in the array is specified
%% by `Count' . If `Length' is `?NULL', each string is assumed to be null
%% terminated. If `Length' is a value other than `?NULL', it points to an array
%% containing a string length for each of the corresponding elements of `String' .
%% Each element in the `Length' array may contain the length of the corresponding
%% string (the null character is not counted as part of the string length) or a value less
%% than 0 to indicate that the string is null terminated. The source code strings are not
%% scanned or parsed at this time; they are simply copied into the specified shader object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glShaderSource.xml">external</a> documentation.
-spec shaderSource(Shader, String) -> 'ok' when Shader :: integer(),String :: iolist().
shaderSource(Shader,String) ->
StringTemp = list_to_binary([[Str|[0]] || Str <- String ]),
cast(5473, <<Shader:?GLuint,(length(String)):?GLuint,(size(StringTemp)):?GLuint,(StringTemp)/binary,0:((8-((size(StringTemp)+0) rem 8)) rem 8)>>).
%% @doc Installs a program object as part of current rendering state
%%
%% ``gl:useProgram'' installs the program object specified by `Program' as part of
%% current rendering state. One or more executables are created in a program object by
%% successfully attaching shader objects to it with {@link gl:attachShader/2} , successfully
%% compiling the shader objects with {@link gl:compileShader/1} , and successfully linking
%% the program object with {@link gl:linkProgram/1} .
%%
%% A program object will contain an executable that will run on the vertex processor if
%% it contains one or more shader objects of type `?GL_VERTEX_SHADER' that have been
%% successfully compiled and linked. A program object will contain an executable that will
%% run on the geometry processor if it contains one or more shader objects of type `?GL_GEOMETRY_SHADER'
%% that have been successfully compiled and linked. Similarly, a program object will contain
%% an executable that will run on the fragment processor if it contains one or more shader
%% objects of type `?GL_FRAGMENT_SHADER' that have been successfully compiled and
%% linked.
%%
%% While a program object is in use, applications are free to modify attached shader objects,
%% compile attached shader objects, attach additional shader objects, and detach or delete
%% shader objects. None of these operations will affect the executables that are part of
%% the current state. However, relinking the program object that is currently in use will
%% install the program object as part of the current rendering state if the link operation
%% was successful (see {@link gl:linkProgram/1} ). If the program object currently in use
%% is relinked unsuccessfully, its link status will be set to `?GL_FALSE', but the
%% executables and associated state will remain part of the current state until a subsequent
%% call to ``gl:useProgram'' removes it from use. After it is removed from use, it cannot
%% be made part of current state until it has been successfully relinked.
%%
%% If `Program' is zero, then the current rendering state refers to an `invalid'
%% program object and the results of shader execution are undefined. However, this is not
%% an error.
%%
%% If `Program' does not contain shader objects of type `?GL_FRAGMENT_SHADER',
%% an executable will be installed on the vertex, and possibly geometry processors, but
%% the results of fragment shader execution will be undefined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUseProgram.xml">external</a> documentation.
-spec useProgram(Program) -> 'ok' when Program :: integer().
useProgram(Program) ->
cast(5474, <<Program:?GLuint>>).
%% @doc Specify the value of a uniform variable for the current program object
%%
%% ``gl:uniform'' modifies the value of a uniform variable or a uniform variable array.
%% The location of the uniform variable to be modified is specified by `Location' , which
%% should be a value returned by {@link gl:getUniformLocation/2} . ``gl:uniform'' operates
%% on the program object that was made part of current state by calling {@link gl:useProgram/1}
%% .
%%
%% The commands ``gl:uniform{1|2|3|4}{f|i|ui}'' are used to change the value of the uniform
%% variable specified by `Location' using the values passed as arguments. The number
%% specified in the command should match the number of components in the data type of the
%% specified uniform variable (e.g., `1' for float, int, unsigned int, bool; `2'
%% for vec2, ivec2, uvec2, bvec2, etc.). The suffix `f' indicates that floating-point
%% values are being passed; the suffix `i' indicates that integer values are being passed;
%% the suffix `ui' indicates that unsigned integer values are being passed, and this
%% type should also match the data type of the specified uniform variable. The `i' variants
%% of this function should be used to provide values for uniform variables defined as int, ivec2
%% , ivec3, ivec4, or arrays of these. The `ui' variants of this function should be
%% used to provide values for uniform variables defined as unsigned int, uvec2, uvec3, uvec4,
%% or arrays of these. The `f' variants should be used to provide values for uniform
%% variables of type float, vec2, vec3, vec4, or arrays of these. Either the `i', `ui'
%% or `f' variants may be used to provide values for uniform variables of type bool, bvec2
%% , bvec3, bvec4, or arrays of these. The uniform variable will be set to false if the input
%% value is 0 or 0.0f, and it will be set to true otherwise.
%%
%% All active uniform variables defined in a program object are initialized to 0 when the
%% program object is linked successfully. They retain the values assigned to them by a call
%% to ``gl:uniform '' until the next successful link operation occurs on the program object,
%% when they are once again initialized to 0.
%%
%% The commands ``gl:uniform{1|2|3|4}{f|i|ui}v'' can be used to modify a single uniform
%% variable or a uniform variable array. These commands pass a count and a pointer to the
%% values to be loaded into a uniform variable or a uniform variable array. A count of 1
%% should be used if modifying the value of a single uniform variable, and a count of 1 or
%% greater can be used to modify an entire array or part of an array. When loading `n'
%% elements starting at an arbitrary position `m' in a uniform variable array, elements
%% `m' + `n' - 1 in the array will be replaced with the new values. If `M' + `N'
%% - 1 is larger than the size of the uniform variable array, values for all array elements
%% beyond the end of the array will be ignored. The number specified in the name of the command
%% indicates the number of components for each element in `Value' , and it should match
%% the number of components in the data type of the specified uniform variable (e.g., `1'
%% for float, int, bool; `2' for vec2, ivec2, bvec2, etc.). The data type specified
%% in the name of the command must match the data type for the specified uniform variable
%% as described previously for ``gl:uniform{1|2|3|4}{f|i|ui}''.
%%
%% For uniform variable arrays, each element of the array is considered to be of the type
%% indicated in the name of the command (e.g., ``gl:uniform3f'' or ``gl:uniform3fv''
%% can be used to load a uniform variable array of type vec3). The number of elements of
%% the uniform variable array to be modified is specified by `Count'
%%
%% The commands ``gl:uniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used to modify
%% a matrix or an array of matrices. The numbers in the command name are interpreted as the
%% dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e., 4 values),
%% the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the
%% number of matrices to be passed. A count of 1 should be used if modifying the value of
%% a single matrix, and a count greater than 1 can be used to modify an array of matrices.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUniform.xml">external</a> documentation.
-spec uniform1f(Location, V0) -> 'ok' when Location :: integer(),V0 :: float().
uniform1f(Location,V0) ->
cast(5475, <<Location:?GLint,V0:?GLfloat>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2f(Location, V0, V1) -> 'ok' when Location :: integer(),V0 :: float(),V1 :: float().
uniform2f(Location,V0,V1) ->
cast(5476, <<Location:?GLint,V0:?GLfloat,V1:?GLfloat>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3f(Location, V0, V1, V2) -> 'ok' when Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float().
uniform3f(Location,V0,V1,V2) ->
cast(5477, <<Location:?GLint,V0:?GLfloat,V1:?GLfloat,V2:?GLfloat>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4f(Location, V0, V1, V2, V3) -> 'ok' when Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float(),V3 :: float().
uniform4f(Location,V0,V1,V2,V3) ->
cast(5478, <<Location:?GLint,V0:?GLfloat,V1:?GLfloat,V2:?GLfloat,V3:?GLfloat>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1i(Location, V0) -> 'ok' when Location :: integer(),V0 :: integer().
uniform1i(Location,V0) ->
cast(5479, <<Location:?GLint,V0:?GLint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2i(Location, V0, V1) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer().
uniform2i(Location,V0,V1) ->
cast(5480, <<Location:?GLint,V0:?GLint,V1:?GLint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3i(Location, V0, V1, V2) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer().
uniform3i(Location,V0,V1,V2) ->
cast(5481, <<Location:?GLint,V0:?GLint,V1:?GLint,V2:?GLint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4i(Location, V0, V1, V2, V3) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer(),V3 :: integer().
uniform4i(Location,V0,V1,V2,V3) ->
cast(5482, <<Location:?GLint,V0:?GLint,V1:?GLint,V2:?GLint,V3:?GLint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1fv(Location, Value) -> 'ok' when Location :: integer(),Value :: [float()].
uniform1fv(Location,Value) ->
cast(5483, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLfloat>> || C <- Value>>)/binary,0:(((length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2fv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float()}].
uniform2fv(Location,Value) ->
cast(5484, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3fv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float(),float()}].
uniform3fv(Location,Value) ->
cast(5485, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4fv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float(),float(),float()}].
uniform4fv(Location,Value) ->
cast(5486, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1iv(Location, Value) -> 'ok' when Location :: integer(),Value :: [integer()].
uniform1iv(Location,Value) ->
cast(5487, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLint>> || C <- Value>>)/binary,0:(((length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2iv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer()}].
uniform2iv(Location,Value) ->
cast(5488, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3iv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer(),integer()}].
uniform3iv(Location,Value) ->
cast(5489, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint,V3:?GLint>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4iv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer(),integer(),integer()}].
uniform4iv(Location,Value) ->
cast(5490, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float()}].
uniformMatrix2fv(Location,Transpose,Value) ->
cast(5491, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix3fv(Location,Transpose,Value) ->
cast(5492, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4fv(Location,Transpose,Value) ->
cast(5493, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat,V13:?GLfloat,V14:?GLfloat,V15:?GLfloat,V16:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16} <- Value>>)/binary>>).
%% @doc Validates a program object
%%
%% ``gl:validateProgram'' checks to see whether the executables contained in `Program'
%% can execute given the current OpenGL state. The information generated by the validation
%% process will be stored in `Program' 's information log. The validation information
%% may consist of an empty string, or it may be a string containing information about how
%% the current program object interacts with the rest of current OpenGL state. This provides
%% a way for OpenGL implementers to convey more information about why the current program
%% is inefficient, suboptimal, failing to execute, and so on.
%%
%% The status of the validation operation will be stored as part of the program object's
%% state. This value will be set to `?GL_TRUE' if the validation succeeded, and `?GL_FALSE'
%% otherwise. It can be queried by calling {@link gl:getProgramiv/2} with arguments `Program'
%% and `?GL_VALIDATE_STATUS'. If validation is successful, `Program' is guaranteed
%% to execute given the current state. Otherwise, `Program' is guaranteed to not execute.
%%
%%
%% This function is typically useful only during application development. The informational
%% string stored in the information log is completely implementation dependent; therefore,
%% an application should not expect different OpenGL implementations to produce identical
%% information strings.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glValidateProgram.xml">external</a> documentation.
-spec validateProgram(Program) -> 'ok' when Program :: integer().
validateProgram(Program) ->
cast(5494, <<Program:?GLuint>>).
%% @doc Specifies the value of a generic vertex attribute
%%
%% The ``gl:vertexAttrib'' family of entry points allows an application to pass generic
%% vertex attributes in numbered locations.
%%
%% Generic attributes are defined as four-component values that are organized into an array.
%% The first entry of this array is numbered 0, and the size of the array is specified by
%% the implementation-dependent constant `?GL_MAX_VERTEX_ATTRIBS'. Individual elements
%% of this array can be modified with a ``gl:vertexAttrib'' call that specifies the index
%% of the element to be modified and a value for that element.
%%
%% These commands can be used to specify one, two, three, or all four components of the generic
%% vertex attribute specified by `Index' . A `1' in the name of the command indicates
%% that only one value is passed, and it will be used to modify the first component of the
%% generic vertex attribute. The second and third components will be set to 0, and the fourth
%% component will be set to 1. Similarly, a `2' in the name of the command indicates
%% that values are provided for the first two components, the third component will be set
%% to 0, and the fourth component will be set to 1. A `3' in the name of the command
%% indicates that values are provided for the first three components and the fourth component
%% will be set to 1, whereas a `4' in the name indicates that values are provided for
%% all four components.
%%
%% The letters `s', `f', `i', `d', `ub', `us', and `ui'
%% indicate whether the arguments are of type short, float, int, double, unsigned byte, unsigned
%% short, or unsigned int. When `v' is appended to the name, the commands can take a
%% pointer to an array of such values.
%%
%% Additional capitalized letters can indicate further alterations to the default behavior
%% of the glVertexAttrib function:
%%
%% The commands containing `N' indicate that the arguments will be passed as fixed-point
%% values that are scaled to a normalized range according to the component conversion rules
%% defined by the OpenGL specification. Signed values are understood to represent fixed-point
%% values in the range [-1,1], and unsigned values are understood to represent fixed-point
%% values in the range [0,1].
%%
%% The commands containing `I' indicate that the arguments are extended to full signed
%% or unsigned integers.
%%
%% The commands containing `P' indicate that the arguments are stored as packed components
%% within a larger natural type.
%%
%% The commands containing `L' indicate that the arguments are full 64-bit quantities
%% and should be passed directly to shader inputs declared as 64-bit double precision types.
%%
%%
%% OpenGL Shading Language attribute variables are allowed to be of type mat2, mat3, or mat4.
%% Attributes of these types may be loaded using the ``gl:vertexAttrib'' entry points.
%% Matrices must be loaded into successive generic attribute slots in column major order,
%% with one column of the matrix in each generic attribute slot.
%%
%% A user-defined attribute variable declared in a vertex shader can be bound to a generic
%% attribute index by calling {@link gl:bindAttribLocation/3} . This allows an application
%% to use more descriptive variable names in a vertex shader. A subsequent change to the
%% specified generic vertex attribute will be immediately reflected as a change to the corresponding
%% attribute variable in the vertex shader.
%%
%% The binding between a generic vertex attribute index and a user-defined attribute variable
%% in a vertex shader is part of the state of a program object, but the current value of
%% the generic vertex attribute is not. The value of each generic vertex attribute is part
%% of current state, just like standard vertex attributes, and it is maintained even if a
%% different program object is used.
%%
%% An application may freely modify generic vertex attributes that are not bound to a named
%% vertex shader attribute variable. These values are simply maintained as part of current
%% state and will not be accessed by the vertex shader. If a generic vertex attribute bound
%% to an attribute variable in a vertex shader is not updated while the vertex shader is
%% executing, the vertex shader will repeatedly use the current value for the generic vertex
%% attribute.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttrib.xml">external</a> documentation.
-spec vertexAttrib1d(Index, X) -> 'ok' when Index :: integer(),X :: float().
vertexAttrib1d(Index,X) ->
cast(5495, <<Index:?GLuint,0:32,X:?GLdouble>>).
%% @equiv vertexAttrib1d(Index,X)
-spec vertexAttrib1dv(Index :: integer(),V) -> 'ok' when V :: {X :: float()}.
vertexAttrib1dv(Index,{X}) -> vertexAttrib1d(Index,X).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib1f(Index, X) -> 'ok' when Index :: integer(),X :: float().
vertexAttrib1f(Index,X) ->
cast(5496, <<Index:?GLuint,X:?GLfloat>>).
%% @equiv vertexAttrib1f(Index,X)
-spec vertexAttrib1fv(Index :: integer(),V) -> 'ok' when V :: {X :: float()}.
vertexAttrib1fv(Index,{X}) -> vertexAttrib1f(Index,X).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib1s(Index, X) -> 'ok' when Index :: integer(),X :: integer().
vertexAttrib1s(Index,X) ->
cast(5497, <<Index:?GLuint,X:?GLshort>>).
%% @equiv vertexAttrib1s(Index,X)
-spec vertexAttrib1sv(Index :: integer(),V) -> 'ok' when V :: {X :: integer()}.
vertexAttrib1sv(Index,{X}) -> vertexAttrib1s(Index,X).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib2d(Index, X, Y) -> 'ok' when Index :: integer(),X :: float(),Y :: float().
vertexAttrib2d(Index,X,Y) ->
cast(5498, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble>>).
%% @equiv vertexAttrib2d(Index,X,Y)
-spec vertexAttrib2dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float()}.
vertexAttrib2dv(Index,{X,Y}) -> vertexAttrib2d(Index,X,Y).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib2f(Index, X, Y) -> 'ok' when Index :: integer(),X :: float(),Y :: float().
vertexAttrib2f(Index,X,Y) ->
cast(5499, <<Index:?GLuint,X:?GLfloat,Y:?GLfloat>>).
%% @equiv vertexAttrib2f(Index,X,Y)
-spec vertexAttrib2fv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float()}.
vertexAttrib2fv(Index,{X,Y}) -> vertexAttrib2f(Index,X,Y).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib2s(Index, X, Y) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer().
vertexAttrib2s(Index,X,Y) ->
cast(5500, <<Index:?GLuint,X:?GLshort,Y:?GLshort>>).
%% @equiv vertexAttrib2s(Index,X,Y)
-spec vertexAttrib2sv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
vertexAttrib2sv(Index,{X,Y}) -> vertexAttrib2s(Index,X,Y).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib3d(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float().
vertexAttrib3d(Index,X,Y,Z) ->
cast(5501, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @equiv vertexAttrib3d(Index,X,Y,Z)
-spec vertexAttrib3dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
vertexAttrib3dv(Index,{X,Y,Z}) -> vertexAttrib3d(Index,X,Y,Z).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib3f(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float().
vertexAttrib3f(Index,X,Y,Z) ->
cast(5502, <<Index:?GLuint,X:?GLfloat,Y:?GLfloat,Z:?GLfloat>>).
%% @equiv vertexAttrib3f(Index,X,Y,Z)
-spec vertexAttrib3fv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
vertexAttrib3fv(Index,{X,Y,Z}) -> vertexAttrib3f(Index,X,Y,Z).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib3s(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer().
vertexAttrib3s(Index,X,Y,Z) ->
cast(5503, <<Index:?GLuint,X:?GLshort,Y:?GLshort,Z:?GLshort>>).
%% @equiv vertexAttrib3s(Index,X,Y,Z)
-spec vertexAttrib3sv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
vertexAttrib3sv(Index,{X,Y,Z}) -> vertexAttrib3s(Index,X,Y,Z).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Nbv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4Nbv(Index,{V1,V2,V3,V4}) ->
cast(5504, <<Index:?GLuint,V1:?GLbyte,V2:?GLbyte,V3:?GLbyte,V4:?GLbyte>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Niv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4Niv(Index,{V1,V2,V3,V4}) ->
cast(5505, <<Index:?GLuint,V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Nsv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4Nsv(Index,{V1,V2,V3,V4}) ->
cast(5506, <<Index:?GLuint,V1:?GLshort,V2:?GLshort,V3:?GLshort,V4:?GLshort>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Nub(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertexAttrib4Nub(Index,X,Y,Z,W) ->
cast(5507, <<Index:?GLuint,X:?GLubyte,Y:?GLubyte,Z:?GLubyte,W:?GLubyte>>).
%% @equiv vertexAttrib4Nub(Index,X,Y,Z,W)
-spec vertexAttrib4Nubv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertexAttrib4Nubv(Index,{X,Y,Z,W}) -> vertexAttrib4Nub(Index,X,Y,Z,W).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Nuiv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4Nuiv(Index,{V1,V2,V3,V4}) ->
cast(5508, <<Index:?GLuint,V1:?GLuint,V2:?GLuint,V3:?GLuint,V4:?GLuint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4Nusv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4Nusv(Index,{V1,V2,V3,V4}) ->
cast(5509, <<Index:?GLuint,V1:?GLushort,V2:?GLushort,V3:?GLushort,V4:?GLushort>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4bv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4bv(Index,{V1,V2,V3,V4}) ->
cast(5510, <<Index:?GLuint,V1:?GLbyte,V2:?GLbyte,V3:?GLbyte,V4:?GLbyte>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4d(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
vertexAttrib4d(Index,X,Y,Z,W) ->
cast(5511, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @equiv vertexAttrib4d(Index,X,Y,Z,W)
-spec vertexAttrib4dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
vertexAttrib4dv(Index,{X,Y,Z,W}) -> vertexAttrib4d(Index,X,Y,Z,W).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4f(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
vertexAttrib4f(Index,X,Y,Z,W) ->
cast(5512, <<Index:?GLuint,X:?GLfloat,Y:?GLfloat,Z:?GLfloat,W:?GLfloat>>).
%% @equiv vertexAttrib4f(Index,X,Y,Z,W)
-spec vertexAttrib4fv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
vertexAttrib4fv(Index,{X,Y,Z,W}) -> vertexAttrib4f(Index,X,Y,Z,W).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4iv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4iv(Index,{V1,V2,V3,V4}) ->
cast(5513, <<Index:?GLuint,V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4s(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertexAttrib4s(Index,X,Y,Z,W) ->
cast(5514, <<Index:?GLuint,X:?GLshort,Y:?GLshort,Z:?GLshort,W:?GLshort>>).
%% @equiv vertexAttrib4s(Index,X,Y,Z,W)
-spec vertexAttrib4sv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertexAttrib4sv(Index,{X,Y,Z,W}) -> vertexAttrib4s(Index,X,Y,Z,W).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4ubv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4ubv(Index,{V1,V2,V3,V4}) ->
cast(5515, <<Index:?GLuint,V1:?GLubyte,V2:?GLubyte,V3:?GLubyte,V4:?GLubyte>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4uiv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4uiv(Index,{V1,V2,V3,V4}) ->
cast(5516, <<Index:?GLuint,V1:?GLuint,V2:?GLuint,V3:?GLuint,V4:?GLuint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttrib4usv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttrib4usv(Index,{V1,V2,V3,V4}) ->
cast(5517, <<Index:?GLuint,V1:?GLushort,V2:?GLushort,V3:?GLushort,V4:?GLushort>>).
%% @doc Define an array of generic vertex attribute data
%%
%% ``gl:vertexAttribPointer'', ``gl:vertexAttribIPointer'' and ``gl:vertexAttribLPointer''
%% specify the location and data format of the array of generic vertex attributes at index `Index'
%% to use when rendering. `Size' specifies the number of components per attribute and
%% must be 1, 2, 3, 4, or `?GL_BGRA'. `Type' specifies the data type of each component,
%% and `Stride' specifies the byte stride from one attribute to the next, allowing vertices
%% and attributes to be packed into a single array or stored in separate arrays.
%%
%% For ``gl:vertexAttribPointer'', if `Normalized' is set to `?GL_TRUE', it
%% indicates that values stored in an integer format are to be mapped to the range [-1,1]
%% (for signed values) or [0,1] (for unsigned values) when they are accessed and converted
%% to floating point. Otherwise, values will be converted to floats directly without normalization.
%%
%%
%% For ``gl:vertexAttribIPointer'', only the integer types `?GL_BYTE', `?GL_UNSIGNED_BYTE'
%% , `?GL_SHORT', `?GL_UNSIGNED_SHORT', `?GL_INT', `?GL_UNSIGNED_INT'
%% are accepted. Values are always left as integer values.
%%
%% ``gl:vertexAttribLPointer'' specifies state for a generic vertex attribute array associated
%% with a shader attribute variable declared with 64-bit double precision components. `Type'
%% must be `?GL_DOUBLE'. `Index' , `Size' , and `Stride' behave as described
%% for ``gl:vertexAttribPointer'' and ``gl:vertexAttribIPointer''.
%%
%% If `Pointer' is not NULL, a non-zero named buffer object must be bound to the `?GL_ARRAY_BUFFER'
%% target (see {@link gl:bindBuffer/2} ), otherwise an error is generated. `Pointer'
%% is treated as a byte offset into the buffer object's data store. The buffer object binding
%% (`?GL_ARRAY_BUFFER_BINDING') is saved as generic vertex attribute array state (`?GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING'
%% ) for index `Index' .
%%
%% When a generic vertex attribute array is specified, `Size' , `Type' , `Normalized'
%% , `Stride' , and `Pointer' are saved as vertex array state, in addition to the
%% current vertex array buffer object binding.
%%
%% To enable and disable a generic vertex attribute array, call {@link gl:disableVertexAttribArray/1}
%% and {@link gl:disableVertexAttribArray/1} with `Index' . If enabled, the generic vertex
%% attribute array is used when {@link gl:drawArrays/3} , {@link gl:multiDrawArrays/3} , {@link gl:drawElements/4}
%% , see `glMultiDrawElements', or {@link gl:drawRangeElements/6} is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribPointer.xml">external</a> documentation.
-spec vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer) -> 'ok' when Index :: integer(),Size :: integer(),Type :: enum(),Normalized :: 0|1,Stride :: integer(),Pointer :: offset()|mem().
vertexAttribPointer(Index,Size,Type,Normalized,Stride,Pointer) when is_integer(Pointer) ->
cast(5518, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Normalized:?GLboolean,0:24,Stride:?GLsizei,Pointer:?GLuint>>);
vertexAttribPointer(Index,Size,Type,Normalized,Stride,Pointer) ->
send_bin(Pointer),
cast(5519, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Normalized:?GLboolean,0:24,Stride:?GLsizei>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2x3fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
uniformMatrix2x3fv(Location,Transpose,Value) ->
cast(5520, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3x2fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
uniformMatrix3x2fv(Location,Transpose,Value) ->
cast(5521, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2x4fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix2x4fv(Location,Transpose,Value) ->
cast(5522, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4x2fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4x2fv(Location,Transpose,Value) ->
cast(5523, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3x4fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix3x4fv(Location,Transpose,Value) ->
cast(5524, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4x3fv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4x3fv(Location,Transpose,Value) ->
cast(5525, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc glColorMaski
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glColorMaski.xml">external</a> documentation.
-spec colorMaski(Index, R, G, B, A) -> 'ok' when Index :: integer(),R :: 0|1,G :: 0|1,B :: 0|1,A :: 0|1.
colorMaski(Index,R,G,B,A) ->
cast(5526, <<Index:?GLuint,R:?GLboolean,G:?GLboolean,B:?GLboolean,A:?GLboolean>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getBooleani_v(Target, Index) -> [0|1] when Target :: enum(),Index :: integer().
getBooleani_v(Target,Index) ->
call(5527, <<Target:?GLenum,Index:?GLuint>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getIntegeri_v(Target, Index) -> [integer()] when Target :: enum(),Index :: integer().
getIntegeri_v(Target,Index) ->
call(5528, <<Target:?GLenum,Index:?GLuint>>).
%% @doc
%% See {@link enable/1}
-spec enablei(Target, Index) -> 'ok' when Target :: enum(),Index :: integer().
enablei(Target,Index) ->
cast(5529, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glEnablei
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEnablei.xml">external</a> documentation.
-spec disablei(Target, Index) -> 'ok' when Target :: enum(),Index :: integer().
disablei(Target,Index) ->
cast(5530, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glIsEnabledi
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsEnabledi.xml">external</a> documentation.
-spec isEnabledi(Target, Index) -> 0|1 when Target :: enum(),Index :: integer().
isEnabledi(Target,Index) ->
call(5531, <<Target:?GLenum,Index:?GLuint>>).
%% @doc Start transform feedback operation
%%
%% Transform feedback mode captures the values of varying variables written by the vertex
%% shader (or, if active, the geometry shader). Transform feedback is said to be active after
%% a call to ``gl:beginTransformFeedback'' until a subsequent call to {@link gl:beginTransformFeedback/1}
%% . Transform feedback commands must be paired.
%%
%% If no geometry shader is present, while transform feedback is active the `Mode'
%% parameter to {@link gl:drawArrays/3} must match those specified in the following table: <table>
%% <tbody><tr><td>` Transform Feedback ' `PrimitiveMode' </td><td>` Allowed Render Primitive '
%% `Modes' </td></tr></tbody><tbody><tr><td>`?GL_POINTS'</td><td>`?GL_POINTS'</td>
%% </tr><tr><td>`?GL_LINES'</td><td>`?GL_LINES', `?GL_LINE_LOOP', `?GL_LINE_STRIP'
%% , `?GL_LINES_ADJACENCY', `?GL_LINE_STRIP_ADJACENCY'</td></tr><tr><td>`?GL_TRIANGLES'
%% </td><td>`?GL_TRIANGLES', `?GL_TRIANGLE_STRIP', `?GL_TRIANGLE_FAN', `?GL_TRIANGLES_ADJACENCY'
%% , `?GL_TRIANGLE_STRIP_ADJACENCY'</td></tr></tbody></table>
%%
%% If a geometry shader is present, the output primitive type from the geometry shader must
%% match those provided in the following table: <table><tbody><tr><td>` Transform Feedback '
%% `PrimitiveMode' </td><td>` Allowed Geometry Shader Output Primitive Type '</td></tr>
%% </tbody><tbody><tr><td>`?GL_POINTS'</td><td>`?points'</td></tr><tr><td>`?GL_LINES'
%% </td><td>`?line_strip'</td></tr><tr><td>`?GL_TRIANGLES'</td><td>`?triangle_strip'
%% </td></tr></tbody></table>
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginTransformFeedback.xml">external</a> documentation.
-spec beginTransformFeedback(PrimitiveMode) -> 'ok' when PrimitiveMode :: enum().
beginTransformFeedback(PrimitiveMode) ->
cast(5532, <<PrimitiveMode:?GLenum>>).
%% @doc
%% See {@link beginTransformFeedback/1}
-spec endTransformFeedback() -> 'ok'.
endTransformFeedback() ->
cast(5533, <<>>).
%% @doc Bind a range within a buffer object to an indexed buffer target
%%
%% ``gl:bindBufferRange'' binds a range the buffer object `Buffer' represented by `Offset'
%% and `Size' to the binding point at index `Index' of the array of targets specified
%% by `Target' . Each `Target' represents an indexed array of buffer binding points,
%% as well as a single general binding point that can be used by other buffer manipulation
%% functions such as {@link gl:bindBuffer/2} or see `glMapBuffer'. In addition to binding
%% a range of `Buffer' to the indexed buffer binding target, ``gl:bindBufferBase''
%% also binds the range to the generic buffer binding point specified by `Target' .
%%
%% `Offset' specifies the offset in basic machine units into the buffer object `Buffer'
%% and `Size' specifies the amount of data that can be read from the buffer object
%% while used as an indexed target.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindBufferRange.xml">external</a> documentation.
-spec bindBufferRange(Target, Index, Buffer, Offset, Size) -> 'ok' when Target :: enum(),Index :: integer(),Buffer :: integer(),Offset :: integer(),Size :: integer().
bindBufferRange(Target,Index,Buffer,Offset,Size) ->
cast(5534, <<Target:?GLenum,Index:?GLuint,Buffer:?GLuint,0:32,Offset:?GLintptr,Size:?GLsizeiptr>>).
%% @doc Bind a buffer object to an indexed buffer target
%%
%% ``gl:bindBufferBase'' binds the buffer object `Buffer' to the binding point at
%% index `Index' of the array of targets specified by `Target' . Each `Target'
%% represents an indexed array of buffer binding points, as well as a single general binding
%% point that can be used by other buffer manipulation functions such as {@link gl:bindBuffer/2}
%% or see `glMapBuffer'. In addition to binding `Buffer' to the indexed buffer
%% binding target, ``gl:bindBufferBase'' also binds `Buffer' to the generic buffer
%% binding point specified by `Target' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindBufferBase.xml">external</a> documentation.
-spec bindBufferBase(Target, Index, Buffer) -> 'ok' when Target :: enum(),Index :: integer(),Buffer :: integer().
bindBufferBase(Target,Index,Buffer) ->
cast(5535, <<Target:?GLenum,Index:?GLuint,Buffer:?GLuint>>).
%% @doc Specify values to record in transform feedback buffers
%%
%% The names of the vertex or geometry shader outputs to be recorded in transform feedback
%% mode are specified using ``gl:transformFeedbackVaryings''. When a geometry shader is
%% active, transform feedback records the values of selected geometry shader output variables
%% from the emitted vertices. Otherwise, the values of the selected vertex shader outputs
%% are recorded.
%%
%% The state set by ``gl:tranformFeedbackVaryings'' is stored and takes effect next time {@link gl:linkProgram/1}
%% is called on `Program' . When {@link gl:linkProgram/1} is called, `Program' is
%% linked so that the values of the specified varying variables for the vertices of each
%% primitive generated by the GL are written to a single buffer object if `BufferMode'
%% is `?GL_INTERLEAVED_ATTRIBS' or multiple buffer objects if `BufferMode' is `?GL_SEPARATE_ATTRIBS'
%% .
%%
%% In addition to the errors generated by ``gl:transformFeedbackVaryings'', the program `Program'
%% will fail to link if:
%%
%% The count specified by ``gl:transformFeedbackVaryings'' is non-zero, but the program
%% object has no vertex or geometry shader.
%%
%% Any variable name specified in the `Varyings' array is not declared as an output
%% in the vertex shader (or the geometry shader, if active).
%%
%% Any two entries in the `Varyings' array specify the same varying variable.
%%
%% The total number of components to capture in any varying variable in `Varyings'
%% is greater than the constant `?GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS' and
%% the buffer mode is `?GL_SEPARATE_ATTRIBS'.
%%
%% The total number of components to capture is greater than the constant `?GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS'
%% and the buffer mode is `?GL_INTERLEAVED_ATTRIBS'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTransformFeedbackVaryings.xml">external</a> documentation.
-spec transformFeedbackVaryings(Program, Varyings, BufferMode) -> 'ok' when Program :: integer(),Varyings :: iolist(),BufferMode :: enum().
transformFeedbackVaryings(Program,Varyings,BufferMode) ->
VaryingsTemp = list_to_binary([[Str|[0]] || Str <- Varyings ]),
cast(5536, <<Program:?GLuint,(length(Varyings)):?GLuint,(size(VaryingsTemp)):?GLuint,(VaryingsTemp)/binary,0:((8-((size(VaryingsTemp)+0) rem 8)) rem 8),BufferMode:?GLenum>>).
%% @doc Retrieve information about varying variables selected for transform feedback
%%
%% Information about the set of varying variables in a linked program that will be captured
%% during transform feedback may be retrieved by calling ``gl:getTransformFeedbackVarying''.
%% ``gl:getTransformFeedbackVarying'' provides information about the varying variable selected
%% by `Index' . An `Index' of 0 selects the first varying variable specified in
%% the `Varyings' array passed to {@link gl:transformFeedbackVaryings/3} , and an `Index'
%% of `?GL_TRANSFORM_FEEDBACK_VARYINGS-1' selects the last such variable.
%%
%% The name of the selected varying is returned as a null-terminated string in `Name' .
%% The actual number of characters written into `Name' , excluding the null terminator,
%% is returned in `Length' . If `Length' is NULL, no length is returned. The maximum
%% number of characters that may be written into `Name' , including the null terminator,
%% is specified by `BufSize' .
%%
%% The length of the longest varying name in program is given by `?GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH'
%% , which can be queried with {@link gl:getProgramiv/2} .
%%
%% For the selected varying variable, its type is returned into `Type' . The size of
%% the varying is returned into `Size' . The value in `Size' is in units of the
%% type returned in `Type' . The type returned can be any of the scalar, vector, or matrix
%% attribute types returned by {@link gl:getActiveAttrib/3} . If an error occurred, the return
%% parameters `Length' , `Size' , `Type' and `Name' will be unmodified.
%% This command will return as much information about the varying variables as possible.
%% If no information is available, `Length' will be set to zero and `Name' will
%% be an empty string. This situation could arise if ``gl:getTransformFeedbackVarying''
%% is called after a failed link.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTransformFeedbackVarying.xml">external</a> documentation.
-spec getTransformFeedbackVarying(Program, Index, BufSize) -> {Size :: integer(),Type :: enum(),Name :: string()} when Program :: integer(),Index :: integer(),BufSize :: integer().
getTransformFeedbackVarying(Program,Index,BufSize) ->
call(5537, <<Program:?GLuint,Index:?GLuint,BufSize:?GLsizei>>).
%% @doc specify whether data read via
%%
%% {@link gl:readPixels/7} should be clamped
%%
%% ``gl:clampColor'' controls color clamping that is performed during {@link gl:readPixels/7}
%% . `Target' must be `?GL_CLAMP_READ_COLOR'. If `Clamp' is `?GL_TRUE',
%% read color clamping is enabled; if `Clamp' is `?GL_FALSE', read color clamping
%% is disabled. If `Clamp' is `?GL_FIXED_ONLY', read color clamping is enabled
%% only if the selected read buffer has fixed point components and disabled otherwise.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClampColor.xml">external</a> documentation.
-spec clampColor(Target, Clamp) -> 'ok' when Target :: enum(),Clamp :: enum().
clampColor(Target,Clamp) ->
cast(5538, <<Target:?GLenum,Clamp:?GLenum>>).
%% @doc Start conditional rendering
%%
%% Conditional rendering is started using ``gl:beginConditionalRender'' and ended using ``gl:endConditionalRender''
%% . During conditional rendering, all vertex array commands, as well as {@link gl:clear/1}
%% and {@link gl:clearBufferiv/3} have no effect if the (`?GL_SAMPLES_PASSED') result of
%% the query object `Id' is zero, or if the (`?GL_ANY_SAMPLES_PASSED') result is `?GL_FALSE'
%% . The results of commands setting the current vertex state, such as {@link gl:vertexAttrib1d/2}
%% are undefined. If the (`?GL_SAMPLES_PASSED') result is non-zero or if the (`?GL_ANY_SAMPLES_PASSED'
%% ) result is `?GL_TRUE', such commands are not discarded. The `Id' parameter to ``gl:beginConditionalRender''
%% must be the name of a query object previously returned from a call to {@link gl:genQueries/1}
%% . `Mode' specifies how the results of the query object are to be interpreted. If `Mode'
%% is `?GL_QUERY_WAIT', the GL waits for the results of the query to be available and
%% then uses the results to determine if subsequent rendering commands are discarded. If `Mode'
%% is `?GL_QUERY_NO_WAIT', the GL may choose to unconditionally execute the subsequent
%% rendering commands without waiting for the query to complete.
%%
%% If `Mode' is `?GL_QUERY_BY_REGION_WAIT', the GL will also wait for occlusion
%% query results and discard rendering commands if the result of the occlusion query is zero.
%% If the query result is non-zero, subsequent rendering commands are executed, but the GL
%% may discard the results of the commands for any region of the framebuffer that did not
%% contribute to the sample count in the specified occlusion query. Any such discarding is
%% done in an implementation-dependent manner, but the rendering command results may not
%% be discarded for any samples that contributed to the occlusion query sample count. If `Mode'
%% is `?GL_QUERY_BY_REGION_NO_WAIT', the GL operates as in `?GL_QUERY_BY_REGION_WAIT'
%% , but may choose to unconditionally execute the subsequent rendering commands without
%% waiting for the query to complete.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginConditionalRender.xml">external</a> documentation.
-spec beginConditionalRender(Id, Mode) -> 'ok' when Id :: integer(),Mode :: enum().
beginConditionalRender(Id,Mode) ->
cast(5539, <<Id:?GLuint,Mode:?GLenum>>).
%% @doc
%% See {@link beginConditionalRender/2}
-spec endConditionalRender() -> 'ok'.
endConditionalRender() ->
cast(5540, <<>>).
%% @doc glVertexAttribIPointer
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribIPointer.xml">external</a> documentation.
-spec vertexAttribIPointer(Index, Size, Type, Stride, Pointer) -> 'ok' when Index :: integer(),Size :: integer(),Type :: enum(),Stride :: integer(),Pointer :: offset()|mem().
vertexAttribIPointer(Index,Size,Type,Stride,Pointer) when is_integer(Pointer) ->
cast(5541, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Stride:?GLsizei,Pointer:?GLuint>>);
vertexAttribIPointer(Index,Size,Type,Stride,Pointer) ->
send_bin(Pointer),
cast(5542, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc
%% See {@link getVertexAttribdv/2}
-spec getVertexAttribIiv(Index, Pname) -> {integer(),integer(),integer(),integer()} when Index :: integer(),Pname :: enum().
getVertexAttribIiv(Index,Pname) ->
call(5543, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc glGetVertexAttribI
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetVertexAttribI.xml">external</a> documentation.
-spec getVertexAttribIuiv(Index, Pname) -> {integer(),integer(),integer(),integer()} when Index :: integer(),Pname :: enum().
getVertexAttribIuiv(Index,Pname) ->
call(5544, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI1i(Index, X) -> 'ok' when Index :: integer(),X :: integer().
vertexAttribI1i(Index,X) ->
cast(5545, <<Index:?GLuint,X:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI2i(Index, X, Y) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer().
vertexAttribI2i(Index,X,Y) ->
cast(5546, <<Index:?GLuint,X:?GLint,Y:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI3i(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer().
vertexAttribI3i(Index,X,Y,Z) ->
cast(5547, <<Index:?GLuint,X:?GLint,Y:?GLint,Z:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4i(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertexAttribI4i(Index,X,Y,Z,W) ->
cast(5548, <<Index:?GLuint,X:?GLint,Y:?GLint,Z:?GLint,W:?GLint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI1ui(Index, X) -> 'ok' when Index :: integer(),X :: integer().
vertexAttribI1ui(Index,X) ->
cast(5549, <<Index:?GLuint,X:?GLuint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI2ui(Index, X, Y) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer().
vertexAttribI2ui(Index,X,Y) ->
cast(5550, <<Index:?GLuint,X:?GLuint,Y:?GLuint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI3ui(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer().
vertexAttribI3ui(Index,X,Y,Z) ->
cast(5551, <<Index:?GLuint,X:?GLuint,Y:?GLuint,Z:?GLuint>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4ui(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: integer(),Y :: integer(),Z :: integer(),W :: integer().
vertexAttribI4ui(Index,X,Y,Z,W) ->
cast(5552, <<Index:?GLuint,X:?GLuint,Y:?GLuint,Z:?GLuint,W:?GLuint>>).
%% @equiv vertexAttribI1i(Index,X)
-spec vertexAttribI1iv(Index :: integer(),V) -> 'ok' when V :: {X :: integer()}.
vertexAttribI1iv(Index,{X}) -> vertexAttribI1i(Index,X).
%% @equiv vertexAttribI2i(Index,X,Y)
-spec vertexAttribI2iv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
vertexAttribI2iv(Index,{X,Y}) -> vertexAttribI2i(Index,X,Y).
%% @equiv vertexAttribI3i(Index,X,Y,Z)
-spec vertexAttribI3iv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
vertexAttribI3iv(Index,{X,Y,Z}) -> vertexAttribI3i(Index,X,Y,Z).
%% @equiv vertexAttribI4i(Index,X,Y,Z,W)
-spec vertexAttribI4iv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertexAttribI4iv(Index,{X,Y,Z,W}) -> vertexAttribI4i(Index,X,Y,Z,W).
%% @equiv vertexAttribI1ui(Index,X)
-spec vertexAttribI1uiv(Index :: integer(),V) -> 'ok' when V :: {X :: integer()}.
vertexAttribI1uiv(Index,{X}) -> vertexAttribI1ui(Index,X).
%% @equiv vertexAttribI2ui(Index,X,Y)
-spec vertexAttribI2uiv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer()}.
vertexAttribI2uiv(Index,{X,Y}) -> vertexAttribI2ui(Index,X,Y).
%% @equiv vertexAttribI3ui(Index,X,Y,Z)
-spec vertexAttribI3uiv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer()}.
vertexAttribI3uiv(Index,{X,Y,Z}) -> vertexAttribI3ui(Index,X,Y,Z).
%% @equiv vertexAttribI4ui(Index,X,Y,Z,W)
-spec vertexAttribI4uiv(Index :: integer(),V) -> 'ok' when V :: {X :: integer(),Y :: integer(),Z :: integer(),W :: integer()}.
vertexAttribI4uiv(Index,{X,Y,Z,W}) -> vertexAttribI4ui(Index,X,Y,Z,W).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4bv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttribI4bv(Index,{V1,V2,V3,V4}) ->
cast(5553, <<Index:?GLuint,V1:?GLbyte,V2:?GLbyte,V3:?GLbyte,V4:?GLbyte>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4sv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttribI4sv(Index,{V1,V2,V3,V4}) ->
cast(5554, <<Index:?GLuint,V1:?GLshort,V2:?GLshort,V3:?GLshort,V4:?GLshort>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4ubv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttribI4ubv(Index,{V1,V2,V3,V4}) ->
cast(5555, <<Index:?GLuint,V1:?GLubyte,V2:?GLubyte,V3:?GLubyte,V4:?GLubyte>>).
%% @doc
%% See {@link vertexAttrib1d/2}
-spec vertexAttribI4usv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
vertexAttribI4usv(Index,{V1,V2,V3,V4}) ->
cast(5556, <<Index:?GLuint,V1:?GLushort,V2:?GLushort,V3:?GLushort,V4:?GLushort>>).
%% @doc
%% See {@link getUniformfv/2}
-spec getUniformuiv(Program, Location) -> {integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer()} when Program :: integer(),Location :: integer().
getUniformuiv(Program,Location) ->
call(5557, <<Program:?GLuint,Location:?GLint>>).
%% @doc Bind a user-defined varying out variable to a fragment shader color number
%%
%% ``gl:bindFragDataLocation'' explicitly specifies the binding of the user-defined varying
%% out variable `Name' to fragment shader color number `ColorNumber' for program `Program'
%% . If `Name' was bound previously, its assigned binding is replaced with `ColorNumber'
%% . `Name' must be a null-terminated string. `ColorNumber' must be less than `?GL_MAX_DRAW_BUFFERS'
%% .
%%
%% The bindings specified by ``gl:bindFragDataLocation'' have no effect until `Program'
%% is next linked. Bindings may be specified at any time after `Program' has been created.
%% Specifically, they may be specified before shader objects are attached to the program.
%% Therefore, any name may be specified in `Name' , including a name that is never used
%% as a varying out variable in any fragment shader object. Names beginning with `?gl_'
%% are reserved by the GL.
%%
%% In addition to the errors generated by ``gl:bindFragDataLocation'', the program `Program'
%% will fail to link if:
%%
%% The number of active outputs is greater than the value `?GL_MAX_DRAW_BUFFERS'.
%%
%% More than one varying out variable is bound to the same color number.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindFragDataLocation.xml">external</a> documentation.
-spec bindFragDataLocation(Program, Color, Name) -> 'ok' when Program :: integer(),Color :: integer(),Name :: string().
bindFragDataLocation(Program,Color,Name) ->
cast(5558, <<Program:?GLuint,Color:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc Query the bindings of color numbers to user-defined varying out variables
%%
%% ``gl:getFragDataLocation'' retrieves the assigned color number binding for the user-defined
%% varying out variable `Name' for program `Program' . `Program' must have
%% previously been linked. `Name' must be a null-terminated string. If `Name' is
%% not the name of an active user-defined varying out fragment shader variable within `Program'
%% , -1 will be returned.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetFragDataLocation.xml">external</a> documentation.
-spec getFragDataLocation(Program, Name) -> integer() when Program :: integer(),Name :: string().
getFragDataLocation(Program,Name) ->
call(5559, <<Program:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1ui(Location, V0) -> 'ok' when Location :: integer(),V0 :: integer().
uniform1ui(Location,V0) ->
cast(5560, <<Location:?GLint,V0:?GLuint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2ui(Location, V0, V1) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer().
uniform2ui(Location,V0,V1) ->
cast(5561, <<Location:?GLint,V0:?GLuint,V1:?GLuint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3ui(Location, V0, V1, V2) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer().
uniform3ui(Location,V0,V1,V2) ->
cast(5562, <<Location:?GLint,V0:?GLuint,V1:?GLuint,V2:?GLuint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4ui(Location, V0, V1, V2, V3) -> 'ok' when Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer(),V3 :: integer().
uniform4ui(Location,V0,V1,V2,V3) ->
cast(5563, <<Location:?GLint,V0:?GLuint,V1:?GLuint,V2:?GLuint,V3:?GLuint>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1uiv(Location, Value) -> 'ok' when Location :: integer(),Value :: [integer()].
uniform1uiv(Location,Value) ->
cast(5564, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLuint>> || C <- Value>>)/binary,0:(((length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2uiv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer()}].
uniform2uiv(Location,Value) ->
cast(5565, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3uiv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer(),integer()}].
uniform3uiv(Location,Value) ->
cast(5566, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint,V3:?GLuint>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4uiv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{integer(),integer(),integer(),integer()}].
uniform4uiv(Location,Value) ->
cast(5567, <<Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint,V3:?GLuint,V4:?GLuint>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link texParameterf/3}
-spec texParameterIiv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texParameterIiv(Target,Pname,Params) ->
cast(5568, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc glTexParameterI
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexParameterI.xml">external</a> documentation.
-spec texParameterIuiv(Target, Pname, Params) -> 'ok' when Target :: enum(),Pname :: enum(),Params :: tuple().
texParameterIuiv(Target,Pname,Params) ->
cast(5569, <<Target:?GLenum,Pname:?GLenum,(size(Params)):?GLuint,
(<< <<C:?GLuint>> ||C <- tuple_to_list(Params)>>)/binary,0:(((1+size(Params)) rem 2)*32)>>).
%% @doc
%% See {@link getTexParameterfv/2}
-spec getTexParameterIiv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getTexParameterIiv(Target,Pname) ->
call(5570, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc glGetTexParameterI
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetTexParameterI.xml">external</a> documentation.
-spec getTexParameterIuiv(Target, Pname) -> {integer(),integer(),integer(),integer()} when Target :: enum(),Pname :: enum().
getTexParameterIuiv(Target,Pname) ->
call(5571, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Clear individual buffers of the currently bound draw framebuffer
%%
%% ``gl:clearBuffer*'' clears the specified buffer to the specified value(s). If `Buffer'
%% is `?GL_COLOR', a particular draw buffer `?GL_DRAWBUFFER' `I' is specified
%% by passing `I' as `DrawBuffer' . In this case, `Value' points to a four-element
%% vector specifying the R, G, B and A color to clear that draw buffer to. If `Buffer'
%% is one of `?GL_FRONT', `?GL_BACK', `?GL_LEFT', `?GL_RIGHT', or `?GL_FRONT_AND_BACK'
%% , identifying multiple buffers, each selected buffer is cleared to the same value. Clamping
%% and conversion for fixed-point color buffers are performed in the same fashion as {@link gl:clearColor/4}
%% .
%%
%% If `Buffer' is `?GL_DEPTH', `DrawBuffer' must be zero, and `Value'
%% points to a single value to clear the depth buffer to. Only ``gl:clearBufferfv'' should
%% be used to clear depth buffers. Clamping and conversion for fixed-point depth buffers
%% are performed in the same fashion as {@link gl:clearDepth/1} .
%%
%% If `Buffer' is `?GL_STENCIL', `DrawBuffer' must be zero, and `Value'
%% points to a single value to clear the stencil buffer to. Only ``gl:clearBufferiv'' should
%% be used to clear stencil buffers. Masing and type conversion are performed in the same
%% fashion as {@link gl:clearStencil/1} .
%%
%% ``gl:clearBufferfi'' may be used to clear the depth and stencil buffers. `Buffer'
%% must be `?GL_DEPTH_STENCIL' and `DrawBuffer' must be zero. `Depth' and `Stencil'
%% are the depth and stencil values, respectively.
%%
%% The result of ``gl:clearBuffer'' is undefined if no conversion between the type of `Value'
%% and the buffer being cleared is defined. However, this is not an error.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearBuffer.xml">external</a> documentation.
-spec clearBufferiv(Buffer, Drawbuffer, Value) -> 'ok' when Buffer :: enum(),Drawbuffer :: integer(),Value :: tuple().
clearBufferiv(Buffer,Drawbuffer,Value) ->
cast(5572, <<Buffer:?GLenum,Drawbuffer:?GLint,(size(Value)):?GLuint,
(<< <<C:?GLint>> ||C <- tuple_to_list(Value)>>)/binary,0:(((1+size(Value)) rem 2)*32)>>).
%% @doc
%% See {@link clearBufferiv/3}
-spec clearBufferuiv(Buffer, Drawbuffer, Value) -> 'ok' when Buffer :: enum(),Drawbuffer :: integer(),Value :: tuple().
clearBufferuiv(Buffer,Drawbuffer,Value) ->
cast(5573, <<Buffer:?GLenum,Drawbuffer:?GLint,(size(Value)):?GLuint,
(<< <<C:?GLuint>> ||C <- tuple_to_list(Value)>>)/binary,0:(((1+size(Value)) rem 2)*32)>>).
%% @doc
%% See {@link clearBufferiv/3}
-spec clearBufferfv(Buffer, Drawbuffer, Value) -> 'ok' when Buffer :: enum(),Drawbuffer :: integer(),Value :: tuple().
clearBufferfv(Buffer,Drawbuffer,Value) ->
cast(5574, <<Buffer:?GLenum,Drawbuffer:?GLint,(size(Value)):?GLuint,
(<< <<C:?GLfloat>> ||C <- tuple_to_list(Value)>>)/binary,0:(((1+size(Value)) rem 2)*32)>>).
%% @doc glClearBufferfi
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearBufferfi.xml">external</a> documentation.
-spec clearBufferfi(Buffer, Drawbuffer, Depth, Stencil) -> 'ok' when Buffer :: enum(),Drawbuffer :: integer(),Depth :: float(),Stencil :: integer().
clearBufferfi(Buffer,Drawbuffer,Depth,Stencil) ->
cast(5575, <<Buffer:?GLenum,Drawbuffer:?GLint,Depth:?GLfloat,Stencil:?GLint>>).
%% @doc
%% See {@link getString/1}
-spec getStringi(Name, Index) -> string() when Name :: enum(),Index :: integer().
getStringi(Name,Index) ->
call(5576, <<Name:?GLenum,Index:?GLuint>>).
%% @doc glDrawArraysInstance
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawArraysInstance.xml">external</a> documentation.
-spec drawArraysInstanced(Mode, First, Count, Primcount) -> 'ok' when Mode :: enum(),First :: integer(),Count :: integer(),Primcount :: integer().
drawArraysInstanced(Mode,First,Count,Primcount) ->
cast(5577, <<Mode:?GLenum,First:?GLint,Count:?GLsizei,Primcount:?GLsizei>>).
%% @doc glDrawElementsInstance
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsInstance.xml">external</a> documentation.
-spec drawElementsInstanced(Mode, Count, Type, Indices, Primcount) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Primcount :: integer().
drawElementsInstanced(Mode,Count,Type,Indices,Primcount) when is_integer(Indices) ->
cast(5578, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Primcount:?GLsizei>>);
drawElementsInstanced(Mode,Count,Type,Indices,Primcount) ->
send_bin(Indices),
cast(5579, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Primcount:?GLsizei>>).
%% @doc Attach the storage for a buffer object to the active buffer texture
%%
%% ``gl:texBuffer'' attaches the storage for the buffer object named `Buffer' to the
%% active buffer texture, and specifies the internal format for the texel array found in
%% the attached buffer object. If `Buffer' is zero, any buffer object attached to the
%% buffer texture is detached and no new buffer object is attached. If `Buffer' is non-zero,
%% it must be the name of an existing buffer object. `Target' must be `?GL_TEXTURE_BUFFER'
%% . `Internalformat' specifies the storage format, and must be one of the following
%% sized internal formats: <table><tbody><tr><td></td><td></td><td></td><td></td><td>` Component '
%% </td></tr></tbody><tbody><tr><td>`Sized Internal Format'</td><td>`Base Type'</td>
%% <td>`Components'</td><td>`Norm'</td><td>0</td><td>1</td><td>2</td><td>3</td></tr>
%% <tr><td>`?GL_R8'</td><td>ubyte</td><td>1</td><td>YES</td><td>R</td><td>0</td><td>0</td>
%% <td>1</td></tr><tr><td>`?GL_R16'</td><td>ushort</td><td>1</td><td>YES</td><td>R</td><td>
%% 0</td><td>0</td><td>1</td></tr><tr><td>`?GL_R16F'</td><td>half</td><td>1</td><td>NO</td>
%% <td>R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>`?GL_R32F'</td><td>float</td><td>
%% 1</td><td>NO</td><td>R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>`?GL_R8I'</td><td>
%% byte</td><td>1</td><td>NO</td><td>R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>`?GL_R16I'
%% </td><td>short</td><td>1</td><td>NO</td><td>R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>
%% `?GL_R32I'</td><td>int</td><td>1</td><td>NO</td><td>R</td><td>0</td><td>0</td><td>1</td>
%% </tr><tr><td>`?GL_R8UI'</td><td>ubyte</td><td>1</td><td>NO</td><td>R</td><td>0</td><td>
%% 0</td><td>1</td></tr><tr><td>`?GL_R16UI'</td><td>ushort</td><td>1</td><td>NO</td><td>
%% R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>`?GL_R32UI'</td><td>uint</td><td>1</td>
%% <td>NO</td><td>R</td><td>0</td><td>0</td><td>1</td></tr><tr><td>`?GL_RG8'</td><td>ubyte
%% </td><td>2</td><td>YES</td><td>R</td><td>G</td><td>0</td><td>1</td></tr><tr><td>`?GL_RG16'
%% </td><td>ushort</td><td>2</td><td>YES</td><td>R</td><td>G</td><td>0</td><td>1</td></tr><tr>
%% <td>`?GL_RG16F'</td><td>half</td><td>2</td><td>NO</td><td>R</td><td>G</td><td>0</td><td>
%% 1</td></tr><tr><td>`?GL_RG32F'</td><td>float</td><td>2</td><td>NO</td><td>R</td><td>G
%% </td><td>0</td><td>1</td></tr><tr><td>`?GL_RG8I'</td><td>byte</td><td>2</td><td>NO</td>
%% <td>R</td><td>G</td><td>0</td><td>1</td></tr><tr><td>`?GL_RG16I'</td><td>short</td><td>
%% 2</td><td>NO</td><td>R</td><td>G</td><td>0</td><td>1</td></tr><tr><td>`?GL_RG32I'</td>
%% <td>int</td><td>2</td><td>NO</td><td>R</td><td>G</td><td>0</td><td>1</td></tr><tr><td>`?GL_RG8UI'
%% </td><td>ubyte</td><td>2</td><td>NO</td><td>R</td><td>G</td><td>0</td><td>1</td></tr><tr><td>
%% `?GL_RG16UI'</td><td>ushort</td><td>2</td><td>NO</td><td>R</td><td>G</td><td>0</td><td>
%% 1</td></tr><tr><td>`?GL_RG32UI'</td><td>uint</td><td>2</td><td>NO</td><td>R</td><td>G
%% </td><td>0</td><td>1</td></tr><tr><td>`?GL_RGB32F'</td><td>float</td><td>3</td><td>NO
%% </td><td>R</td><td>G</td><td>B</td><td>1</td></tr><tr><td>`?GL_RGB32I'</td><td>int</td>
%% <td>3</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>1</td></tr><tr><td>`?GL_RGB32UI'
%% </td><td>uint</td><td>3</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>1</td></tr><tr><td>
%% `?GL_RGBA8'</td><td>uint</td><td>4</td><td>YES</td><td>R</td><td>G</td><td>B</td><td>
%% A</td></tr><tr><td>`?GL_RGBA16'</td><td>short</td><td>4</td><td>YES</td><td>R</td><td>
%% G</td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA16F'</td><td>half</td><td>4</td><td>NO
%% </td><td>R</td><td>G</td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA32F'</td><td>float
%% </td><td>4</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA8I'
%% </td><td>byte</td><td>4</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>A</td></tr><tr><td>
%% `?GL_RGBA16I'</td><td>short</td><td>4</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>
%% A</td></tr><tr><td>`?GL_RGBA32I'</td><td>int</td><td>4</td><td>NO</td><td>R</td><td>G
%% </td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA8UI'</td><td>ubyte</td><td>4</td><td>NO
%% </td><td>R</td><td>G</td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA16UI'</td><td>ushort
%% </td><td>4</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>A</td></tr><tr><td>`?GL_RGBA32UI'
%% </td><td>uint</td><td>4</td><td>NO</td><td>R</td><td>G</td><td>B</td><td>A</td></tr></tbody>
%% </table>
%%
%% When a buffer object is attached to a buffer texture, the buffer object's data store
%% is taken as the texture's texel array. The number of texels in the buffer texture's texel
%% array is given by buffer_size components×sizeof( base_type/)
%%
%% where `buffer_size' is the size of the buffer object, in basic machine units and
%% components and base type are the element count and base data type for elements, as specified
%% in the table above. The number of texels in the texel array is then clamped to the implementation-dependent
%% limit `?GL_MAX_TEXTURE_BUFFER_SIZE'. When a buffer texture is accessed in a shader,
%% the results of a texel fetch are undefined if the specified texel coordinate is negative,
%% or greater than or equal to the clamped number of texels in the texel array.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexBuffer.xml">external</a> documentation.
-spec texBuffer(Target, Internalformat, Buffer) -> 'ok' when Target :: enum(),Internalformat :: enum(),Buffer :: integer().
texBuffer(Target,Internalformat,Buffer) ->
cast(5580, <<Target:?GLenum,Internalformat:?GLenum,Buffer:?GLuint>>).
%% @doc Specify the primitive restart index
%%
%% ``gl:primitiveRestartIndex'' specifies a vertex array element that is treated specially
%% when primitive restarting is enabled. This is known as the primitive restart index.
%%
%% When one of the `Draw*' commands transfers a set of generic attribute array elements
%% to the GL, if the index within the vertex arrays corresponding to that set is equal to
%% the primitive restart index, then the GL does not process those elements as a vertex.
%% Instead, it is as if the drawing command ended with the immediately preceding transfer,
%% and another drawing command is immediately started with the same parameters, but only
%% transferring the immediately following element through the end of the originally specified
%% elements.
%%
%% When either {@link gl:drawElementsBaseVertex/5} , {@link gl:drawElementsInstancedBaseVertex/6}
%% or see `glMultiDrawElementsBaseVertex' is used, the primitive restart comparison
%% occurs before the basevertex offset is added to the array index.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPrimitiveRestartIndex.xml">external</a> documentation.
-spec primitiveRestartIndex(Index) -> 'ok' when Index :: integer().
primitiveRestartIndex(Index) ->
cast(5581, <<Index:?GLuint>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getInteger64i_v(Target, Index) -> [integer()] when Target :: enum(),Index :: integer().
getInteger64i_v(Target,Index) ->
call(5582, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glGetBufferParameteri64v
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetBufferParameteri64v.xml">external</a> documentation.
-spec getBufferParameteri64v(Target, Pname) -> [integer()] when Target :: enum(),Pname :: enum().
getBufferParameteri64v(Target,Pname) ->
call(5583, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Attach a level of a texture object as a logical buffer to the currently bound framebuffer object
%%
%% ``gl:framebufferTexture'', ``gl:framebufferTexture1D'', ``gl:framebufferTexture2D'',
%% and ``gl:framebufferTexture'' attach a selected mipmap level or image of a texture object
%% as one of the logical buffers of the framebuffer object currently bound to `Target' .
%% `Target' must be `?GL_DRAW_FRAMEBUFFER', `?GL_READ_FRAMEBUFFER', or `?GL_FRAMEBUFFER'
%% . `?GL_FRAMEBUFFER' is equivalent to `?GL_DRAW_FRAMEBUFFER'.
%%
%% `Attachment' specifies the logical attachment of the framebuffer and must be `?GL_COLOR_ATTACHMENT'
%% `i', `?GL_DEPTH_ATTACHMENT', `?GL_STENCIL_ATTACHMENT' or `?GL_DEPTH_STENCIL_ATTACHMMENT'
%% . `i' in `?GL_COLOR_ATTACHMENT'`i' may range from zero to the value of `?GL_MAX_COLOR_ATTACHMENTS'
%% - 1. Attaching a level of a texture to `?GL_DEPTH_STENCIL_ATTACHMENT' is equivalent
%% to attaching that level to both the `?GL_DEPTH_ATTACHMENT'`and' the `?GL_STENCIL_ATTACHMENT'
%% attachment points simultaneously.
%%
%% `Textarget' specifies what type of texture is named by `Texture' , and for cube
%% map textures, specifies the face that is to be attached. If `Texture' is not zero,
%% it must be the name of an existing texture with type `Textarget' , unless it is a
%% cube map texture, in which case `Textarget' must be `?GL_TEXTURE_CUBE_MAP_POSITIVE_X'
%% `?GL_TEXTURE_CUBE_MAP_NEGATIVE_X', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Y', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y'
%% , `?GL_TEXTURE_CUBE_MAP_POSITIVE_Z', or `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z'.
%%
%% If `Texture' is non-zero, the specified `Level' of the texture object named `Texture'
%% is attached to the framebfufer attachment point named by `Attachment' . For ``gl:framebufferTexture1D''
%% , ``gl:framebufferTexture2D'', and ``gl:framebufferTexture3D'', `Texture' must
%% be zero or the name of an existing texture with a target of `Textarget' , or `Texture'
%% must be the name of an existing cube-map texture and `Textarget' must be one of `?GL_TEXTURE_CUBE_MAP_POSITIVE_X'
%% , `?GL_TEXTURE_CUBE_MAP_POSITIVE_Y', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Z', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_X'
%% , `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y', or `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z'.
%%
%% If `Textarget' is `?GL_TEXTURE_RECTANGLE', `?GL_TEXTURE_2D_MULTISAMPLE',
%% or `?GL_TEXTURE_2D_MULTISAMPLE_ARRAY', then `Level' must be zero. If `Textarget'
%% is `?GL_TEXTURE_3D', then level must be greater than or equal to zero and less than
%% or equal to log2 of the value of `?GL_MAX_3D_TEXTURE_SIZE'. If `Textarget' is
%% one of `?GL_TEXTURE_CUBE_MAP_POSITIVE_X', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Y', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Z'
%% , `?GL_TEXTURE_CUBE_MAP_NEGATIVE_X', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y', or `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z'
%% , then `Level' must be greater than or equal to zero and less than or equal to log2
%% of the value of `?GL_MAX_CUBE_MAP_TEXTURE_SIZE'. For all other values of `Textarget'
%% , `Level' must be greater than or equal to zero and no larger than log2 of the value
%% of `?GL_MAX_TEXTURE_SIZE'.
%%
%% `Layer' specifies the layer of a 2-dimensional image within a 3-dimensional texture.
%%
%%
%% For ``gl:framebufferTexture1D'', if `Texture' is not zero, then `Textarget'
%% must be `?GL_TEXTURE_1D'. For ``gl:framebufferTexture2D'', if `Texture' is
%% not zero, `Textarget' must be one of `?GL_TEXTURE_2D', `?GL_TEXTURE_RECTANGLE'
%% , `?GL_TEXTURE_CUBE_MAP_POSITIVE_X', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Y', `?GL_TEXTURE_CUBE_MAP_POSITIVE_Z'
%% , `?GL_TEXTURE_CUBE_MAP_NEGATIVE_X', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y', `?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z'
%% , or `?GL_TEXTURE_2D_MULTISAMPLE'. For ``gl:framebufferTexture3D'', if `Texture'
%% is not zero, then `Textarget' must be `?GL_TEXTURE_3D'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFramebufferTexture.xml">external</a> documentation.
-spec framebufferTexture(Target, Attachment, Texture, Level) -> 'ok' when Target :: enum(),Attachment :: enum(),Texture :: integer(),Level :: integer().
framebufferTexture(Target,Attachment,Texture,Level) ->
cast(5584, <<Target:?GLenum,Attachment:?GLenum,Texture:?GLuint,Level:?GLint>>).
%% @doc Modify the rate at which generic vertex attributes advance during instanced rendering
%%
%% ``gl:vertexAttribDivisor'' modifies the rate at which generic vertex attributes advance
%% when rendering multiple instances of primitives in a single draw call. If `Divisor'
%% is zero, the attribute at slot `Index' advances once per vertex. If `Divisor'
%% is non-zero, the attribute advances once per `Divisor' instances of the set(s) of
%% vertices being rendered. An attribute is referred to as instanced if its `?GL_VERTEX_ATTRIB_ARRAY_DIVISOR'
%% value is non-zero.
%%
%% `Index' must be less than the value of `?GL_MAX_VERTEX_ATTRIBUTES'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribDivisor.xml">external</a> documentation.
-spec vertexAttribDivisor(Index, Divisor) -> 'ok' when Index :: integer(),Divisor :: integer().
vertexAttribDivisor(Index,Divisor) ->
cast(5585, <<Index:?GLuint,Divisor:?GLuint>>).
%% @doc Specifies minimum rate at which sample shaing takes place
%%
%% ``gl:minSampleShading'' specifies the rate at which samples are shaded within a covered
%% pixel. Sample-rate shading is enabled by calling {@link gl:enable/1} with the parameter `?GL_SAMPLE_SHADING'
%% . If `?GL_MULTISAMPLE' or `?GL_SAMPLE_SHADING' is disabled, sample shading has
%% no effect. Otherwise, an implementation must provide at least as many unique color values
%% for each covered fragment as specified by `Value' times `Samples' where `Samples'
%% is the value of `?GL_SAMPLES' for the current framebuffer. At least 1 sample for
%% each covered fragment is generated.
%%
%% A `Value' of 1.0 indicates that each sample in the framebuffer should be indpendently
%% shaded. A `Value' of 0.0 effectively allows the GL to ignore sample rate shading.
%% Any value between 0.0 and 1.0 allows the GL to shade only a subset of the total samples
%% within each covered fragment. Which samples are shaded and the algorithm used to select
%% that subset of the fragment's samples is implementation dependent.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMinSampleShading.xml">external</a> documentation.
-spec minSampleShading(Value) -> 'ok' when Value :: clamp().
minSampleShading(Value) ->
cast(5586, <<Value:?GLclampf>>).
%% @doc
%% See {@link blendEquation/1}
-spec blendEquationi(Buf, Mode) -> 'ok' when Buf :: integer(),Mode :: enum().
blendEquationi(Buf,Mode) ->
cast(5587, <<Buf:?GLuint,Mode:?GLenum>>).
%% @doc
%% See {@link blendEquationSeparate/2}
-spec blendEquationSeparatei(Buf, ModeRGB, ModeAlpha) -> 'ok' when Buf :: integer(),ModeRGB :: enum(),ModeAlpha :: enum().
blendEquationSeparatei(Buf,ModeRGB,ModeAlpha) ->
cast(5588, <<Buf:?GLuint,ModeRGB:?GLenum,ModeAlpha:?GLenum>>).
%% @doc glBlendFunci
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlendFunci.xml">external</a> documentation.
-spec blendFunci(Buf, Src, Dst) -> 'ok' when Buf :: integer(),Src :: enum(),Dst :: enum().
blendFunci(Buf,Src,Dst) ->
cast(5589, <<Buf:?GLuint,Src:?GLenum,Dst:?GLenum>>).
%% @doc
%% See {@link blendFuncSeparate/4}
-spec blendFuncSeparatei(Buf, SrcRGB, DstRGB, SrcAlpha, DstAlpha) -> 'ok' when Buf :: integer(),SrcRGB :: enum(),DstRGB :: enum(),SrcAlpha :: enum(),DstAlpha :: enum().
blendFuncSeparatei(Buf,SrcRGB,DstRGB,SrcAlpha,DstAlpha) ->
cast(5590, <<Buf:?GLuint,SrcRGB:?GLenum,DstRGB:?GLenum,SrcAlpha:?GLenum,DstAlpha:?GLenum>>).
%% @doc glLoadTransposeMatrixARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadTransposeMatrixARB.xml">external</a> documentation.
-spec loadTransposeMatrixfARB(M) -> 'ok' when M :: matrix().
loadTransposeMatrixfARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5591, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
loadTransposeMatrixfARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5591, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc glLoadTransposeMatrixARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLoadTransposeMatrixARB.xml">external</a> documentation.
-spec loadTransposeMatrixdARB(M) -> 'ok' when M :: matrix().
loadTransposeMatrixdARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5592, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
loadTransposeMatrixdARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5592, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc glMultTransposeMatrixARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultTransposeMatrixARB.xml">external</a> documentation.
-spec multTransposeMatrixfARB(M) -> 'ok' when M :: matrix().
multTransposeMatrixfARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5593, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,M13:?GLfloat,M14:?GLfloat,M15:?GLfloat,M16:?GLfloat>>);
multTransposeMatrixfARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5593, <<M1:?GLfloat,M2:?GLfloat,M3:?GLfloat,0:?GLfloat,M4:?GLfloat,M5:?GLfloat,M6:?GLfloat,0:?GLfloat,M7:?GLfloat,M8:?GLfloat,M9:?GLfloat,0:?GLfloat,M10:?GLfloat,M11:?GLfloat,M12:?GLfloat,1:?GLfloat>>).
%% @doc glMultTransposeMatrixARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMultTransposeMatrixARB.xml">external</a> documentation.
-spec multTransposeMatrixdARB(M) -> 'ok' when M :: matrix().
multTransposeMatrixdARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15,M16}) ->
cast(5594, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,M13:?GLdouble,M14:?GLdouble,M15:?GLdouble,M16:?GLdouble>>);
multTransposeMatrixdARB({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
cast(5594, <<M1:?GLdouble,M2:?GLdouble,M3:?GLdouble,0:?GLdouble,M4:?GLdouble,M5:?GLdouble,M6:?GLdouble,0:?GLdouble,M7:?GLdouble,M8:?GLdouble,M9:?GLdouble,0:?GLdouble,M10:?GLdouble,M11:?GLdouble,M12:?GLdouble,1:?GLdouble>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightbvARB(Weights) -> 'ok' when Weights :: [integer()].
weightbvARB(Weights) ->
cast(5595, <<(length(Weights)):?GLuint,
(<< <<C:?GLbyte>> || C <- Weights>>)/binary,0:((8-((length(Weights)+ 4) rem 8)) rem 8)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightsvARB(Weights) -> 'ok' when Weights :: [integer()].
weightsvARB(Weights) ->
cast(5596, <<(length(Weights)):?GLuint,
(<< <<C:?GLshort>> || C <- Weights>>)/binary,0:((8-((length(Weights)*2+ 4) rem 8)) rem 8)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightivARB(Weights) -> 'ok' when Weights :: [integer()].
weightivARB(Weights) ->
cast(5597, <<(length(Weights)):?GLuint,
(<< <<C:?GLint>> || C <- Weights>>)/binary,0:(((1+length(Weights)) rem 2)*32)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightfvARB(Weights) -> 'ok' when Weights :: [float()].
weightfvARB(Weights) ->
cast(5598, <<(length(Weights)):?GLuint,
(<< <<C:?GLfloat>> || C <- Weights>>)/binary,0:(((1+length(Weights)) rem 2)*32)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightdvARB(Weights) -> 'ok' when Weights :: [float()].
weightdvARB(Weights) ->
cast(5599, <<(length(Weights)):?GLuint,0:32,
(<< <<C:?GLdouble>> || C <- Weights>>)/binary>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightubvARB(Weights) -> 'ok' when Weights :: [integer()].
weightubvARB(Weights) ->
cast(5600, <<(length(Weights)):?GLuint,
(<< <<C:?GLubyte>> || C <- Weights>>)/binary,0:((8-((length(Weights)+ 4) rem 8)) rem 8)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightusvARB(Weights) -> 'ok' when Weights :: [integer()].
weightusvARB(Weights) ->
cast(5601, <<(length(Weights)):?GLuint,
(<< <<C:?GLushort>> || C <- Weights>>)/binary,0:((8-((length(Weights)*2+ 4) rem 8)) rem 8)>>).
%% @doc glWeightARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWeightARB.xml">external</a> documentation.
-spec weightuivARB(Weights) -> 'ok' when Weights :: [integer()].
weightuivARB(Weights) ->
cast(5602, <<(length(Weights)):?GLuint,
(<< <<C:?GLuint>> || C <- Weights>>)/binary,0:(((1+length(Weights)) rem 2)*32)>>).
%% @doc glVertexBlenARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexBlenARB.xml">external</a> documentation.
-spec vertexBlendARB(Count) -> 'ok' when Count :: integer().
vertexBlendARB(Count) ->
cast(5603, <<Count:?GLint>>).
%% @doc glCurrentPaletteMatrixARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCurrentPaletteMatrixARB.xml">external</a> documentation.
-spec currentPaletteMatrixARB(Index) -> 'ok' when Index :: integer().
currentPaletteMatrixARB(Index) ->
cast(5604, <<Index:?GLint>>).
%% @doc glMatrixIndexARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMatrixIndexARB.xml">external</a> documentation.
-spec matrixIndexubvARB(Indices) -> 'ok' when Indices :: [integer()].
matrixIndexubvARB(Indices) ->
cast(5605, <<(length(Indices)):?GLuint,
(<< <<C:?GLubyte>> || C <- Indices>>)/binary,0:((8-((length(Indices)+ 4) rem 8)) rem 8)>>).
%% @doc glMatrixIndexARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMatrixIndexARB.xml">external</a> documentation.
-spec matrixIndexusvARB(Indices) -> 'ok' when Indices :: [integer()].
matrixIndexusvARB(Indices) ->
cast(5606, <<(length(Indices)):?GLuint,
(<< <<C:?GLushort>> || C <- Indices>>)/binary,0:((8-((length(Indices)*2+ 4) rem 8)) rem 8)>>).
%% @doc glMatrixIndexARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMatrixIndexARB.xml">external</a> documentation.
-spec matrixIndexuivARB(Indices) -> 'ok' when Indices :: [integer()].
matrixIndexuivARB(Indices) ->
cast(5607, <<(length(Indices)):?GLuint,
(<< <<C:?GLuint>> || C <- Indices>>)/binary,0:(((1+length(Indices)) rem 2)*32)>>).
%% @doc glProgramStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramStringARB.xml">external</a> documentation.
-spec programStringARB(Target, Format, String) -> 'ok' when Target :: enum(),Format :: enum(),String :: string().
programStringARB(Target,Format,String) ->
cast(5608, <<Target:?GLenum,Format:?GLenum,(list_to_binary([String|[0]]))/binary,0:((8-((length(String)+ 1) rem 8)) rem 8)>>).
%% @doc glBindProgramARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindProgramARB.xml">external</a> documentation.
-spec bindProgramARB(Target, Program) -> 'ok' when Target :: enum(),Program :: integer().
bindProgramARB(Target,Program) ->
cast(5609, <<Target:?GLenum,Program:?GLuint>>).
%% @doc glDeleteProgramsARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteProgramsARB.xml">external</a> documentation.
-spec deleteProgramsARB(Programs) -> 'ok' when Programs :: [integer()].
deleteProgramsARB(Programs) ->
cast(5610, <<(length(Programs)):?GLuint,
(<< <<C:?GLuint>> || C <- Programs>>)/binary,0:(((1+length(Programs)) rem 2)*32)>>).
%% @doc glGenProgramsARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenProgramsARB.xml">external</a> documentation.
-spec genProgramsARB(N) -> [integer()] when N :: integer().
genProgramsARB(N) ->
call(5611, <<N:?GLsizei>>).
%% @doc glProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramEnvParameterARB.xml">external</a> documentation.
-spec programEnvParameter4dARB(Target, Index, X, Y, Z, W) -> 'ok' when Target :: enum(),Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
programEnvParameter4dARB(Target,Index,X,Y,Z,W) ->
cast(5612, <<Target:?GLenum,Index:?GLuint,X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @doc glProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramEnvParameterARB.xml">external</a> documentation.
-spec programEnvParameter4dvARB(Target, Index, Params) -> 'ok' when Target :: enum(),Index :: integer(),Params :: {float(),float(),float(),float()}.
programEnvParameter4dvARB(Target,Index,{P1,P2,P3,P4}) ->
cast(5613, <<Target:?GLenum,Index:?GLuint,P1:?GLdouble,P2:?GLdouble,P3:?GLdouble,P4:?GLdouble>>).
%% @doc glProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramEnvParameterARB.xml">external</a> documentation.
-spec programEnvParameter4fARB(Target, Index, X, Y, Z, W) -> 'ok' when Target :: enum(),Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
programEnvParameter4fARB(Target,Index,X,Y,Z,W) ->
cast(5614, <<Target:?GLenum,Index:?GLuint,X:?GLfloat,Y:?GLfloat,Z:?GLfloat,W:?GLfloat>>).
%% @doc glProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramEnvParameterARB.xml">external</a> documentation.
-spec programEnvParameter4fvARB(Target, Index, Params) -> 'ok' when Target :: enum(),Index :: integer(),Params :: {float(),float(),float(),float()}.
programEnvParameter4fvARB(Target,Index,{P1,P2,P3,P4}) ->
cast(5615, <<Target:?GLenum,Index:?GLuint,P1:?GLfloat,P2:?GLfloat,P3:?GLfloat,P4:?GLfloat>>).
%% @doc glProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramLocalParameterARB.xml">external</a> documentation.
-spec programLocalParameter4dARB(Target, Index, X, Y, Z, W) -> 'ok' when Target :: enum(),Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
programLocalParameter4dARB(Target,Index,X,Y,Z,W) ->
cast(5616, <<Target:?GLenum,Index:?GLuint,X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @doc glProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramLocalParameterARB.xml">external</a> documentation.
-spec programLocalParameter4dvARB(Target, Index, Params) -> 'ok' when Target :: enum(),Index :: integer(),Params :: {float(),float(),float(),float()}.
programLocalParameter4dvARB(Target,Index,{P1,P2,P3,P4}) ->
cast(5617, <<Target:?GLenum,Index:?GLuint,P1:?GLdouble,P2:?GLdouble,P3:?GLdouble,P4:?GLdouble>>).
%% @doc glProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramLocalParameterARB.xml">external</a> documentation.
-spec programLocalParameter4fARB(Target, Index, X, Y, Z, W) -> 'ok' when Target :: enum(),Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
programLocalParameter4fARB(Target,Index,X,Y,Z,W) ->
cast(5618, <<Target:?GLenum,Index:?GLuint,X:?GLfloat,Y:?GLfloat,Z:?GLfloat,W:?GLfloat>>).
%% @doc glProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramLocalParameterARB.xml">external</a> documentation.
-spec programLocalParameter4fvARB(Target, Index, Params) -> 'ok' when Target :: enum(),Index :: integer(),Params :: {float(),float(),float(),float()}.
programLocalParameter4fvARB(Target,Index,{P1,P2,P3,P4}) ->
cast(5619, <<Target:?GLenum,Index:?GLuint,P1:?GLfloat,P2:?GLfloat,P3:?GLfloat,P4:?GLfloat>>).
%% @doc glGetProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramEnvParameterARB.xml">external</a> documentation.
-spec getProgramEnvParameterdvARB(Target, Index) -> {float(),float(),float(),float()} when Target :: enum(),Index :: integer().
getProgramEnvParameterdvARB(Target,Index) ->
call(5620, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glGetProgramEnvParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramEnvParameterARB.xml">external</a> documentation.
-spec getProgramEnvParameterfvARB(Target, Index) -> {float(),float(),float(),float()} when Target :: enum(),Index :: integer().
getProgramEnvParameterfvARB(Target,Index) ->
call(5621, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glGetProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramLocalParameterARB.xml">external</a> documentation.
-spec getProgramLocalParameterdvARB(Target, Index) -> {float(),float(),float(),float()} when Target :: enum(),Index :: integer().
getProgramLocalParameterdvARB(Target,Index) ->
call(5622, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glGetProgramLocalParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramLocalParameterARB.xml">external</a> documentation.
-spec getProgramLocalParameterfvARB(Target, Index) -> {float(),float(),float(),float()} when Target :: enum(),Index :: integer().
getProgramLocalParameterfvARB(Target,Index) ->
call(5623, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glGetProgramStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramStringARB.xml">external</a> documentation.
-spec getProgramStringARB(Target, Pname, String) -> 'ok' when Target :: enum(),Pname :: enum(),String :: mem().
getProgramStringARB(Target,Pname,String) ->
send_bin(String),
call(5624, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc glGetBufferParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetBufferParameterARB.xml">external</a> documentation.
-spec getBufferParameterivARB(Target, Pname) -> [integer()] when Target :: enum(),Pname :: enum().
getBufferParameterivARB(Target,Pname) ->
call(5625, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc glDeleteObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteObjectARB.xml">external</a> documentation.
-spec deleteObjectARB(Obj) -> 'ok' when Obj :: integer().
deleteObjectARB(Obj) ->
cast(5626, <<Obj:?GLhandleARB>>).
%% @doc glGetHandleARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetHandleARB.xml">external</a> documentation.
-spec getHandleARB(Pname) -> integer() when Pname :: enum().
getHandleARB(Pname) ->
call(5627, <<Pname:?GLenum>>).
%% @doc glDetachObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDetachObjectARB.xml">external</a> documentation.
-spec detachObjectARB(ContainerObj, AttachedObj) -> 'ok' when ContainerObj :: integer(),AttachedObj :: integer().
detachObjectARB(ContainerObj,AttachedObj) ->
cast(5628, <<ContainerObj:?GLhandleARB,AttachedObj:?GLhandleARB>>).
%% @doc glCreateShaderObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCreateShaderObjectARB.xml">external</a> documentation.
-spec createShaderObjectARB(ShaderType) -> integer() when ShaderType :: enum().
createShaderObjectARB(ShaderType) ->
call(5629, <<ShaderType:?GLenum>>).
%% @doc glShaderSourceARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glShaderSourceARB.xml">external</a> documentation.
-spec shaderSourceARB(ShaderObj, String) -> 'ok' when ShaderObj :: integer(),String :: iolist().
shaderSourceARB(ShaderObj,String) ->
StringTemp = list_to_binary([[Str|[0]] || Str <- String ]),
cast(5630, <<ShaderObj:?GLhandleARB,(length(String)):?GLuint,(size(StringTemp)):?GLuint,(StringTemp)/binary,0:((8-((size(StringTemp)+4) rem 8)) rem 8)>>).
%% @doc glCompileShaderARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompileShaderARB.xml">external</a> documentation.
-spec compileShaderARB(ShaderObj) -> 'ok' when ShaderObj :: integer().
compileShaderARB(ShaderObj) ->
cast(5631, <<ShaderObj:?GLhandleARB>>).
%% @doc glCreateProgramObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCreateProgramObjectARB.xml">external</a> documentation.
-spec createProgramObjectARB() -> integer().
createProgramObjectARB() ->
call(5632, <<>>).
%% @doc glAttachObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glAttachObjectARB.xml">external</a> documentation.
-spec attachObjectARB(ContainerObj, Obj) -> 'ok' when ContainerObj :: integer(),Obj :: integer().
attachObjectARB(ContainerObj,Obj) ->
cast(5633, <<ContainerObj:?GLhandleARB,Obj:?GLhandleARB>>).
%% @doc glLinkProgramARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glLinkProgramARB.xml">external</a> documentation.
-spec linkProgramARB(ProgramObj) -> 'ok' when ProgramObj :: integer().
linkProgramARB(ProgramObj) ->
cast(5634, <<ProgramObj:?GLhandleARB>>).
%% @doc glUseProgramObjectARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUseProgramObjectARB.xml">external</a> documentation.
-spec useProgramObjectARB(ProgramObj) -> 'ok' when ProgramObj :: integer().
useProgramObjectARB(ProgramObj) ->
cast(5635, <<ProgramObj:?GLhandleARB>>).
%% @doc glValidateProgramARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glValidateProgramARB.xml">external</a> documentation.
-spec validateProgramARB(ProgramObj) -> 'ok' when ProgramObj :: integer().
validateProgramARB(ProgramObj) ->
cast(5636, <<ProgramObj:?GLhandleARB>>).
%% @doc glGetObjectParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetObjectParameterARB.xml">external</a> documentation.
-spec getObjectParameterfvARB(Obj, Pname) -> float() when Obj :: integer(),Pname :: enum().
getObjectParameterfvARB(Obj,Pname) ->
call(5637, <<Obj:?GLhandleARB,Pname:?GLenum>>).
%% @doc glGetObjectParameterARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetObjectParameterARB.xml">external</a> documentation.
-spec getObjectParameterivARB(Obj, Pname) -> integer() when Obj :: integer(),Pname :: enum().
getObjectParameterivARB(Obj,Pname) ->
call(5638, <<Obj:?GLhandleARB,Pname:?GLenum>>).
%% @doc glGetInfoLogARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetInfoLogARB.xml">external</a> documentation.
-spec getInfoLogARB(Obj, MaxLength) -> string() when Obj :: integer(),MaxLength :: integer().
getInfoLogARB(Obj,MaxLength) ->
call(5639, <<Obj:?GLhandleARB,MaxLength:?GLsizei>>).
%% @doc glGetAttachedObjectsARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetAttachedObjectsARB.xml">external</a> documentation.
-spec getAttachedObjectsARB(ContainerObj, MaxCount) -> [integer()] when ContainerObj :: integer(),MaxCount :: integer().
getAttachedObjectsARB(ContainerObj,MaxCount) ->
call(5640, <<ContainerObj:?GLhandleARB,MaxCount:?GLsizei>>).
%% @doc glGetUniformLocationARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformLocationARB.xml">external</a> documentation.
-spec getUniformLocationARB(ProgramObj, Name) -> integer() when ProgramObj :: integer(),Name :: string().
getUniformLocationARB(ProgramObj,Name) ->
call(5641, <<ProgramObj:?GLhandleARB,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc glGetActiveUniformARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniformARB.xml">external</a> documentation.
-spec getActiveUniformARB(ProgramObj, Index, MaxLength) -> {Size :: integer(),Type :: enum(),Name :: string()} when ProgramObj :: integer(),Index :: integer(),MaxLength :: integer().
getActiveUniformARB(ProgramObj,Index,MaxLength) ->
call(5642, <<ProgramObj:?GLhandleARB,Index:?GLuint,MaxLength:?GLsizei>>).
%% @doc glGetUniformARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformARB.xml">external</a> documentation.
-spec getUniformfvARB(ProgramObj, Location) -> matrix() when ProgramObj :: integer(),Location :: integer().
getUniformfvARB(ProgramObj,Location) ->
call(5643, <<ProgramObj:?GLhandleARB,Location:?GLint>>).
%% @doc glGetUniformARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformARB.xml">external</a> documentation.
-spec getUniformivARB(ProgramObj, Location) -> {integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer()} when ProgramObj :: integer(),Location :: integer().
getUniformivARB(ProgramObj,Location) ->
call(5644, <<ProgramObj:?GLhandleARB,Location:?GLint>>).
%% @doc glGetShaderSourceARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetShaderSourceARB.xml">external</a> documentation.
-spec getShaderSourceARB(Obj, MaxLength) -> string() when Obj :: integer(),MaxLength :: integer().
getShaderSourceARB(Obj,MaxLength) ->
call(5645, <<Obj:?GLhandleARB,MaxLength:?GLsizei>>).
%% @doc glBindAttribLocationARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindAttribLocationARB.xml">external</a> documentation.
-spec bindAttribLocationARB(ProgramObj, Index, Name) -> 'ok' when ProgramObj :: integer(),Index :: integer(),Name :: string().
bindAttribLocationARB(ProgramObj,Index,Name) ->
cast(5646, <<ProgramObj:?GLhandleARB,Index:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc glGetActiveAttribARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveAttribARB.xml">external</a> documentation.
-spec getActiveAttribARB(ProgramObj, Index, MaxLength) -> {Size :: integer(),Type :: enum(),Name :: string()} when ProgramObj :: integer(),Index :: integer(),MaxLength :: integer().
getActiveAttribARB(ProgramObj,Index,MaxLength) ->
call(5647, <<ProgramObj:?GLhandleARB,Index:?GLuint,MaxLength:?GLsizei>>).
%% @doc glGetAttribLocationARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetAttribLocationARB.xml">external</a> documentation.
-spec getAttribLocationARB(ProgramObj, Name) -> integer() when ProgramObj :: integer(),Name :: string().
getAttribLocationARB(ProgramObj,Name) ->
call(5648, <<ProgramObj:?GLhandleARB,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc Determine if a name corresponds to a renderbuffer object
%%
%% ``gl:isRenderbuffer'' returns `?GL_TRUE' if `Renderbuffer' is currently the
%% name of a renderbuffer object. If `Renderbuffer' is zero, or if `Renderbuffer'
%% is not the name of a renderbuffer object, or if an error occurs, ``gl:isRenderbuffer''
%% returns `?GL_FALSE'. If `Renderbuffer' is a name returned by {@link gl:genRenderbuffers/1}
%% , by that has not yet been bound through a call to {@link gl:bindRenderbuffer/2} or {@link gl:framebufferRenderbuffer/4}
%% , then the name is not a renderbuffer object and ``gl:isRenderbuffer'' returns `?GL_FALSE'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsRenderbuffer.xml">external</a> documentation.
-spec isRenderbuffer(Renderbuffer) -> 0|1 when Renderbuffer :: integer().
isRenderbuffer(Renderbuffer) ->
call(5649, <<Renderbuffer:?GLuint>>).
%% @doc Bind a renderbuffer to a renderbuffer target
%%
%% ``gl:bindRenderbuffer'' binds the renderbuffer object with name `Renderbuffer'
%% to the renderbuffer target specified by `Target' . `Target' must be `?GL_RENDERBUFFER'
%% . `Renderbuffer' is the name of a renderbuffer object previously returned from a
%% call to {@link gl:genRenderbuffers/1} , or zero to break the existing binding of a renderbuffer
%% object to `Target' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindRenderbuffer.xml">external</a> documentation.
-spec bindRenderbuffer(Target, Renderbuffer) -> 'ok' when Target :: enum(),Renderbuffer :: integer().
bindRenderbuffer(Target,Renderbuffer) ->
cast(5650, <<Target:?GLenum,Renderbuffer:?GLuint>>).
%% @doc Delete renderbuffer objects
%%
%% ``gl:deleteRenderbuffers'' deletes the `N' renderbuffer objects whose names are
%% stored in the array addressed by `Renderbuffers' . The name zero is reserved by the
%% GL and is silently ignored, should it occur in `Renderbuffers' , as are other unused
%% names. Once a renderbuffer object is deleted, its name is again unused and it has no contents.
%% If a renderbuffer that is currently bound to the target `?GL_RENDERBUFFER' is deleted,
%% it is as though {@link gl:bindRenderbuffer/2} had been executed with a `Target' of `?GL_RENDERBUFFER'
%% and a `Name' of zero.
%%
%% If a renderbuffer object is attached to one or more attachment points in the currently
%% bound framebuffer, then it as if {@link gl:framebufferRenderbuffer/4} had been called,
%% with a `Renderbuffer' of zero for each attachment point to which this image was attached
%% in the currently bound framebuffer. In other words, this renderbuffer object is first
%% detached from all attachment ponits in the currently bound framebuffer. Note that the
%% renderbuffer image is specifically `not' detached from any non-bound framebuffers.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteRenderbuffers.xml">external</a> documentation.
-spec deleteRenderbuffers(Renderbuffers) -> 'ok' when Renderbuffers :: [integer()].
deleteRenderbuffers(Renderbuffers) ->
cast(5651, <<(length(Renderbuffers)):?GLuint,
(<< <<C:?GLuint>> || C <- Renderbuffers>>)/binary,0:(((1+length(Renderbuffers)) rem 2)*32)>>).
%% @doc Generate renderbuffer object names
%%
%% ``gl:genRenderbuffers'' returns `N' renderbuffer object names in `Renderbuffers'
%% . There is no guarantee that the names form a contiguous set of integers; however, it
%% is guaranteed that none of the returned names was in use immediately before the call to ``gl:genRenderbuffers''
%% .
%%
%% Renderbuffer object names returned by a call to ``gl:genRenderbuffers'' are not returned
%% by subsequent calls, unless they are first deleted with {@link gl:deleteRenderbuffers/1} .
%%
%% The names returned in `Renderbuffers' are marked as used, for the purposes of ``gl:genRenderbuffers''
%% only, but they acquire state and type only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenRenderbuffers.xml">external</a> documentation.
-spec genRenderbuffers(N) -> [integer()] when N :: integer().
genRenderbuffers(N) ->
call(5652, <<N:?GLsizei>>).
%% @doc Establish data storage, format and dimensions of a renderbuffer object's image
%%
%% ``gl:renderbufferStorage'' is equivalent to calling {@link gl:renderbufferStorageMultisample/5}
%% with the `Samples' set to zero.
%%
%% The target of the operation, specified by `Target' must be `?GL_RENDERBUFFER'.
%% `Internalformat' specifies the internal format to be used for the renderbuffer object's
%% storage and must be a color-renderable, depth-renderable, or stencil-renderable format. `Width'
%% and `Height' are the dimensions, in pixels, of the renderbuffer. Both `Width'
%% and `Height' must be less than or equal to the value of `?GL_MAX_RENDERBUFFER_SIZE'
%% .
%%
%% Upon success, ``gl:renderbufferStorage'' deletes any existing data store for the renderbuffer
%% image and the contents of the data store after calling ``gl:renderbufferStorage'' are
%% undefined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRenderbufferStorage.xml">external</a> documentation.
-spec renderbufferStorage(Target, Internalformat, Width, Height) -> 'ok' when Target :: enum(),Internalformat :: enum(),Width :: integer(),Height :: integer().
renderbufferStorage(Target,Internalformat,Width,Height) ->
cast(5653, <<Target:?GLenum,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Retrieve information about a bound renderbuffer object
%%
%% ``gl:getRenderbufferParameteriv'' retrieves information about a bound renderbuffer object.
%% `Target' specifies the target of the query operation and must be `?GL_RENDERBUFFER'
%% . `Pname' specifies the parameter whose value to query and must be one of `?GL_RENDERBUFFER_WIDTH'
%% , `?GL_RENDERBUFFER_HEIGHT', `?GL_RENDERBUFFER_INTERNAL_FORMAT', `?GL_RENDERBUFFER_RED_SIZE'
%% , `?GL_RENDERBUFFER_GREEN_SIZE', `?GL_RENDERBUFFER_BLUE_SIZE', `?GL_RENDERBUFFER_ALPHA_SIZE'
%% , `?GL_RENDERBUFFER_DEPTH_SIZE', `?GL_RENDERBUFFER_DEPTH_SIZE', `?GL_RENDERBUFFER_STENCIL_SIZE'
%% , or `?GL_RENDERBUFFER_SAMPLES'.
%%
%% Upon a successful return from ``gl:getRenderbufferParameteriv'', if `Pname' is `?GL_RENDERBUFFER_WIDTH'
%% , `?GL_RENDERBUFFER_HEIGHT', `?GL_RENDERBUFFER_INTERNAL_FORMAT', or `?GL_RENDERBUFFER_SAMPLES'
%% , then `Params' will contain the width in pixels, the height in pixels, the internal
%% format, or the number of samples, respectively, of the image of the renderbuffer currently
%% bound to `Target' .
%%
%% If `Pname' is `?GL_RENDERBUFFER_RED_SIZE', `?GL_RENDERBUFFER_GREEN_SIZE',
%% `?GL_RENDERBUFFER_BLUE_SIZE', `?GL_RENDERBUFFER_ALPHA_SIZE', `?GL_RENDERBUFFER_DEPTH_SIZE'
%% , or `?GL_RENDERBUFFER_STENCIL_SIZE', then `Params' will contain the actual
%% resolutions (not the resolutions specified when the image array was defined) for the red,
%% green, blue, alpha depth, or stencil components, respectively, of the image of the renderbuffer
%% currently bound to `Target' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetRenderbufferParameter.xml">external</a> documentation.
-spec getRenderbufferParameteriv(Target, Pname) -> integer() when Target :: enum(),Pname :: enum().
getRenderbufferParameteriv(Target,Pname) ->
call(5654, <<Target:?GLenum,Pname:?GLenum>>).
%% @doc Determine if a name corresponds to a framebuffer object
%%
%% ``gl:isFramebuffer'' returns `?GL_TRUE' if `Framebuffer' is currently the
%% name of a framebuffer object. If `Framebuffer' is zero, or if `?framebuffer'
%% is not the name of a framebuffer object, or if an error occurs, ``gl:isFramebuffer''
%% returns `?GL_FALSE'. If `Framebuffer' is a name returned by {@link gl:genFramebuffers/1}
%% , by that has not yet been bound through a call to {@link gl:bindFramebuffer/2} , then the
%% name is not a framebuffer object and ``gl:isFramebuffer'' returns `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsFramebuffer.xml">external</a> documentation.
-spec isFramebuffer(Framebuffer) -> 0|1 when Framebuffer :: integer().
isFramebuffer(Framebuffer) ->
call(5655, <<Framebuffer:?GLuint>>).
%% @doc Bind a framebuffer to a framebuffer target
%%
%% ``gl:bindFramebuffer'' binds the framebuffer object with name `Framebuffer' to
%% the framebuffer target specified by `Target' . `Target' must be either `?GL_DRAW_FRAMEBUFFER'
%% , `?GL_READ_FRAMEBUFFER' or `?GL_FRAMEBUFFER'. If a framebuffer object is bound
%% to `?GL_DRAW_FRAMEBUFFER' or `?GL_READ_FRAMEBUFFER', it becomes the target for
%% rendering or readback operations, respectively, until it is deleted or another framebuffer
%% is bound to the corresponding bind point. Calling ``gl:bindFramebuffer'' with `Target'
%% set to `?GL_FRAMEBUFFER' binds `Framebuffer' to both the read and draw framebuffer
%% targets. `Framebuffer' is the name of a framebuffer object previously returned from
%% a call to {@link gl:genFramebuffers/1} , or zero to break the existing binding of a framebuffer
%% object to `Target' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindFramebuffer.xml">external</a> documentation.
-spec bindFramebuffer(Target, Framebuffer) -> 'ok' when Target :: enum(),Framebuffer :: integer().
bindFramebuffer(Target,Framebuffer) ->
cast(5656, <<Target:?GLenum,Framebuffer:?GLuint>>).
%% @doc Delete framebuffer objects
%%
%% ``gl:deleteFramebuffers'' deletes the `N' framebuffer objects whose names are stored
%% in the array addressed by `Framebuffers' . The name zero is reserved by the GL and
%% is silently ignored, should it occur in `Framebuffers' , as are other unused names.
%% Once a framebuffer object is deleted, its name is again unused and it has no attachments.
%% If a framebuffer that is currently bound to one or more of the targets `?GL_DRAW_FRAMEBUFFER'
%% or `?GL_READ_FRAMEBUFFER' is deleted, it is as though {@link gl:bindFramebuffer/2}
%% had been executed with the corresponding `Target' and `Framebuffer' zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteFramebuffers.xml">external</a> documentation.
-spec deleteFramebuffers(Framebuffers) -> 'ok' when Framebuffers :: [integer()].
deleteFramebuffers(Framebuffers) ->
cast(5657, <<(length(Framebuffers)):?GLuint,
(<< <<C:?GLuint>> || C <- Framebuffers>>)/binary,0:(((1+length(Framebuffers)) rem 2)*32)>>).
%% @doc Generate framebuffer object names
%%
%% ``gl:genFramebuffers'' returns `N' framebuffer object names in `Ids' . There
%% is no guarantee that the names form a contiguous set of integers; however, it is guaranteed
%% that none of the returned names was in use immediately before the call to ``gl:genFramebuffers''
%% .
%%
%% Framebuffer object names returned by a call to ``gl:genFramebuffers'' are not returned
%% by subsequent calls, unless they are first deleted with {@link gl:deleteFramebuffers/1} .
%%
%% The names returned in `Ids' are marked as used, for the purposes of ``gl:genFramebuffers''
%% only, but they acquire state and type only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenFramebuffers.xml">external</a> documentation.
-spec genFramebuffers(N) -> [integer()] when N :: integer().
genFramebuffers(N) ->
call(5658, <<N:?GLsizei>>).
%% @doc Check the completeness status of a framebuffer
%%
%% ``gl:checkFramebufferStatus'' queries the completeness status of the framebuffer object
%% currently bound to `Target' . `Target' must be `?GL_DRAW_FRAMEBUFFER', `?GL_READ_FRAMEBUFFER'
%% or `?GL_FRAMEBUFFER'. `?GL_FRAMEBUFFER' is equivalent to `?GL_DRAW_FRAMEBUFFER'
%% .
%%
%% The return value is `?GL_FRAMEBUFFER_COMPLETE' if the framebuffer bound to `Target'
%% is complete. Otherwise, the return value is determined as follows:
%%
%% `?GL_FRAMEBUFFER_UNDEFINED' is returned if `Target' is the default framebuffer,
%% but the default framebuffer does not exist.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT' is returned if any of the framebuffer attachment
%% points are framebuffer incomplete.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT' is returned if the framebuffer does
%% not have at least one image attached to it.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER' is returned if the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE'
%% is `?GL_NONE' for any color attachment point(s) named by `?GL_DRAWBUFFERi'.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER' is returned if `?GL_READ_BUFFER' is
%% not `?GL_NONE' and the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' is `?GL_NONE'
%% for the color attachment point named by `?GL_READ_BUFFER'.
%%
%% `?GL_FRAMEBUFFER_UNSUPPORTED' is returned if the combination of internal formats
%% of the attached images violates an implementation-dependent set of restrictions.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE' is returned if the value of `?GL_RENDERBUFFER_SAMPLES'
%% is not the same for all attached renderbuffers; if the value of `?GL_TEXTURE_SAMPLES'
%% is the not same for all attached textures; or, if the attached images are a mix of renderbuffers
%% and textures, the value of `?GL_RENDERBUFFER_SAMPLES' does not match the value of `?GL_TEXTURE_SAMPLES'
%% .
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE' is also returned if the value of `?GL_TEXTURE_FIXED_SAMPLE_LOCATIONS'
%% is not the same for all attached textures; or, if the attached images are a mix of renderbuffers
%% and textures, the value of `?GL_TEXTURE_FIXED_SAMPLE_LOCATIONS' is not `?GL_TRUE'
%% for all attached textures.
%%
%% `?GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS' is returned if any framebuffer attachment
%% is layered, and any populated attachment is not layered, or if all populated color attachments
%% are not from textures of the same target.
%%
%% Additionally, if an error occurs, zero is returned.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCheckFramebufferStatus.xml">external</a> documentation.
-spec checkFramebufferStatus(Target) -> enum() when Target :: enum().
checkFramebufferStatus(Target) ->
call(5659, <<Target:?GLenum>>).
%% @doc
%% See {@link framebufferTexture/4}
-spec framebufferTexture1D(Target, Attachment, Textarget, Texture, Level) -> 'ok' when Target :: enum(),Attachment :: enum(),Textarget :: enum(),Texture :: integer(),Level :: integer().
framebufferTexture1D(Target,Attachment,Textarget,Texture,Level) ->
cast(5660, <<Target:?GLenum,Attachment:?GLenum,Textarget:?GLenum,Texture:?GLuint,Level:?GLint>>).
%% @doc
%% See {@link framebufferTexture/4}
-spec framebufferTexture2D(Target, Attachment, Textarget, Texture, Level) -> 'ok' when Target :: enum(),Attachment :: enum(),Textarget :: enum(),Texture :: integer(),Level :: integer().
framebufferTexture2D(Target,Attachment,Textarget,Texture,Level) ->
cast(5661, <<Target:?GLenum,Attachment:?GLenum,Textarget:?GLenum,Texture:?GLuint,Level:?GLint>>).
%% @doc
%% See {@link framebufferTexture/4}
-spec framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset) -> 'ok' when Target :: enum(),Attachment :: enum(),Textarget :: enum(),Texture :: integer(),Level :: integer(),Zoffset :: integer().
framebufferTexture3D(Target,Attachment,Textarget,Texture,Level,Zoffset) ->
cast(5662, <<Target:?GLenum,Attachment:?GLenum,Textarget:?GLenum,Texture:?GLuint,Level:?GLint,Zoffset:?GLint>>).
%% @doc Attach a renderbuffer as a logical buffer to the currently bound framebuffer object
%%
%% ``gl:framebufferRenderbuffer'' attaches a renderbuffer as one of the logical buffers
%% of the currently bound framebuffer object. `Renderbuffer' is the name of the renderbuffer
%% object to attach and must be either zero, or the name of an existing renderbuffer object
%% of type `Renderbuffertarget' . If `Renderbuffer' is not zero and if ``gl:framebufferRenderbuffer''
%% is successful, then the renderbuffer name `Renderbuffer' will be used as the logical
%% buffer identified by `Attachment' of the framebuffer currently bound to `Target' .
%%
%%
%% The value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' for the specified attachment
%% point is set to `?GL_RENDERBUFFER' and the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME'
%% is set to `Renderbuffer' . All other state values of the attachment point specified
%% by `Attachment' are set to their default values. No change is made to the state of
%% the renderbuuffer object and any previous attachment to the `Attachment' logical
%% buffer of the framebuffer `Target' is broken.
%%
%% Calling ``gl:framebufferRenderbuffer'' with the renderbuffer name zero will detach
%% the image, if any, identified by `Attachment' , in the framebuffer currently bound
%% to `Target' . All state values of the attachment point specified by attachment in
%% the object bound to target are set to their default values.
%%
%% Setting `Attachment' to the value `?GL_DEPTH_STENCIL_ATTACHMENT' is a special
%% case causing both the depth and stencil attachments of the framebuffer object to be set
%% to `Renderbuffer' , which should have the base internal format `?GL_DEPTH_STENCIL'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFramebufferRenderbuffer.xml">external</a> documentation.
-spec framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer) -> 'ok' when Target :: enum(),Attachment :: enum(),Renderbuffertarget :: enum(),Renderbuffer :: integer().
framebufferRenderbuffer(Target,Attachment,Renderbuffertarget,Renderbuffer) ->
cast(5663, <<Target:?GLenum,Attachment:?GLenum,Renderbuffertarget:?GLenum,Renderbuffer:?GLuint>>).
%% @doc Retrieve information about attachments of a bound framebuffer object
%%
%% ``gl:getFramebufferAttachmentParameter'' returns information about attachments of a
%% bound framebuffer object. `Target' specifies the framebuffer binding point and must
%% be `?GL_DRAW_FRAMEBUFFER', `?GL_READ_FRAMEBUFFER' or `?GL_FRAMEBUFFER'. `?GL_FRAMEBUFFER'
%% is equivalent to `?GL_DRAW_FRAMEBUFFER'.
%%
%% If the default framebuffer is bound to `Target' then `Attachment' must be one
%% of `?GL_FRONT_LEFT', `?GL_FRONT_RIGHT', `?GL_BACK_LEFT', or `?GL_BACK_RIGHT'
%% , identifying a color buffer, `?GL_DEPTH', identifying the depth buffer, or `?GL_STENCIL'
%% , identifying the stencil buffer.
%%
%% If a framebuffer object is bound, then `Attachment' must be one of `?GL_COLOR_ATTACHMENT'
%% `i', `?GL_DEPTH_ATTACHMENT', `?GL_STENCIL_ATTACHMENT', or `?GL_DEPTH_STENCIL_ATTACHMENT'
%% . `i' in `?GL_COLOR_ATTACHMENT'`i' must be in the range zero to the value
%% of `?GL_MAX_COLOR_ATTACHMENTS' - 1.
%%
%% If `Attachment' is `?GL_DEPTH_STENCIL_ATTACHMENT' and different objects are
%% bound to the depth and stencil attachment points of `Target' the query will fail.
%% If the same object is bound to both attachment points, information about that object will
%% be returned.
%%
%% Upon successful return from ``gl:getFramebufferAttachmentParameteriv'', if `Pname'
%% is `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE', then `Params' will contain one of `?GL_NONE'
%% , `?GL_FRAMEBUFFER_DEFAULT', `?GL_TEXTURE', or `?GL_RENDERBUFFER', identifying
%% the type of object which contains the attached image. Other values accepted for `Pname'
%% depend on the type of object, as described below.
%%
%% If the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' is `?GL_NONE', no
%% framebuffer is bound to `Target' . In this case querying `Pname' `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME'
%% will return zero, and all other queries will generate an error.
%%
%% If the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' is not `?GL_NONE',
%% these queries apply to all other framebuffer types:
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE', `?GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE'
%% , `?GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE', `?GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE'
%% , `?GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE', or `?GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE'
%% , then `Params' will contain the number of bits in the corresponding red, green,
%% blue, alpha, depth, or stencil component of the specified attachment. Zero is returned
%% if the requested component is not present in `Attachment' .
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE', `Params' will
%% contain the format of components of the specified attachment, one of `?GL_FLOAT', `GL_INT'
%% , `GL_UNSIGNED_INT' , `GL_SIGNED_NORMALIZED' , or `GL_UNSIGNED_NORMALIZED'
%% for floating-point, signed integer, unsigned integer, signed normalized fixed-point, or
%% unsigned normalized fixed-point components respectively. Only color buffers may have integer
%% components.
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING', `Param' will
%% contain the encoding of components of the specified attachment, one of `?GL_LINEAR'
%% or `?GL_SRGB' for linear or sRGB-encoded components, respectively. Only color buffer
%% components may be sRGB-encoded; such components are treated as described in sections 4.1.7
%% and 4.1.8. For the default framebuffer, color encoding is determined by the implementation.
%% For framebuffer objects, components are sRGB-encoded if the internal format of a color
%% attachment is one of the color-renderable SRGB formats.
%%
%% If the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' is `?GL_RENDERBUFFER',
%% then:
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME', `Params' will
%% contain the name of the renderbuffer object which contains the attached image.
%%
%% If the value of `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE' is `?GL_TEXTURE',
%% then:
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME', then `Params'
%% will contain the name of the texture object which contains the attached image.
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL', then `Params'
%% will contain the mipmap level of the texture object which contains the attached image.
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE' and the texture
%% object named `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME' is a cube map texture, then `Params'
%% will contain the cube map face of the cubemap texture object which contains the attached
%% image. Otherwise `Params' will contain the value zero.
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER' and the texture object
%% named `?GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME' is a layer of a three-dimensional
%% texture or a one-or two-dimensional array texture, then `Params' will contain the
%% number of the texture layer which contains the attached image. Otherwise `Params'
%% will contain the value zero.
%%
%% If `Pname' is `?GL_FRAMEBUFFER_ATTACHMENT_LAYERED', then `Params' will
%% contain `?GL_TRUE' if an entire level of a three-dimesional texture, cube map texture,
%% or one-or two-dimensional array texture is attached. Otherwise, `Params' will contain
%% `?GL_FALSE'.
%%
%% Any combinations of framebuffer type and `Pname' not described above will generate
%% an error.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetFramebufferAttachmentParameter.xml">external</a> documentation.
-spec getFramebufferAttachmentParameteriv(Target, Attachment, Pname) -> integer() when Target :: enum(),Attachment :: enum(),Pname :: enum().
getFramebufferAttachmentParameteriv(Target,Attachment,Pname) ->
call(5664, <<Target:?GLenum,Attachment:?GLenum,Pname:?GLenum>>).
%% @doc Generate mipmaps for a specified texture target
%%
%% ``gl:generateMipmap'' generates mipmaps for the texture attached to `Target' of
%% the active texture unit. For cube map textures, a `?GL_INVALID_OPERATION' error is
%% generated if the texture attached to `Target' is not cube complete.
%%
%% Mipmap generation replaces texel array levels level base+1 through q with arrays derived
%% from the level base array, regardless of their previous contents. All other mimap arrays,
%% including the level base array, are left unchanged by this computation.
%%
%% The internal formats of the derived mipmap arrays all match those of the level base
%% array. The contents of the derived arrays are computed by repeated, filtered reduction
%% of the level base array. For one- and two-dimensional texture arrays, each layer is filtered
%% independently.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenerateMipmap.xml">external</a> documentation.
-spec generateMipmap(Target) -> 'ok' when Target :: enum().
generateMipmap(Target) ->
cast(5665, <<Target:?GLenum>>).
%% @doc Copy a block of pixels from the read framebuffer to the draw framebuffer
%%
%% ``gl:blitFramebuffer'' transfers a rectangle of pixel values from one region of the
%% read framebuffer to another region in the draw framebuffer. `Mask' is the bitwise
%% OR of a number of values indicating which buffers are to be copied. The values are `?GL_COLOR_BUFFER_BIT'
%% , `?GL_DEPTH_BUFFER_BIT', and `?GL_STENCIL_BUFFER_BIT'. The pixels corresponding
%% to these buffers are copied from the source rectangle bounded by the locations ( `SrcX0'
%% ; `SrcY0' ) and ( `SrcX1' ; `SrcY1' ) to the destination rectangle bounded
%% by the locations ( `DstX0' ; `DstY0' ) and ( `DstX1' ; `DstY1' ). The lower
%% bounds of the rectangle are inclusive, while the upper bounds are exclusive.
%%
%% The actual region taken from the read framebuffer is limited to the intersection of the
%% source buffers being transferred, which may include the color buffer selected by the read
%% buffer, the depth buffer, and/or the stencil buffer depending on mask. The actual region
%% written to the draw framebuffer is limited to the intersection of the destination buffers
%% being written, which may include multiple draw buffers, the depth buffer, and/or the stencil
%% buffer depending on mask. Whether or not the source or destination regions are altered
%% due to these limits, the scaling and offset applied to pixels being transferred is performed
%% as though no such limits were present.
%%
%% If the sizes of the source and destination rectangles are not equal, `Filter' specifies
%% the interpolation method that will be applied to resize the source image , and must be `?GL_NEAREST'
%% or `?GL_LINEAR'. `?GL_LINEAR' is only a valid interpolation method for the
%% color buffer. If `Filter' is not `?GL_NEAREST' and `Mask' includes `?GL_DEPTH_BUFFER_BIT'
%% or `?GL_STENCIL_BUFFER_BIT', no data is transferred and a `?GL_INVALID_OPERATION'
%% error is generated.
%%
%% If `Filter' is `?GL_LINEAR' and the source rectangle would require sampling
%% outside the bounds of the source framebuffer, values are read as if the `?GL_CLAMP_TO_EDGE'
%% texture wrapping mode were applied.
%%
%% When the color buffer is transferred, values are taken from the read buffer of the read
%% framebuffer and written to each of the draw buffers of the draw framebuffer.
%%
%% If the source and destination rectangles overlap or are the same, and the read and draw
%% buffers are the same, the result of the operation is undefined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBlitFramebuffer.xml">external</a> documentation.
-spec blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter) -> 'ok' when SrcX0 :: integer(),SrcY0 :: integer(),SrcX1 :: integer(),SrcY1 :: integer(),DstX0 :: integer(),DstY0 :: integer(),DstX1 :: integer(),DstY1 :: integer(),Mask :: integer(),Filter :: enum().
blitFramebuffer(SrcX0,SrcY0,SrcX1,SrcY1,DstX0,DstY0,DstX1,DstY1,Mask,Filter) ->
cast(5666, <<SrcX0:?GLint,SrcY0:?GLint,SrcX1:?GLint,SrcY1:?GLint,DstX0:?GLint,DstY0:?GLint,DstX1:?GLint,DstY1:?GLint,Mask:?GLbitfield,Filter:?GLenum>>).
%% @doc Establish data storage, format, dimensions and sample count of a renderbuffer object's image
%%
%% ``gl:renderbufferStorageMultisample'' establishes the data storage, format, dimensions
%% and number of samples of a renderbuffer object's image.
%%
%% The target of the operation, specified by `Target' must be `?GL_RENDERBUFFER'.
%% `Internalformat' specifies the internal format to be used for the renderbuffer object's
%% storage and must be a color-renderable, depth-renderable, or stencil-renderable format. `Width'
%% and `Height' are the dimensions, in pixels, of the renderbuffer. Both `Width'
%% and `Height' must be less than or equal to the value of `?GL_MAX_RENDERBUFFER_SIZE'
%% . `Samples' specifies the number of samples to be used for the renderbuffer object's
%% image, and must be less than or equal to the value of `?GL_MAX_SAMPLES'. If `Internalformat'
%% is a signed or unsigned integer format then `Samples' must be less than or equal
%% to the value of `?GL_MAX_INTEGER_SAMPLES'.
%%
%% Upon success, ``gl:renderbufferStorageMultisample'' deletes any existing data store
%% for the renderbuffer image and the contents of the data store after calling ``gl:renderbufferStorageMultisample''
%% are undefined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glRenderbufferStorageMultisample.xml">external</a> documentation.
-spec renderbufferStorageMultisample(Target, Samples, Internalformat, Width, Height) -> 'ok' when Target :: enum(),Samples :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer().
renderbufferStorageMultisample(Target,Samples,Internalformat,Width,Height) ->
cast(5667, <<Target:?GLenum,Samples:?GLsizei,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei>>).
%% @doc
%% See {@link framebufferTexture/4}
-spec framebufferTextureLayer(Target, Attachment, Texture, Level, Layer) -> 'ok' when Target :: enum(),Attachment :: enum(),Texture :: integer(),Level :: integer(),Layer :: integer().
framebufferTextureLayer(Target,Attachment,Texture,Level,Layer) ->
cast(5668, <<Target:?GLenum,Attachment:?GLenum,Texture:?GLuint,Level:?GLint,Layer:?GLint>>).
%% @doc
%% See {@link framebufferTexture/4}
-spec framebufferTextureFaceARB(Target, Attachment, Texture, Level, Face) -> 'ok' when Target :: enum(),Attachment :: enum(),Texture :: integer(),Level :: integer(),Face :: enum().
framebufferTextureFaceARB(Target,Attachment,Texture,Level,Face) ->
cast(5669, <<Target:?GLenum,Attachment:?GLenum,Texture:?GLuint,Level:?GLint,Face:?GLenum>>).
%% @doc Indicate modifications to a range of a mapped buffer
%%
%% ``gl:flushMappedBufferRange'' indicates that modifications have been made to a range
%% of a mapped buffer. The buffer must previously have been mapped with the `?GL_MAP_FLUSH_EXPLICIT'
%% flag. `Offset' and `Length' indicate the modified subrange of the mapping,
%% in basic units. The specified subrange to flush is relative to the start of the currently
%% mapped range of the buffer. ``gl:flushMappedBufferRange'' may be called multiple times
%% to indicate distinct subranges of the mapping which require flushing.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFlushMappedBufferRange.xml">external</a> documentation.
-spec flushMappedBufferRange(Target, Offset, Length) -> 'ok' when Target :: enum(),Offset :: integer(),Length :: integer().
flushMappedBufferRange(Target,Offset,Length) ->
cast(5670, <<Target:?GLenum,0:32,Offset:?GLintptr,Length:?GLsizeiptr>>).
%% @doc Bind a vertex array object
%%
%% ``gl:bindVertexArray'' binds the vertex array object with name `Array' . `Array'
%% is the name of a vertex array object previously returned from a call to {@link gl:genVertexArrays/1}
%% , or zero to break the existing vertex array object binding.
%%
%% If no vertex array object with name `Array' exists, one is created when `Array'
%% is first bound. If the bind is successful no change is made to the state of the vertex
%% array object, and any previous vertex array object binding is broken.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindVertexArray.xml">external</a> documentation.
-spec bindVertexArray(Array) -> 'ok' when Array :: integer().
bindVertexArray(Array) ->
cast(5671, <<Array:?GLuint>>).
%% @doc Delete vertex array objects
%%
%% ``gl:deleteVertexArrays'' deletes `N' vertex array objects whose names are stored
%% in the array addressed by `Arrays' . Once a vertex array object is deleted it has
%% no contents and its name is again unused. If a vertex array object that is currently bound
%% is deleted, the binding for that object reverts to zero and the default vertex array becomes
%% current. Unused names in `Arrays' are silently ignored, as is the value zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteVertexArrays.xml">external</a> documentation.
-spec deleteVertexArrays(Arrays) -> 'ok' when Arrays :: [integer()].
deleteVertexArrays(Arrays) ->
cast(5672, <<(length(Arrays)):?GLuint,
(<< <<C:?GLuint>> || C <- Arrays>>)/binary,0:(((1+length(Arrays)) rem 2)*32)>>).
%% @doc Generate vertex array object names
%%
%% ``gl:genVertexArrays'' returns `N' vertex array object names in `Arrays' .
%% There is no guarantee that the names form a contiguous set of integers; however, it is
%% guaranteed that none of the returned names was in use immediately before the call to ``gl:genVertexArrays''
%% .
%%
%% Vertex array object names returned by a call to ``gl:genVertexArrays'' are not returned
%% by subsequent calls, unless they are first deleted with {@link gl:deleteVertexArrays/1} .
%%
%% The names returned in `Arrays' are marked as used, for the purposes of ``gl:genVertexArrays''
%% only, but they acquire state and type only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenVertexArrays.xml">external</a> documentation.
-spec genVertexArrays(N) -> [integer()] when N :: integer().
genVertexArrays(N) ->
call(5673, <<N:?GLsizei>>).
%% @doc Determine if a name corresponds to a vertex array object
%%
%% ``gl:isVertexArray'' returns `?GL_TRUE' if `Array' is currently the name of
%% a renderbuffer object. If `Renderbuffer' is zero, or if `Array' is not the name
%% of a renderbuffer object, or if an error occurs, ``gl:isVertexArray'' returns `?GL_FALSE'
%% . If `Array' is a name returned by {@link gl:genVertexArrays/1} , by that has not yet
%% been bound through a call to {@link gl:bindVertexArray/1} , then the name is not a vertex
%% array object and ``gl:isVertexArray'' returns `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsVertexArray.xml">external</a> documentation.
-spec isVertexArray(Array) -> 0|1 when Array :: integer().
isVertexArray(Array) ->
call(5674, <<Array:?GLuint>>).
%% @doc Retrieve the index of a named uniform block
%%
%% ``gl:getUniformIndices'' retrieves the indices of a number of uniforms within `Program'
%% .
%%
%% `Program' must be the name of a program object for which the command {@link gl:linkProgram/1}
%% must have been called in the past, although it is not required that {@link gl:linkProgram/1}
%% must have succeeded. The link could have failed because the number of active uniforms
%% exceeded the limit.
%%
%% `UniformCount' indicates both the number of elements in the array of names `UniformNames'
%% and the number of indices that may be written to `UniformIndices' .
%%
%% `UniformNames' contains a list of `UniformCount' name strings identifying the
%% uniform names to be queried for indices. For each name string in `UniformNames' ,
%% the index assigned to the active uniform of that name will be written to the corresponding
%% element of `UniformIndices' . If a string in `UniformNames' is not the name of
%% an active uniform, the special value `?GL_INVALID_INDEX' will be written to the corresponding
%% element of `UniformIndices' .
%%
%% If an error occurs, nothing is written to `UniformIndices' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformIndices.xml">external</a> documentation.
-spec getUniformIndices(Program, UniformNames) -> [integer()] when Program :: integer(),UniformNames :: iolist().
getUniformIndices(Program,UniformNames) ->
UniformNamesTemp = list_to_binary([[Str|[0]] || Str <- UniformNames ]),
call(5675, <<Program:?GLuint,(length(UniformNames)):?GLuint,(size(UniformNamesTemp)):?GLuint,(UniformNamesTemp)/binary,0:((8-((size(UniformNamesTemp)+0) rem 8)) rem 8)>>).
%% @doc glGetActiveUniforms
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniforms.xml">external</a> documentation.
-spec getActiveUniformsiv(Program, UniformIndices, Pname) -> [integer()] when Program :: integer(),UniformIndices :: [integer()],Pname :: enum().
getActiveUniformsiv(Program,UniformIndices,Pname) ->
call(5676, <<Program:?GLuint,(length(UniformIndices)):?GLuint,
(<< <<C:?GLuint>> || C <- UniformIndices>>)/binary,0:(((length(UniformIndices)) rem 2)*32),Pname:?GLenum>>).
%% @doc Query the name of an active uniform
%%
%% ``gl:getActiveUniformName'' returns the name of the active uniform at `UniformIndex'
%% within `Program' . If `UniformName' is not NULL, up to `BufSize' characters
%% (including a nul-terminator) will be written into the array whose address is specified
%% by `UniformName' . If `Length' is not NULL, the number of characters that were
%% (or would have been) written into `UniformName' (not including the nul-terminator)
%% will be placed in the variable whose address is specified in `Length' . If `Length'
%% is NULL, no length is returned. The length of the longest uniform name in `Program'
%% is given by the value of `?GL_ACTIVE_UNIFORM_MAX_LENGTH', which can be queried with {@link gl:getProgramiv/2}
%% .
%%
%% If ``gl:getActiveUniformName'' is not successful, nothing is written to `Length'
%% or `UniformName' .
%%
%% `Program' must be the name of a program for which the command {@link gl:linkProgram/1}
%% has been issued in the past. It is not necessary for `Program' to have been linked
%% successfully. The link could have failed because the number of active uniforms exceeded
%% the limit.
%%
%% `UniformIndex' must be an active uniform index of the program `Program' , in
%% the range zero to `?GL_ACTIVE_UNIFORMS' - 1. The value of `?GL_ACTIVE_UNIFORMS'
%% can be queried with {@link gl:getProgramiv/2} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniformName.xml">external</a> documentation.
-spec getActiveUniformName(Program, UniformIndex, BufSize) -> string() when Program :: integer(),UniformIndex :: integer(),BufSize :: integer().
getActiveUniformName(Program,UniformIndex,BufSize) ->
call(5677, <<Program:?GLuint,UniformIndex:?GLuint,BufSize:?GLsizei>>).
%% @doc Retrieve the index of a named uniform block
%%
%% ``gl:getUniformBlockIndex'' retrieves the index of a uniform block within `Program' .
%%
%%
%% `Program' must be the name of a program object for which the command {@link gl:linkProgram/1}
%% must have been called in the past, although it is not required that {@link gl:linkProgram/1}
%% must have succeeded. The link could have failed because the number of active uniforms
%% exceeded the limit.
%%
%% `UniformBlockName' must contain a nul-terminated string specifying the name of the
%% uniform block.
%%
%% ``gl:getUniformBlockIndex'' returns the uniform block index for the uniform block named
%% `UniformBlockName' of `Program' . If `UniformBlockName' does not identify
%% an active uniform block of `Program' , ``gl:getUniformBlockIndex'' returns the special
%% identifier, `?GL_INVALID_INDEX'. Indices of the active uniform blocks of a program
%% are assigned in consecutive order, beginning with zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformBlockIndex.xml">external</a> documentation.
-spec getUniformBlockIndex(Program, UniformBlockName) -> integer() when Program :: integer(),UniformBlockName :: string().
getUniformBlockIndex(Program,UniformBlockName) ->
call(5678, <<Program:?GLuint,(list_to_binary([UniformBlockName|[0]]))/binary,0:((8-((length(UniformBlockName)+ 5) rem 8)) rem 8)>>).
%% @doc Query information about an active uniform block
%%
%% ``gl:getActiveUniformBlockiv'' retrieves information about an active uniform block within
%% `Program' .
%%
%% `Program' must be the name of a program object for which the command {@link gl:linkProgram/1}
%% must have been called in the past, although it is not required that {@link gl:linkProgram/1}
%% must have succeeded. The link could have failed because the number of active uniforms
%% exceeded the limit.
%%
%% `UniformBlockIndex' is an active uniform block index of `Program' , and must
%% be less than the value of `?GL_ACTIVE_UNIFORM_BLOCKS'.
%%
%% Upon success, the uniform block parameter(s) specified by `Pname' are returned in `Params'
%% . If an error occurs, nothing will be written to `Params' .
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_BINDING', then the index of the uniform buffer
%% binding point last selected by the uniform block specified by `UniformBlockIndex'
%% for `Program' is returned. If no uniform block has been previously specified, zero
%% is returned.
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_DATA_SIZE', then the implementation-dependent
%% minimum total buffer object size, in basic machine units, required to hold all active
%% uniforms in the uniform block identified by `UniformBlockIndex' is returned. It is
%% neither guaranteed nor expected that a given implementation will arrange uniform values
%% as tightly packed in a buffer object. The exception to this is the `std140 uniform block layout'
%% , which guarantees specific packing behavior and does not require the application to query
%% for offsets and strides. In this case the minimum size may still be queried, even though
%% it is determined in advance based only on the uniform block declaration.
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_NAME_LENGTH', then the total length (including
%% the nul terminator) of the name of the uniform block identified by `UniformBlockIndex'
%% is returned.
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS', then the number of active
%% uniforms in the uniform block identified by `UniformBlockIndex' is returned.
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES', then a list of the
%% active uniform indices for the uniform block identified by `UniformBlockIndex' is
%% returned. The number of elements that will be written to `Params' is the value of `?GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS'
%% for `UniformBlockIndex' .
%%
%% If `Pname' is `?GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER', `?GL_UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER'
%% , or `?GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER', then a boolean value indicating
%% whether the uniform block identified by `UniformBlockIndex' is referenced by the
%% vertex, geometry, or fragment programming stages of program, respectively, is returned.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniformBlock.xml">external</a> documentation.
-spec getActiveUniformBlockiv(Program, UniformBlockIndex, Pname, Params) -> 'ok' when Program :: integer(),UniformBlockIndex :: integer(),Pname :: enum(),Params :: mem().
getActiveUniformBlockiv(Program,UniformBlockIndex,Pname,Params) ->
send_bin(Params),
call(5679, <<Program:?GLuint,UniformBlockIndex:?GLuint,Pname:?GLenum>>).
%% @doc Retrieve the name of an active uniform block
%%
%% ``gl:getActiveUniformBlockName'' retrieves the name of the active uniform block at `UniformBlockIndex'
%% within `Program' .
%%
%% `Program' must be the name of a program object for which the command {@link gl:linkProgram/1}
%% must have been called in the past, although it is not required that {@link gl:linkProgram/1}
%% must have succeeded. The link could have failed because the number of active uniforms
%% exceeded the limit.
%%
%% `UniformBlockIndex' is an active uniform block index of `Program' , and must
%% be less than the value of `?GL_ACTIVE_UNIFORM_BLOCKS'.
%%
%% Upon success, the name of the uniform block identified by `UnifomBlockIndex' is
%% returned into `UniformBlockName' . The name is nul-terminated. The actual number of
%% characters written into `UniformBlockName' , excluding the nul terminator, is returned
%% in `Length' . If `Length' is NULL, no length is returned.
%%
%% `BufSize' contains the maximum number of characters (including the nul terminator)
%% that will be written into `UniformBlockName' .
%%
%% If an error occurs, nothing will be written to `UniformBlockName' or `Length' .
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveUniformBlockName.xml">external</a> documentation.
-spec getActiveUniformBlockName(Program, UniformBlockIndex, BufSize) -> string() when Program :: integer(),UniformBlockIndex :: integer(),BufSize :: integer().
getActiveUniformBlockName(Program,UniformBlockIndex,BufSize) ->
call(5680, <<Program:?GLuint,UniformBlockIndex:?GLuint,BufSize:?GLsizei>>).
%% @doc Assign a binding point to an active uniform block
%%
%% Binding points for active uniform blocks are assigned using ``gl:uniformBlockBinding''.
%% Each of a program's active uniform blocks has a corresponding uniform buffer binding point.
%% `Program' is the name of a program object for which the command {@link gl:linkProgram/1}
%% has been issued in the past.
%%
%% If successful, ``gl:uniformBlockBinding'' specifies that `Program' will use the
%% data store of the buffer object bound to the binding point `UniformBlockBinding'
%% to extract the values of the uniforms in the uniform block identified by `UniformBlockIndex'
%% .
%%
%% When a program object is linked or re-linked, the uniform buffer object binding point
%% assigned to each of its active uniform blocks is reset to zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUniformBlockBinding.xml">external</a> documentation.
-spec uniformBlockBinding(Program, UniformBlockIndex, UniformBlockBinding) -> 'ok' when Program :: integer(),UniformBlockIndex :: integer(),UniformBlockBinding :: integer().
uniformBlockBinding(Program,UniformBlockIndex,UniformBlockBinding) ->
cast(5681, <<Program:?GLuint,UniformBlockIndex:?GLuint,UniformBlockBinding:?GLuint>>).
%% @doc Copy part of the data store of a buffer object to the data store of another buffer object
%%
%% ``gl:copyBufferSubData'' copies part of the data store attached to `Readtarget'
%% to the data store attached to `Writetarget' . The number of basic machine units indicated
%% by `Size' is copied from the source, at offset `Readoffset' to the destination
%% at `Writeoffset' , also in basic machine units.
%%
%% `Readtarget' and `Writetarget' must be `?GL_ARRAY_BUFFER', `?GL_COPY_READ_BUFFER'
%% , `?GL_COPY_WRITE_BUFFER', `?GL_ELEMENT_ARRAY_BUFFER', `?GL_PIXEL_PACK_BUFFER'
%% , `?GL_PIXEL_UNPACK_BUFFER', `?GL_TEXTURE_BUFFER', `?GL_TRANSFORM_FEEDBACK_BUFFER'
%% or `?GL_UNIFORM_BUFFER'. Any of these targets may be used, although the targets `?GL_COPY_READ_BUFFER'
%% and `?GL_COPY_WRITE_BUFFER' are provided specifically to allow copies between buffers
%% without disturbing other GL state.
%%
%% `Readoffset' , `Writeoffset' and `Size' must all be greater than or equal
%% to zero. Furthermore, `Readoffset' + `Size' must not exceeed the size of the
%% buffer object bound to `Readtarget' , and `Readoffset' + `Size' must not
%% exceeed the size of the buffer bound to `Writetarget' . If the same buffer object
%% is bound to both `Readtarget' and `Writetarget' , then the ranges specified by `Readoffset'
%% , `Writeoffset' and `Size' must not overlap.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCopyBufferSubData.xml">external</a> documentation.
-spec copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size) -> 'ok' when ReadTarget :: enum(),WriteTarget :: enum(),ReadOffset :: integer(),WriteOffset :: integer(),Size :: integer().
copyBufferSubData(ReadTarget,WriteTarget,ReadOffset,WriteOffset,Size) ->
cast(5682, <<ReadTarget:?GLenum,WriteTarget:?GLenum,ReadOffset:?GLintptr,WriteOffset:?GLintptr,Size:?GLsizeiptr>>).
%% @doc Render primitives from array data with a per-element offset
%%
%% ``gl:drawElementsBaseVertex'' behaves identically to {@link gl:drawElements/4} except
%% that the `i'th element transferred by the corresponding draw call will be taken from
%% element `Indices' [i] + `Basevertex' of each enabled array. If the resulting
%% value is larger than the maximum value representable by `Type' , it is as if the calculation
%% were upconverted to 32-bit unsigned integers (with wrapping on overflow conditions). The
%% operation is undefined if the sum would be negative.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsBaseVertex.xml">external</a> documentation.
-spec drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Basevertex :: integer().
drawElementsBaseVertex(Mode,Count,Type,Indices,Basevertex) when is_integer(Indices) ->
cast(5683, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Basevertex:?GLint>>);
drawElementsBaseVertex(Mode,Count,Type,Indices,Basevertex) ->
send_bin(Indices),
cast(5684, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Basevertex:?GLint>>).
%% @doc Render primitives from array data with a per-element offset
%%
%% ``gl:drawRangeElementsBaseVertex'' is a restricted form of {@link gl:drawElementsBaseVertex/5}
%% . `Mode' , `Start' , `End' , `Count' and `Basevertex' match the
%% corresponding arguments to {@link gl:drawElementsBaseVertex/5} , with the additional constraint
%% that all values in the array `Indices' must lie between `Start' and `End' ,
%% inclusive, prior to adding `Basevertex' . Index values lying outside the range [ `Start'
%% , `End' ] are treated in the same way as {@link gl:drawElementsBaseVertex/5} . The `i'
%% th element transferred by the corresponding draw call will be taken from element `Indices'
%% [i] + `Basevertex' of each enabled array. If the resulting value is larger than the
%% maximum value representable by `Type' , it is as if the calculation were upconverted
%% to 32-bit unsigned integers (with wrapping on overflow conditions). The operation is undefined
%% if the sum would be negative.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawRangeElementsBaseVertex.xml">external</a> documentation.
-spec drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex) -> 'ok' when Mode :: enum(),Start :: integer(),End :: integer(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Basevertex :: integer().
drawRangeElementsBaseVertex(Mode,Start,End,Count,Type,Indices,Basevertex) when is_integer(Indices) ->
cast(5685, <<Mode:?GLenum,Start:?GLuint,End:?GLuint,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Basevertex:?GLint>>);
drawRangeElementsBaseVertex(Mode,Start,End,Count,Type,Indices,Basevertex) ->
send_bin(Indices),
cast(5686, <<Mode:?GLenum,Start:?GLuint,End:?GLuint,Count:?GLsizei,Type:?GLenum,Basevertex:?GLint>>).
%% @doc Render multiple instances of a set of primitives from array data with a per-element offset
%%
%% ``gl:drawElementsInstancedBaseVertex'' behaves identically to {@link gl:drawElementsInstanced/5}
%% except that the `i'th element transferred by the corresponding draw call will be
%% taken from element `Indices' [i] + `Basevertex' of each enabled array. If the
%% resulting value is larger than the maximum value representable by `Type' , it is as
%% if the calculation were upconverted to 32-bit unsigned integers (with wrapping on overflow
%% conditions). The operation is undefined if the sum would be negative.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsInstancedBaseVertex.xml">external</a> documentation.
-spec drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Primcount, Basevertex) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Primcount :: integer(),Basevertex :: integer().
drawElementsInstancedBaseVertex(Mode,Count,Type,Indices,Primcount,Basevertex) when is_integer(Indices) ->
cast(5687, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Primcount:?GLsizei,Basevertex:?GLint>>);
drawElementsInstancedBaseVertex(Mode,Count,Type,Indices,Primcount,Basevertex) ->
send_bin(Indices),
cast(5688, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Primcount:?GLsizei,Basevertex:?GLint>>).
%% @doc Specifiy the vertex to be used as the source of data for flat shaded varyings
%%
%% `Flatshading' a vertex shader varying output means to assign all vetices of the primitive
%% the same value for that output. The vertex from which these values is derived is known
%% as the `provoking vertex' and ``gl:provokingVertex'' specifies which vertex is
%% to be used as the source of data for flat shaded varyings.
%%
%% `ProvokeMode' must be either `?GL_FIRST_VERTEX_CONVENTION' or `?GL_LAST_VERTEX_CONVENTION'
%% , and controls the selection of the vertex whose values are assigned to flatshaded varying
%% outputs. The interpretation of these values for the supported primitive types is: <table><tbody>
%% <tr><td>` Primitive Type of Polygon '`i'</td><td>` First Vertex Convention '
%% </td><td>` Last Vertex Convention '</td></tr><tr><td> point </td><td>`i'</td><td>
%% `i'</td></tr><tr><td> independent line </td><td> 2`i' - 1 </td><td> 2`i'</td>
%% </tr><tr><td> line loop </td><td>`i'</td><td>
%%
%% `i' + 1, if `i' < `n'
%%
%% 1, if `i' = `n'</td></tr><tr><td> line strip </td><td>`i'</td><td>`i'
%% + 1 </td></tr><tr><td> independent triangle </td><td> 3`i' - 2 </td><td> 3`i'</td>
%% </tr><tr><td> triangle strip </td><td>`i'</td><td>`i' + 2 </td></tr><tr><td>
%% triangle fan </td><td>`i' + 1 </td><td>`i' + 2 </td></tr><tr><td> line adjacency
%% </td><td> 4`i' - 2 </td><td> 4`i' - 1 </td></tr><tr><td> line strip adjacency </td>
%% <td>`i' + 1 </td><td>`i' + 2 </td></tr><tr><td> triangle adjacency </td><td> 6`i'
%% - 5 </td><td> 6`i' - 1 </td></tr><tr><td> triangle strip adjacency </td><td> 2`i'
%% - 1 </td><td> 2`i' + 3 </td></tr></tbody></table>
%%
%% If a vertex or geometry shader is active, user-defined varying outputs may be flatshaded
%% by using the flat qualifier when declaring the output.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProvokingVertex.xml">external</a> documentation.
-spec provokingVertex(Mode) -> 'ok' when Mode :: enum().
provokingVertex(Mode) ->
cast(5689, <<Mode:?GLenum>>).
%% @doc Create a new sync object and insert it into the GL command stream
%%
%% ``gl:fenceSync'' creates a new fence sync object, inserts a fence command into the GL
%% command stream and associates it with that sync object, and returns a non-zero name corresponding
%% to the sync object.
%%
%% When the specified `Condition' of the sync object is satisfied by the fence command,
%% the sync object is signaled by the GL, causing any {@link gl:waitSync/3} , {@link gl:clientWaitSync/3}
%% commands blocking in `Sync' to `unblock'. No other state is affected by ``gl:fenceSync''
%% or by the execution of the associated fence command.
%%
%% `Condition' must be `?GL_SYNC_GPU_COMMANDS_COMPLETE'. This condition is satisfied
%% by completion of the fence command corresponding to the sync object and all preceding
%% commands in the same command stream. The sync object will not be signaled until all effects
%% from these commands on GL client and server state and the framebuffer are fully realized.
%% Note that completion of the fence command occurs once the state of the corresponding sync
%% object has been changed, but commands waiting on that sync object may not be unblocked
%% until after the fence command completes.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glFenceSync.xml">external</a> documentation.
-spec fenceSync(Condition, Flags) -> integer() when Condition :: enum(),Flags :: integer().
fenceSync(Condition,Flags) ->
call(5690, <<Condition:?GLenum,Flags:?GLbitfield>>).
%% @doc Determine if a name corresponds to a sync object
%%
%% ``gl:isSync'' returns `?GL_TRUE' if `Sync' is currently the name of a sync
%% object. If `Sync' is not the name of a sync object, or if an error occurs, ``gl:isSync''
%% returns `?GL_FALSE'. Note that zero is not the name of a sync object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsSync.xml">external</a> documentation.
-spec isSync(Sync) -> 0|1 when Sync :: integer().
isSync(Sync) ->
call(5691, <<Sync:?GLsync>>).
%% @doc Delete a sync object
%%
%% ``gl:deleteSync'' deletes the sync object specified by `Sync' . If the fence command
%% corresponding to the specified sync object has completed, or if no {@link gl:waitSync/3}
%% or {@link gl:clientWaitSync/3} commands are blocking on `Sync' , the object is deleted
%% immediately. Otherwise, `Sync' is flagged for deletion and will be deleted when it
%% is no longer associated with any fence command and is no longer blocking any {@link gl:waitSync/3}
%% or {@link gl:clientWaitSync/3} command. In either case, after ``gl:deleteSync'' returns,
%% the name `Sync' is invalid and can no longer be used to refer to the sync object.
%%
%% ``gl:deleteSync'' will silently ignore a `Sync' value of zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteSync.xml">external</a> documentation.
-spec deleteSync(Sync) -> 'ok' when Sync :: integer().
deleteSync(Sync) ->
cast(5692, <<Sync:?GLsync>>).
%% @doc Block and wait for a sync object to become signaled
%%
%% ``gl:clientWaitSync'' causes the client to block and wait for the sync object specified
%% by `Sync' to become signaled. If `Sync' is signaled when ``gl:clientWaitSync''
%% is called, ``gl:clientWaitSync'' returns immediately, otherwise it will block and wait
%% for up to `Timeout' nanoseconds for `Sync' to become signaled.
%%
%% The return value is one of four status values:
%%
%% `?GL_ALREADY_SIGNALED' indicates that `Sync' was signaled at the time that ``gl:clientWaitSync''
%% was called.
%%
%% `?GL_TIMEOUT_EXPIRED' indicates that at least `Timeout' nanoseconds passed and `Sync'
%% did not become signaled.
%%
%% `?GL_CONDITION_SATISFIED' indicates that `Sync' was signaled before the timeout
%% expired.
%%
%% `?GL_WAIT_FAILED' indicates that an error occurred. Additionally, an OpenGL error
%% will be generated.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClientWaitSync.xml">external</a> documentation.
-spec clientWaitSync(Sync, Flags, Timeout) -> enum() when Sync :: integer(),Flags :: integer(),Timeout :: integer().
clientWaitSync(Sync,Flags,Timeout) ->
call(5693, <<Sync:?GLsync,Flags:?GLbitfield,0:32,Timeout:?GLuint64>>).
%% @doc Instruct the GL server to block until the specified sync object becomes signaled
%%
%% ``gl:waitSync'' causes the GL server to block and wait until `Sync' becomes signaled.
%% `Sync' is the name of an existing sync object upon which to wait. `Flags' and `Timeout'
%% are currently not used and must be set to zero and the special value `?GL_TIMEOUT_IGNORED'
%% , respectively
%%
%% `Flags' and `Timeout' are placeholders for anticipated future extensions of
%% sync object capabilities. They must have these reserved values in order that existing
%% code calling ``gl:waitSync'' operate properly in the presence of such extensions.. ``gl:waitSync''
%% will always wait no longer than an implementation-dependent timeout. The duration of
%% this timeout in nanoseconds may be queried by calling {@link gl:getBooleanv/1} with the parameter `?GL_MAX_SERVER_WAIT_TIMEOUT'
%% . There is currently no way to determine whether ``gl:waitSync'' unblocked because the
%% timeout expired or because the sync object being waited on was signaled.
%%
%% If an error occurs, ``gl:waitSync'' does not cause the GL server to block.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glWaitSync.xml">external</a> documentation.
-spec waitSync(Sync, Flags, Timeout) -> 'ok' when Sync :: integer(),Flags :: integer(),Timeout :: integer().
waitSync(Sync,Flags,Timeout) ->
cast(5694, <<Sync:?GLsync,Flags:?GLbitfield,0:32,Timeout:?GLuint64>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getInteger64v(Pname) -> [integer()] when Pname :: enum().
getInteger64v(Pname) ->
call(5695, <<Pname:?GLenum>>).
%% @doc Query the properties of a sync object
%%
%% ``gl:getSynciv'' retrieves properties of a sync object. `Sync' specifies the name
%% of the sync object whose properties to retrieve.
%%
%% On success, ``gl:getSynciv'' replaces up to `BufSize' integers in `Values'
%% with the corresponding property values of the object being queried. The actual number
%% of integers replaced is returned in the variable whose address is specified in `Length'
%% . If `Length' is NULL, no length is returned.
%%
%% If `Pname' is `?GL_OBJECT_TYPE', a single value representing the specific type
%% of the sync object is placed in `Values' . The only type supported is `?GL_SYNC_FENCE'
%% .
%%
%% If `Pname' is `?GL_SYNC_STATUS', a single value representing the status of
%% the sync object (`?GL_SIGNALED' or `?GL_UNSIGNALED') is placed in `Values' .
%%
%%
%% If `Pname' is `?GL_SYNC_CONDITION', a single value representing the condition
%% of the sync object is placed in `Values' . The only condition supported is `?GL_SYNC_GPU_COMMANDS_COMPLETE'
%% .
%%
%% If `Pname' is `?GL_SYNC_FLAGS', a single value representing the flags with
%% which the sync object was created is placed in `Values' . No flags are currently supported
%%
%%
%% `Flags' is expected to be used in future extensions to the sync objects..
%%
%% If an error occurs, nothing will be written to `Values' or `Length' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetSync.xml">external</a> documentation.
-spec getSynciv(Sync, Pname, BufSize) -> [integer()] when Sync :: integer(),Pname :: enum(),BufSize :: integer().
getSynciv(Sync,Pname,BufSize) ->
call(5696, <<Sync:?GLsync,Pname:?GLenum,BufSize:?GLsizei>>).
%% @doc Establish the data storage, format, dimensions, and number of samples of a multisample texture's image
%%
%% ``gl:texImage2DMultisample'' establishes the data storage, format, dimensions and number
%% of samples of a multisample texture's image.
%%
%% `Target' must be `?GL_TEXTURE_2D_MULTISAMPLE' or `?GL_PROXY_TEXTURE_2D_MULTISAMPLE'
%% . `Width' and `Height' are the dimensions in texels of the texture, and must
%% be in the range zero to `?GL_MAX_TEXTURE_SIZE' - 1. `Samples' specifies the
%% number of samples in the image and must be in the range zero to `?GL_MAX_SAMPLES'
%% - 1.
%%
%% `Internalformat' must be a color-renderable, depth-renderable, or stencil-renderable
%% format.
%%
%% If `Fixedsamplelocations' is `?GL_TRUE', the image will use identical sample
%% locations and the same number of samples for all texels in the image, and the sample locations
%% will not depend on the internal format or size of the image.
%%
%% When a multisample texture is accessed in a shader, the access takes one vector of integers
%% describing which texel to fetch and an integer corresponding to the sample numbers describing
%% which sample within the texel to fetch. No standard sampling instructions are allowed
%% on the multisample texture targets.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexImage2DMultisample.xml">external</a> documentation.
-spec texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations) -> 'ok' when Target :: enum(),Samples :: integer(),Internalformat :: integer(),Width :: integer(),Height :: integer(),Fixedsamplelocations :: 0|1.
texImage2DMultisample(Target,Samples,Internalformat,Width,Height,Fixedsamplelocations) ->
cast(5697, <<Target:?GLenum,Samples:?GLsizei,Internalformat:?GLint,Width:?GLsizei,Height:?GLsizei,Fixedsamplelocations:?GLboolean>>).
%% @doc Establish the data storage, format, dimensions, and number of samples of a multisample texture's image
%%
%% ``gl:texImage3DMultisample'' establishes the data storage, format, dimensions and number
%% of samples of a multisample texture's image.
%%
%% `Target' must be `?GL_TEXTURE_2D_MULTISAMPLE_ARRAY' or `?GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY'
%% . `Width' and `Height' are the dimensions in texels of the texture, and must
%% be in the range zero to `?GL_MAX_TEXTURE_SIZE' - 1. `Depth' is the number of
%% array slices in the array texture's image. `Samples' specifies the number of samples
%% in the image and must be in the range zero to `?GL_MAX_SAMPLES' - 1.
%%
%% `Internalformat' must be a color-renderable, depth-renderable, or stencil-renderable
%% format.
%%
%% If `Fixedsamplelocations' is `?GL_TRUE', the image will use identical sample
%% locations and the same number of samples for all texels in the image, and the sample locations
%% will not depend on the internal format or size of the image.
%%
%% When a multisample texture is accessed in a shader, the access takes one vector of integers
%% describing which texel to fetch and an integer corresponding to the sample numbers describing
%% which sample within the texel to fetch. No standard sampling instructions are allowed
%% on the multisample texture targets.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexImage3DMultisample.xml">external</a> documentation.
-spec texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations) -> 'ok' when Target :: enum(),Samples :: integer(),Internalformat :: integer(),Width :: integer(),Height :: integer(),Depth :: integer(),Fixedsamplelocations :: 0|1.
texImage3DMultisample(Target,Samples,Internalformat,Width,Height,Depth,Fixedsamplelocations) ->
cast(5698, <<Target:?GLenum,Samples:?GLsizei,Internalformat:?GLint,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei,Fixedsamplelocations:?GLboolean>>).
%% @doc Retrieve the location of a sample
%%
%% ``gl:getMultisamplefv'' queries the location of a given sample. `Pname' specifies
%% the sample parameter to retrieve and must be `?GL_SAMPLE_POSITION'. `Index'
%% corresponds to the sample for which the location should be returned. The sample location
%% is returned as two floating-point values in `Val[0]' and `Val[1]' , each between
%% 0 and 1, corresponding to the `X' and `Y' locations respectively in the GL pixel
%% space of that sample. (0.5, 0.5) this corresponds to the pixel center. `Index' must
%% be between zero and the value of `?GL_SAMPLES' - 1.
%%
%% If the multisample mode does not have fixed sample locations, the returned values may
%% only reflect the locations of samples within some pixels.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetMultisample.xml">external</a> documentation.
-spec getMultisamplefv(Pname, Index) -> {float(),float()} when Pname :: enum(),Index :: integer().
getMultisamplefv(Pname,Index) ->
call(5699, <<Pname:?GLenum,Index:?GLuint>>).
%% @doc Set the value of a sub-word of the sample mask
%%
%% ``gl:sampleMaski'' sets one 32-bit sub-word of the multi-word sample mask, `?GL_SAMPLE_MASK_VALUE'
%% .
%%
%% `MaskIndex' specifies which 32-bit sub-word of the sample mask to update, and `Mask'
%% specifies the new value to use for that sub-word. `MaskIndex' must be less than
%% the value of `?GL_MAX_SAMPLE_MASK_WORDS'. Bit `B' of mask word `M' corresponds
%% to sample 32 x `M' + `B'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSampleMaski.xml">external</a> documentation.
-spec sampleMaski(Index, Mask) -> 'ok' when Index :: integer(),Mask :: integer().
sampleMaski(Index,Mask) ->
cast(5700, <<Index:?GLuint,Mask:?GLbitfield>>).
%% @doc glNamedStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glNamedStringARB.xml">external</a> documentation.
-spec namedStringARB(Type, Name, String) -> 'ok' when Type :: enum(),Name :: string(),String :: string().
namedStringARB(Type,Name,String) ->
cast(5701, <<Type:?GLenum,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8),(list_to_binary([String|[0]]))/binary,0:((8-((length(String)+ 1) rem 8)) rem 8)>>).
%% @doc glDeleteNamedStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteNamedStringARB.xml">external</a> documentation.
-spec deleteNamedStringARB(Name) -> 'ok' when Name :: string().
deleteNamedStringARB(Name) ->
cast(5702, <<(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc glCompileShaderIncludeARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompileShaderIncludeARB.xml">external</a> documentation.
-spec compileShaderIncludeARB(Shader, Path) -> 'ok' when Shader :: integer(),Path :: iolist().
compileShaderIncludeARB(Shader,Path) ->
PathTemp = list_to_binary([[Str|[0]] || Str <- Path ]),
cast(5703, <<Shader:?GLuint,(length(Path)):?GLuint,(size(PathTemp)):?GLuint,(PathTemp)/binary,0:((8-((size(PathTemp)+0) rem 8)) rem 8)>>).
%% @doc glIsNamedStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsNamedStringARB.xml">external</a> documentation.
-spec isNamedStringARB(Name) -> 0|1 when Name :: string().
isNamedStringARB(Name) ->
call(5704, <<(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc glGetNamedStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetNamedStringARB.xml">external</a> documentation.
-spec getNamedStringARB(Name, BufSize) -> string() when Name :: string(),BufSize :: integer().
getNamedStringARB(Name,BufSize) ->
call(5705, <<(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8),BufSize:?GLsizei>>).
%% @doc glGetNamedStringARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetNamedStringARB.xml">external</a> documentation.
-spec getNamedStringivARB(Name, Pname) -> integer() when Name :: string(),Pname :: enum().
getNamedStringivARB(Name,Pname) ->
call(5706, <<(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8),Pname:?GLenum>>).
%% @doc glBindFragDataLocationIndexe
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindFragDataLocationIndexe.xml">external</a> documentation.
-spec bindFragDataLocationIndexed(Program, ColorNumber, Index, Name) -> 'ok' when Program :: integer(),ColorNumber :: integer(),Index :: integer(),Name :: string().
bindFragDataLocationIndexed(Program,ColorNumber,Index,Name) ->
cast(5707, <<Program:?GLuint,ColorNumber:?GLuint,Index:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc Query the bindings of color indices to user-defined varying out variables
%%
%% ``gl:getFragDataIndex'' returns the index of the fragment color to which the variable `Name'
%% was bound when the program object `Program' was last linked. If `Name' is not
%% a varying out variable of `Program' , or if an error occurs, -1 will be returned.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetFragDataIndex.xml">external</a> documentation.
-spec getFragDataIndex(Program, Name) -> integer() when Program :: integer(),Name :: string().
getFragDataIndex(Program,Name) ->
call(5708, <<Program:?GLuint,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 5) rem 8)) rem 8)>>).
%% @doc Generate sampler object names
%%
%% ``gl:genSamplers'' returns `N' sampler object names in `Samplers' . There is
%% no guarantee that the names form a contiguous set of integers; however, it is guaranteed
%% that none of the returned names was in use immediately before the call to ``gl:genSamplers''
%% .
%%
%% Sampler object names returned by a call to ``gl:genSamplers'' are not returned by subsequent
%% calls, unless they are first deleted with {@link gl:deleteSamplers/1} .
%%
%% The names returned in `Samplers' are marked as used, for the purposes of ``gl:genSamplers''
%% only, but they acquire state and type only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenSamplers.xml">external</a> documentation.
-spec genSamplers(Count) -> [integer()] when Count :: integer().
genSamplers(Count) ->
call(5709, <<Count:?GLsizei>>).
%% @doc Delete named sampler objects
%%
%% ``gl:deleteSamplers'' deletes `N' sampler objects named by the elements of the
%% array `Ids' . After a sampler object is deleted, its name is again unused. If a sampler
%% object that is currently bound to a sampler unit is deleted, it is as though {@link gl:bindSampler/2}
%% is called with unit set to the unit the sampler is bound to and sampler zero. Unused
%% names in samplers are silently ignored, as is the reserved name zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteSamplers.xml">external</a> documentation.
-spec deleteSamplers(Samplers) -> 'ok' when Samplers :: [integer()].
deleteSamplers(Samplers) ->
cast(5710, <<(length(Samplers)):?GLuint,
(<< <<C:?GLuint>> || C <- Samplers>>)/binary,0:(((1+length(Samplers)) rem 2)*32)>>).
%% @doc Determine if a name corresponds to a sampler object
%%
%% ``gl:isSampler'' returns `?GL_TRUE' if `Id' is currently the name of a sampler
%% object. If `Id' is zero, or is a non-zero value that is not currently the name of
%% a sampler object, or if an error occurs, ``gl:isSampler'' returns `?GL_FALSE'.
%%
%% A name returned by {@link gl:genSamplers/1} , is the name of a sampler object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsSampler.xml">external</a> documentation.
-spec isSampler(Sampler) -> 0|1 when Sampler :: integer().
isSampler(Sampler) ->
call(5711, <<Sampler:?GLuint>>).
%% @doc Bind a named sampler to a texturing target
%%
%% ``gl:bindSampler'' binds `Sampler' to the texture unit at index `Unit' . `Sampler'
%% must be zero or the name of a sampler object previously returned from a call to {@link gl:genSamplers/1}
%% . `Unit' must be less than the value of `?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS'.
%%
%%
%% When a sampler object is bound to a texture unit, its state supersedes that of the texture
%% object bound to that texture unit. If the sampler name zero is bound to a texture unit,
%% the currently bound texture's sampler state becomes active. A single sampler object may
%% be bound to multiple texture units simultaneously.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindSampler.xml">external</a> documentation.
-spec bindSampler(Unit, Sampler) -> 'ok' when Unit :: integer(),Sampler :: integer().
bindSampler(Unit,Sampler) ->
cast(5712, <<Unit:?GLuint,Sampler:?GLuint>>).
%% @doc Set sampler parameters
%%
%% ``gl:samplerParameter'' assigns the value or values in `Params' to the sampler
%% parameter specified as `Pname' . `Sampler' specifies the sampler object to be
%% modified, and must be the name of a sampler object previously returned from a call to {@link gl:genSamplers/1}
%% . The following symbols are accepted in `Pname' :
%%
%% `?GL_TEXTURE_MIN_FILTER': The texture minifying function is used whenever the pixel
%% being textured maps to an area greater than one texture element. There are six defined
%% minifying functions. Two of them use the nearest one or nearest four texture elements
%% to compute the texture value. The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
%% `?GL_NEAREST': Returns the value of the texture element that is nearest (in Manhattan
%% distance) to the center of the pixel being textured.
%%
%% `?GL_LINEAR': Returns the weighted average of the four texture elements that are
%% closest to the center of the pixel being textured. These can include border texture elements,
%% depending on the values of `?GL_TEXTURE_WRAP_S' and `?GL_TEXTURE_WRAP_T', and
%% on the exact mapping.
%%
%% `?GL_NEAREST_MIPMAP_NEAREST': Chooses the mipmap that most closely matches the size
%% of the pixel being textured and uses the `?GL_NEAREST' criterion (the texture element
%% nearest to the center of the pixel) to produce a texture value.
%%
%% `?GL_LINEAR_MIPMAP_NEAREST': Chooses the mipmap that most closely matches the size
%% of the pixel being textured and uses the `?GL_LINEAR' criterion (a weighted average
%% of the four texture elements that are closest to the center of the pixel) to produce a
%% texture value.
%%
%% `?GL_NEAREST_MIPMAP_LINEAR': Chooses the two mipmaps that most closely match the
%% size of the pixel being textured and uses the `?GL_NEAREST' criterion (the texture
%% element nearest to the center of the pixel) to produce a texture value from each mipmap.
%% The final texture value is a weighted average of those two values.
%%
%% `?GL_LINEAR_MIPMAP_LINEAR': Chooses the two mipmaps that most closely match the
%% size of the pixel being textured and uses the `?GL_LINEAR' criterion (a weighted
%% average of the four texture elements that are closest to the center of the pixel) to produce
%% a texture value from each mipmap. The final texture value is a weighted average of those
%% two values.
%%
%% As more texture elements are sampled in the minification process, fewer aliasing artifacts
%% will be apparent. While the `?GL_NEAREST' and `?GL_LINEAR' minification functions
%% can be faster than the other four, they sample only one or four texture elements to determine
%% the texture value of the pixel being rendered and can produce moire patterns or ragged
%% transitions. The initial value of `?GL_TEXTURE_MIN_FILTER' is `?GL_NEAREST_MIPMAP_LINEAR'
%% .
%%
%% `?GL_TEXTURE_MAG_FILTER': The texture magnification function is used when the pixel
%% being textured maps to an area less than or equal to one texture element. It sets the
%% texture magnification function to either `?GL_NEAREST' or `?GL_LINEAR' (see
%% below). `?GL_NEAREST' is generally faster than `?GL_LINEAR', but it can produce
%% textured images with sharper edges because the transition between texture elements is
%% not as smooth. The initial value of `?GL_TEXTURE_MAG_FILTER' is `?GL_LINEAR'.
%%
%% `?GL_NEAREST': Returns the value of the texture element that is nearest (in Manhattan
%% distance) to the center of the pixel being textured.
%%
%% `?GL_LINEAR': Returns the weighted average of the four texture elements that are
%% closest to the center of the pixel being textured. These can include border texture elements,
%% depending on the values of `?GL_TEXTURE_WRAP_S' and `?GL_TEXTURE_WRAP_T', and
%% on the exact mapping.
%%
%%
%%
%% `?GL_TEXTURE_MIN_LOD': Sets the minimum level-of-detail parameter. This floating-point
%% value limits the selection of highest resolution mipmap (lowest mipmap level). The initial
%% value is -1000.
%%
%%
%%
%% `?GL_TEXTURE_MAX_LOD': Sets the maximum level-of-detail parameter. This floating-point
%% value limits the selection of the lowest resolution mipmap (highest mipmap level). The
%% initial value is 1000.
%%
%%
%%
%% `?GL_TEXTURE_WRAP_S': Sets the wrap parameter for texture coordinate s to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. `?GL_CLAMP_TO_BORDER' causes
%% the s coordinate to be clamped to the range [(-1 2/N) 1+(1 2/N)], where N is the size of the texture in
%% the direction of clamping.`?GL_CLAMP_TO_EDGE' causes s coordinates to be clamped
%% to the range [(1 2/N) 1-(1 2/N)], where N is the size of the texture in the direction of clamping. `?GL_REPEAT'
%% causes the integer part of the s coordinate to be ignored; the GL uses only the fractional
%% part, thereby creating a repeating pattern. `?GL_MIRRORED_REPEAT' causes the s
%% coordinate to be set to the fractional part of the texture coordinate if the integer part
%% of s is even; if the integer part of s is odd, then the s texture coordinate is
%% set to 1-frac(s), where frac(s) represents the fractional part of s. Initially, `?GL_TEXTURE_WRAP_S'
%% is set to `?GL_REPEAT'.
%%
%%
%%
%% `?GL_TEXTURE_WRAP_T': Sets the wrap parameter for texture coordinate t to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. See the discussion under `?GL_TEXTURE_WRAP_S'
%% . Initially, `?GL_TEXTURE_WRAP_T' is set to `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_WRAP_R': Sets the wrap parameter for texture coordinate r to either `?GL_CLAMP_TO_EDGE'
%% , `?GL_MIRRORED_REPEAT', or `?GL_REPEAT'. See the discussion under `?GL_TEXTURE_WRAP_S'
%% . Initially, `?GL_TEXTURE_WRAP_R' is set to `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_BORDER_COLOR': The data in `Params' specifies four values that
%% define the border values that should be used for border texels. If a texel is sampled
%% from the border of the texture, the values of `?GL_TEXTURE_BORDER_COLOR' are interpreted
%% as an RGBA color to match the texture's internal format and substituted for the non-existent
%% texel data. If the texture contains depth components, the first component of `?GL_TEXTURE_BORDER_COLOR'
%% is interpreted as a depth value. The initial value is (0.0, 0.0, 0.0, 0.0).
%%
%% `?GL_TEXTURE_COMPARE_MODE': Specifies the texture comparison mode for currently
%% bound textures. That is, a texture whose internal format is `?GL_DEPTH_COMPONENT_*';
%% see {@link gl:texImage2D/9} ) Permissible values are:
%%
%% `?GL_COMPARE_REF_TO_TEXTURE': Specifies that the interpolated and clamped r texture
%% coordinate should be compared to the value in the currently bound texture. See the discussion
%% of `?GL_TEXTURE_COMPARE_FUNC' for details of how the comparison is evaluated. The
%% result of the comparison is assigned to the red channel.
%%
%% `?GL_NONE': Specifies that the red channel should be assigned the appropriate value
%% from the currently bound texture.
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r<=(D t) r>(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
%% result={1.0 0.0 r>=(D t) r<(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r<(D t) r>=(D t))</td></tr><tr><td>`?GL_GREATER'
%% </td><td> result={1.0 0.0 r>(D t) r<=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&ne;
%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
%% </td><td> result={1.0 0.0 r&ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the texture value sampled from the currently
%% bound texture. result is assigned to R t.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSamplerParameter.xml">external</a> documentation.
-spec samplerParameteri(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: integer().
samplerParameteri(Sampler,Pname,Param) ->
cast(5713, <<Sampler:?GLuint,Pname:?GLenum,Param:?GLint>>).
%% @doc
%% See {@link samplerParameteri/3}
-spec samplerParameteriv(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: [integer()].
samplerParameteriv(Sampler,Pname,Param) ->
cast(5714, <<Sampler:?GLuint,Pname:?GLenum,(length(Param)):?GLuint,
(<< <<C:?GLint>> || C <- Param>>)/binary,0:(((1+length(Param)) rem 2)*32)>>).
%% @doc
%% See {@link samplerParameteri/3}
-spec samplerParameterf(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: float().
samplerParameterf(Sampler,Pname,Param) ->
cast(5715, <<Sampler:?GLuint,Pname:?GLenum,Param:?GLfloat>>).
%% @doc
%% See {@link samplerParameteri/3}
-spec samplerParameterfv(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: [float()].
samplerParameterfv(Sampler,Pname,Param) ->
cast(5716, <<Sampler:?GLuint,Pname:?GLenum,(length(Param)):?GLuint,
(<< <<C:?GLfloat>> || C <- Param>>)/binary,0:(((1+length(Param)) rem 2)*32)>>).
%% @doc
%% See {@link samplerParameteri/3}
-spec samplerParameterIiv(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: [integer()].
samplerParameterIiv(Sampler,Pname,Param) ->
cast(5717, <<Sampler:?GLuint,Pname:?GLenum,(length(Param)):?GLuint,
(<< <<C:?GLint>> || C <- Param>>)/binary,0:(((1+length(Param)) rem 2)*32)>>).
%% @doc glSamplerParameterI
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glSamplerParameterI.xml">external</a> documentation.
-spec samplerParameterIuiv(Sampler, Pname, Param) -> 'ok' when Sampler :: integer(),Pname :: enum(),Param :: [integer()].
samplerParameterIuiv(Sampler,Pname,Param) ->
cast(5718, <<Sampler:?GLuint,Pname:?GLenum,(length(Param)):?GLuint,
(<< <<C:?GLuint>> || C <- Param>>)/binary,0:(((1+length(Param)) rem 2)*32)>>).
%% @doc Return sampler parameter values
%%
%% ``gl:getSamplerParameter'' returns in `Params' the value or values of the sampler
%% parameter specified as `Pname' . `Sampler' defines the target sampler, and must
%% be the name of an existing sampler object, returned from a previous call to {@link gl:genSamplers/1}
%% . `Pname' accepts the same symbols as {@link gl:samplerParameteri/3} , with the same
%% interpretations:
%%
%% `?GL_TEXTURE_MAG_FILTER': Returns the single-valued texture magnification filter,
%% a symbolic constant. The initial value is `?GL_LINEAR'.
%%
%% `?GL_TEXTURE_MIN_FILTER': Returns the single-valued texture minification filter,
%% a symbolic constant. The initial value is `?GL_NEAREST_MIPMAP_LINEAR'.
%%
%% `?GL_TEXTURE_MIN_LOD': Returns the single-valued texture minimum level-of-detail
%% value. The initial value is -1000.
%%
%% `?GL_TEXTURE_MAX_LOD': Returns the single-valued texture maximum level-of-detail
%% value. The initial value is 1000.
%%
%% `?GL_TEXTURE_WRAP_S': Returns the single-valued wrapping function for texture coordinate
%% s, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_WRAP_T': Returns the single-valued wrapping function for texture coordinate
%% t, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_WRAP_R': Returns the single-valued wrapping function for texture coordinate
%% r, a symbolic constant. The initial value is `?GL_REPEAT'.
%%
%% `?GL_TEXTURE_BORDER_COLOR': Returns four integer or floating-point numbers that
%% comprise the RGBA color of the texture border. Floating-point values are returned in the
%% range [0 1]. Integer values are returned as a linear mapping of the internal floating-point
%% representation such that 1.0 maps to the most positive representable integer and -1.0
%% maps to the most negative representable integer. The initial value is (0, 0, 0, 0).
%%
%% `?GL_TEXTURE_COMPARE_MODE': Returns a single-valued texture comparison mode, a symbolic
%% constant. The initial value is `?GL_NONE'. See {@link gl:samplerParameteri/3} .
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Returns a single-valued texture comparison function,
%% a symbolic constant. The initial value is `?GL_LEQUAL'. See {@link gl:samplerParameteri/3}
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetSamplerParameter.xml">external</a> documentation.
-spec getSamplerParameteriv(Sampler, Pname) -> [integer()] when Sampler :: integer(),Pname :: enum().
getSamplerParameteriv(Sampler,Pname) ->
call(5719, <<Sampler:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link getSamplerParameteriv/2}
-spec getSamplerParameterIiv(Sampler, Pname) -> [integer()] when Sampler :: integer(),Pname :: enum().
getSamplerParameterIiv(Sampler,Pname) ->
call(5720, <<Sampler:?GLuint,Pname:?GLenum>>).
%% @doc
%% See {@link getSamplerParameteriv/2}
-spec getSamplerParameterfv(Sampler, Pname) -> [float()] when Sampler :: integer(),Pname :: enum().
getSamplerParameterfv(Sampler,Pname) ->
call(5721, <<Sampler:?GLuint,Pname:?GLenum>>).
%% @doc glGetSamplerParameterI
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetSamplerParameterI.xml">external</a> documentation.
-spec getSamplerParameterIuiv(Sampler, Pname) -> [integer()] when Sampler :: integer(),Pname :: enum().
getSamplerParameterIuiv(Sampler,Pname) ->
call(5722, <<Sampler:?GLuint,Pname:?GLenum>>).
%% @doc Record the GL time into a query object after all previous commands have reached the GL server but have not yet necessarily executed.
%%
%% ``gl:queryCounter'' causes the GL to record the current time into the query object named
%% `Id' . `Target' must be `?GL_TIMESTAMP'. The time is recorded after all
%% previous commands on the GL client and server state and the framebuffer have been fully
%% realized. When the time is recorded, the query result for that object is marked available.
%% ``gl:queryCounter'' timer queries can be used within a {@link gl:beginQuery/2} / {@link gl:beginQuery/2}
%% block where the target is `?GL_TIME_ELAPSED' and it does not affect the result of
%% that query object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glQueryCounter.xml">external</a> documentation.
-spec queryCounter(Id, Target) -> 'ok' when Id :: integer(),Target :: enum().
queryCounter(Id,Target) ->
cast(5723, <<Id:?GLuint,Target:?GLenum>>).
%% @doc glGetQueryObjecti64v
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetQueryObjecti64v.xml">external</a> documentation.
-spec getQueryObjecti64v(Id, Pname) -> integer() when Id :: integer(),Pname :: enum().
getQueryObjecti64v(Id,Pname) ->
call(5724, <<Id:?GLuint,Pname:?GLenum>>).
%% @doc glGetQueryObjectui64v
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetQueryObjectui64v.xml">external</a> documentation.
-spec getQueryObjectui64v(Id, Pname) -> integer() when Id :: integer(),Pname :: enum().
getQueryObjectui64v(Id,Pname) ->
call(5725, <<Id:?GLuint,Pname:?GLenum>>).
%% @doc Render primitives from array data, taking parameters from memory
%%
%% ``gl:drawArraysIndirect'' specifies multiple geometric primitives with very few subroutine
%% calls. ``gl:drawArraysIndirect'' behaves similarly to {@link gl:drawArraysInstancedBaseInstance/5}
%% , execept that the parameters to {@link gl:drawArraysInstancedBaseInstance/5} are stored
%% in memory at the address given by `Indirect' .
%%
%% The parameters addressed by `Indirect' are packed into a structure that takes the
%% form (in C): typedef struct { uint count; uint primCount; uint first; uint baseInstance;
%% } DrawArraysIndirectCommand; const DrawArraysIndirectCommand *cmd = (const DrawArraysIndirectCommand
%% *)indirect; glDrawArraysInstancedBaseInstance(mode, cmd->first, cmd->count, cmd->primCount,
%% cmd->baseInstance);
%%
%% If a buffer is bound to the `?GL_DRAW_INDIRECT_BUFFER' binding at the time of a
%% call to ``gl:drawArraysIndirect'', `Indirect' is interpreted as an offset, in basic
%% machine units, into that buffer and the parameter data is read from the buffer rather
%% than from client memory.
%%
%% In contrast to {@link gl:drawArraysInstancedBaseInstance/5} , the first member of the parameter
%% structure is unsigned, and out-of-range indices do not generate an error.
%%
%% Vertex attributes that are modified by ``gl:drawArraysIndirect'' have an unspecified
%% value after ``gl:drawArraysIndirect'' returns. Attributes that aren't modified remain
%% well defined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawArraysIndirect.xml">external</a> documentation.
-spec drawArraysIndirect(Mode, Indirect) -> 'ok' when Mode :: enum(),Indirect :: offset()|mem().
drawArraysIndirect(Mode,Indirect) when is_integer(Indirect) ->
cast(5726, <<Mode:?GLenum,Indirect:?GLuint>>);
drawArraysIndirect(Mode,Indirect) ->
send_bin(Indirect),
cast(5727, <<Mode:?GLenum>>).
%% @doc Render indexed primitives from array data, taking parameters from memory
%%
%% ``gl:drawElementsIndirect'' specifies multiple indexed geometric primitives with very
%% few subroutine calls. ``gl:drawElementsIndirect'' behaves similarly to {@link gl:drawElementsInstancedBaseVertexBaseInstance/7}
%% , execpt that the parameters to {@link gl:drawElementsInstancedBaseVertexBaseInstance/7}
%% are stored in memory at the address given by `Indirect' .
%%
%% The parameters addressed by `Indirect' are packed into a structure that takes the
%% form (in C): typedef struct { uint count; uint primCount; uint firstIndex; uint baseVertex;
%% uint baseInstance; } DrawElementsIndirectCommand;
%%
%% ``gl:drawElementsIndirect'' is equivalent to: void glDrawElementsIndirect(GLenum mode,
%% GLenum type, const void * indirect) { const DrawElementsIndirectCommand *cmd = (const
%% DrawElementsIndirectCommand *)indirect; glDrawElementsInstancedBaseVertexBaseInstance(mode,
%% cmd->count, type, cmd->firstIndex + size-of-type, cmd->primCount, cmd->baseVertex,
%% cmd->baseInstance); }
%%
%% If a buffer is bound to the `?GL_DRAW_INDIRECT_BUFFER' binding at the time of a
%% call to ``gl:drawElementsIndirect'', `Indirect' is interpreted as an offset, in
%% basic machine units, into that buffer and the parameter data is read from the buffer rather
%% than from client memory.
%%
%% Note that indices stored in client memory are not supported. If no buffer is bound to
%% the `?GL_ELEMENT_ARRAY_BUFFER' binding, an error will be generated.
%%
%% The results of the operation are undefined if the reservedMustBeZero member of the parameter
%% structure is non-zero. However, no error is generated in this case.
%%
%% Vertex attributes that are modified by ``gl:drawElementsIndirect'' have an unspecified
%% value after ``gl:drawElementsIndirect'' returns. Attributes that aren't modified remain
%% well defined.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsIndirect.xml">external</a> documentation.
-spec drawElementsIndirect(Mode, Type, Indirect) -> 'ok' when Mode :: enum(),Type :: enum(),Indirect :: offset()|mem().
drawElementsIndirect(Mode,Type,Indirect) when is_integer(Indirect) ->
cast(5728, <<Mode:?GLenum,Type:?GLenum,Indirect:?GLuint>>);
drawElementsIndirect(Mode,Type,Indirect) ->
send_bin(Indirect),
cast(5729, <<Mode:?GLenum,Type:?GLenum>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1d(Location, X) -> 'ok' when Location :: integer(),X :: float().
uniform1d(Location,X) ->
cast(5730, <<Location:?GLint,0:32,X:?GLdouble>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2d(Location, X, Y) -> 'ok' when Location :: integer(),X :: float(),Y :: float().
uniform2d(Location,X,Y) ->
cast(5731, <<Location:?GLint,0:32,X:?GLdouble,Y:?GLdouble>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3d(Location, X, Y, Z) -> 'ok' when Location :: integer(),X :: float(),Y :: float(),Z :: float().
uniform3d(Location,X,Y,Z) ->
cast(5732, <<Location:?GLint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4d(Location, X, Y, Z, W) -> 'ok' when Location :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
uniform4d(Location,X,Y,Z,W) ->
cast(5733, <<Location:?GLint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform1dv(Location, Value) -> 'ok' when Location :: integer(),Value :: [float()].
uniform1dv(Location,Value) ->
cast(5734, <<Location:?GLint,0:32,(length(Value)):?GLuint,0:32,
(<< <<C:?GLdouble>> || C <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform2dv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float()}].
uniform2dv(Location,Value) ->
cast(5735, <<Location:?GLint,0:32,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform3dv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float(),float()}].
uniform3dv(Location,Value) ->
cast(5736, <<Location:?GLint,0:32,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniform4dv(Location, Value) -> 'ok' when Location :: integer(),Value :: [{float(),float(),float(),float()}].
uniform4dv(Location,Value) ->
cast(5737, <<Location:?GLint,0:32,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float()}].
uniformMatrix2dv(Location,Transpose,Value) ->
cast(5738, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix3dv(Location,Transpose,Value) ->
cast(5739, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4dv(Location,Transpose,Value) ->
cast(5740, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble,V13:?GLdouble,V14:?GLdouble,V15:?GLdouble,V16:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2x3dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
uniformMatrix2x3dv(Location,Transpose,Value) ->
cast(5741, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix2x4dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix2x4dv(Location,Transpose,Value) ->
cast(5742, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3x2dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
uniformMatrix3x2dv(Location,Transpose,Value) ->
cast(5743, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix3x4dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix3x4dv(Location,Transpose,Value) ->
cast(5744, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4x2dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4x2dv(Location,Transpose,Value) ->
cast(5745, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link uniform1f/2}
-spec uniformMatrix4x3dv(Location, Transpose, Value) -> 'ok' when Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
uniformMatrix4x3dv(Location,Transpose,Value) ->
cast(5746, <<Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link getUniformfv/2}
-spec getUniformdv(Program, Location) -> matrix() when Program :: integer(),Location :: integer().
getUniformdv(Program,Location) ->
call(5747, <<Program:?GLuint,Location:?GLint>>).
%% @doc Retrieve the location of a subroutine uniform of a given shader stage within a program
%%
%% ``gl:getSubroutineUniformLocation'' returns the location of the subroutine uniform variable
%% `Name' in the shader stage of type `Shadertype' attached to `Program' ,
%% with behavior otherwise identical to {@link gl:getUniformLocation/2} .
%%
%% If `Name' is not the name of a subroutine uniform in the shader stage, -1 is returned,
%% but no error is generated. If `Name' is the name of a subroutine uniform in the shader
%% stage, a value between zero and the value of `?GL_ACTIVE_SUBROUTINE_LOCATIONS' minus
%% one will be returned. Subroutine locations are assigned using consecutive integers in
%% the range from zero to the value of `?GL_ACTIVE_SUBROUTINE_LOCATIONS' minus one for
%% the shader stage. For active subroutine uniforms declared as arrays, the declared array
%% elements are assigned consecutive locations.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetSubroutineUniformLocation.xml">external</a> documentation.
-spec getSubroutineUniformLocation(Program, Shadertype, Name) -> integer() when Program :: integer(),Shadertype :: enum(),Name :: string().
getSubroutineUniformLocation(Program,Shadertype,Name) ->
call(5748, <<Program:?GLuint,Shadertype:?GLenum,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc Retrieve the index of a subroutine uniform of a given shader stage within a program
%%
%% ``gl:getSubroutineIndex'' returns the index of a subroutine uniform within a shader
%% stage attached to a program object. `Program' contains the name of the program to
%% which the shader is attached. `Shadertype' specifies the stage from which to query
%% shader subroutine index. `Name' contains the null-terminated name of the subroutine
%% uniform whose name to query.
%%
%% If `Name' is not the name of a subroutine uniform in the shader stage, `?GL_INVALID_INDEX'
%% is returned, but no error is generated. If `Name' is the name of a subroutine uniform
%% in the shader stage, a value between zero and the value of `?GL_ACTIVE_SUBROUTINES'
%% minus one will be returned. Subroutine indices are assigned using consecutive integers
%% in the range from zero to the value of `?GL_ACTIVE_SUBROUTINES' minus one for the
%% shader stage.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetSubroutineIndex.xml">external</a> documentation.
-spec getSubroutineIndex(Program, Shadertype, Name) -> integer() when Program :: integer(),Shadertype :: enum(),Name :: string().
getSubroutineIndex(Program,Shadertype,Name) ->
call(5749, <<Program:?GLuint,Shadertype:?GLenum,(list_to_binary([Name|[0]]))/binary,0:((8-((length(Name)+ 1) rem 8)) rem 8)>>).
%% @doc Query the name of an active shader subroutine uniform
%%
%% ``gl:getActiveSubroutineUniformName'' retrieves the name of an active shader subroutine
%% uniform. `Program' contains the name of the program containing the uniform. `Shadertype'
%% specifies the stage for which which the uniform location, given by `Index' , is valid.
%% `Index' must be between zero and the value of `?GL_ACTIVE_SUBROUTINE_UNIFORMS'
%% minus one for the shader stage.
%%
%% The uniform name is returned as a null-terminated string in `Name' . The actual number
%% of characters written into `Name' , excluding the null terminator is returned in `Length'
%% . If `Length' is `?NULL', no length is returned. The maximum number of characters
%% that may be written into `Name' , including the null terminator, is specified by `Bufsize'
%% . The length of the longest subroutine uniform name in `Program' and `Shadertype'
%% is given by the value of `?GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH', which can be
%% queried with {@link gl:getProgramStageiv/3} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveSubroutineUniformName.xml">external</a> documentation.
-spec getActiveSubroutineUniformName(Program, Shadertype, Index, Bufsize) -> string() when Program :: integer(),Shadertype :: enum(),Index :: integer(),Bufsize :: integer().
getActiveSubroutineUniformName(Program,Shadertype,Index,Bufsize) ->
call(5750, <<Program:?GLuint,Shadertype:?GLenum,Index:?GLuint,Bufsize:?GLsizei>>).
%% @doc Query the name of an active shader subroutine
%%
%% ``gl:getActiveSubroutineName'' queries the name of an active shader subroutine uniform
%% from the program object given in `Program' . `Index' specifies the index of the
%% shader subroutine uniform within the shader stage given by `Stage' , and must between
%% zero and the value of `?GL_ACTIVE_SUBROUTINES' minus one for the shader stage.
%%
%% The name of the selected subroutine is returned as a null-terminated string in `Name'
%% . The actual number of characters written into `Name' , not including the null-terminator,
%% is is returned in `Length' . If `Length' is `?NULL', no length is returned.
%% The maximum number of characters that may be written into `Name' , including the null-terminator,
%% is given in `Bufsize' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetActiveSubroutineName.xml">external</a> documentation.
-spec getActiveSubroutineName(Program, Shadertype, Index, Bufsize) -> string() when Program :: integer(),Shadertype :: enum(),Index :: integer(),Bufsize :: integer().
getActiveSubroutineName(Program,Shadertype,Index,Bufsize) ->
call(5751, <<Program:?GLuint,Shadertype:?GLenum,Index:?GLuint,Bufsize:?GLsizei>>).
%% @doc Load active subroutine uniforms
%%
%% ``gl:uniformSubroutines'' loads all active subroutine uniforms for shader stage `Shadertype'
%% of the current program with subroutine indices from `Indices' , storing `Indices[i]'
%% into the uniform at location `I' . `Count' must be equal to the value of `?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS'
%% for the program currently in use at shader stage `Shadertype' . Furthermore, all
%% values in `Indices' must be less than the value of `?GL_ACTIVE_SUBROUTINES'
%% for the shader stage.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUniformSubroutines.xml">external</a> documentation.
-spec uniformSubroutinesuiv(Shadertype, Indices) -> 'ok' when Shadertype :: enum(),Indices :: [integer()].
uniformSubroutinesuiv(Shadertype,Indices) ->
cast(5752, <<Shadertype:?GLenum,(length(Indices)):?GLuint,
(<< <<C:?GLuint>> || C <- Indices>>)/binary,0:(((length(Indices)) rem 2)*32)>>).
%% @doc Retrieve the value of a subroutine uniform of a given shader stage of the current program
%%
%% ``gl:getUniformSubroutine'' retrieves the value of the subroutine uniform at location `Location'
%% for shader stage `Shadertype' of the current program. `Location' must be less
%% than the value of `?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS' for the shader currently
%% in use at shader stage `Shadertype' . The value of the subroutine uniform is returned
%% in `Values' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetUniformSubroutine.xml">external</a> documentation.
-spec getUniformSubroutineuiv(Shadertype, Location) -> {integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer(),integer()} when Shadertype :: enum(),Location :: integer().
getUniformSubroutineuiv(Shadertype,Location) ->
call(5753, <<Shadertype:?GLenum,Location:?GLint>>).
%% @doc Retrieve properties of a program object corresponding to a specified shader stage
%%
%% ``gl:getProgramStage'' queries a parameter of a shader stage attached to a program object.
%% `Program' contains the name of the program to which the shader is attached. `Shadertype'
%% specifies the stage from which to query the parameter. `Pname' specifies which parameter
%% should be queried. The value or values of the parameter to be queried is returned in the
%% variable whose address is given in `Values' .
%%
%% If `Pname' is `?GL_ACTIVE_SUBROUTINE_UNIFORMS', the number of active subroutine
%% variables in the stage is returned in `Values' .
%%
%% If `Pname' is `?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS', the number of active
%% subroutine variable locations in the stage is returned in `Values' .
%%
%% If `Pname' is `?GL_ACTIVE_SUBROUTINES', the number of active subroutines in
%% the stage is returned in `Values' .
%%
%% If `Pname' is `?GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH', the length of the
%% longest subroutine uniform for the stage is returned in `Values' .
%%
%% If `Pname' is `?GL_ACTIVE_SUBROUTINE_MAX_LENGTH', the length of the longest
%% subroutine name for the stage is returned in `Values' . The returned name length includes
%% space for the null-terminator.
%%
%% If there is no shader present of type `Shadertype' , the returned value will be consistent
%% with a shader containing no subroutines or subroutine uniforms.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramStage.xml">external</a> documentation.
-spec getProgramStageiv(Program, Shadertype, Pname) -> integer() when Program :: integer(),Shadertype :: enum(),Pname :: enum().
getProgramStageiv(Program,Shadertype,Pname) ->
call(5754, <<Program:?GLuint,Shadertype:?GLenum,Pname:?GLenum>>).
%% @doc Specifies the parameters for patch primitives
%%
%% ``gl:patchParameter'' specifies the parameters that will be used for patch primitives. `Pname'
%% specifies the parameter to modify and must be either `?GL_PATCH_VERTICES', `?GL_PATCH_DEFAULT_OUTER_LEVEL'
%% or `?GL_PATCH_DEFAULT_INNER_LEVEL'. For ``gl:patchParameteri'', `Value' specifies
%% the new value for the parameter specified by `Pname' . For ``gl:patchParameterfv'',
%% `Values' specifies the address of an array containing the new values for the parameter
%% specified by `Pname' .
%%
%% When `Pname' is `?GL_PATCH_VERTICES', `Value' specifies the number of
%% vertices that will be used to make up a single patch primitive. Patch primitives are consumed
%% by the tessellation control shader (if present) and subsequently used for tessellation.
%% When primitives are specified using {@link gl:drawArrays/3} or a similar function, each
%% patch will be made from `Parameter' control points, each represented by a vertex
%% taken from the enabeld vertex arrays. `Parameter' must be greater than zero, and
%% less than or equal to the value of `?GL_MAX_PATCH_VERTICES'.
%%
%% When `Pname' is `?GL_PATCH_DEFAULT_OUTER_LEVEL' or `?GL_PATCH_DEFAULT_INNER_LEVEL'
%% , `Values' contains the address of an array contiaining the default outer or inner
%% tessellation levels, respectively, to be used when no tessellation control shader is present.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPatchParameter.xml">external</a> documentation.
-spec patchParameteri(Pname, Value) -> 'ok' when Pname :: enum(),Value :: integer().
patchParameteri(Pname,Value) ->
cast(5755, <<Pname:?GLenum,Value:?GLint>>).
%% @doc
%% See {@link patchParameteri/2}
-spec patchParameterfv(Pname, Values) -> 'ok' when Pname :: enum(),Values :: [float()].
patchParameterfv(Pname,Values) ->
cast(5756, <<Pname:?GLenum,(length(Values)):?GLuint,
(<< <<C:?GLfloat>> || C <- Values>>)/binary,0:(((length(Values)) rem 2)*32)>>).
%% @doc Bind a transform feedback object
%%
%% ``gl:bindTransformFeedback'' binds the transform feedback object with name `Id'
%% to the current GL state. `Id' must be a name previously returned from a call to {@link gl:genTransformFeedbacks/1}
%% . If `Id' has not previously been bound, a new transform feedback object with name `Id'
%% and initialized with with the default transform state vector is created.
%%
%% In the initial state, a default transform feedback object is bound and treated as a transform
%% feedback object with a name of zero. If the name zero is subsequently bound, the default
%% transform feedback object is again bound to the GL state.
%%
%% While a transform feedback buffer object is bound, GL operations on the target to which
%% it is bound affect the bound transform feedback object, and queries of the target to which
%% a transform feedback object is bound return state from the bound object. When buffer objects
%% are bound for transform feedback, they are attached to the currently bound transform feedback
%% object. Buffer objects are used for trans- form feedback only if they are attached to
%% the currently bound transform feedback object.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindTransformFeedback.xml">external</a> documentation.
-spec bindTransformFeedback(Target, Id) -> 'ok' when Target :: enum(),Id :: integer().
bindTransformFeedback(Target,Id) ->
cast(5757, <<Target:?GLenum,Id:?GLuint>>).
%% @doc Delete transform feedback objects
%%
%% ``gl:deleteTransformFeedbacks'' deletes the `N' transform feedback objects whose
%% names are stored in the array `Ids' . Unused names in `Ids' are ignored, as is
%% the name zero. After a transform feedback object is deleted, its name is again unused
%% and it has no contents. If an active transform feedback object is deleted, its name immediately
%% becomes unused, but the underlying object is not deleted until it is no longer active.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteTransformFeedbacks.xml">external</a> documentation.
-spec deleteTransformFeedbacks(Ids) -> 'ok' when Ids :: [integer()].
deleteTransformFeedbacks(Ids) ->
cast(5758, <<(length(Ids)):?GLuint,
(<< <<C:?GLuint>> || C <- Ids>>)/binary,0:(((1+length(Ids)) rem 2)*32)>>).
%% @doc Reserve transform feedback object names
%%
%% ``gl:genTransformFeedbacks'' returns `N' previously unused transform feedback object
%% names in `Ids' . These names are marked as used, for the purposes of ``gl:genTransformFeedbacks''
%% only, but they acquire transform feedback state only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenTransformFeedbacks.xml">external</a> documentation.
-spec genTransformFeedbacks(N) -> [integer()] when N :: integer().
genTransformFeedbacks(N) ->
call(5759, <<N:?GLsizei>>).
%% @doc Determine if a name corresponds to a transform feedback object
%%
%% ``gl:isTransformFeedback'' returns `?GL_TRUE' if `Id' is currently the name
%% of a transform feedback object. If `Id' is zero, or if `?id' is not the name
%% of a transform feedback object, or if an error occurs, ``gl:isTransformFeedback'' returns
%% `?GL_FALSE'. If `Id' is a name returned by {@link gl:genTransformFeedbacks/1} ,
%% but that has not yet been bound through a call to {@link gl:bindTransformFeedback/2} , then
%% the name is not a transform feedback object and ``gl:isTransformFeedback'' returns `?GL_FALSE'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsTransformFeedback.xml">external</a> documentation.
-spec isTransformFeedback(Id) -> 0|1 when Id :: integer().
isTransformFeedback(Id) ->
call(5760, <<Id:?GLuint>>).
%% @doc Pause transform feedback operations
%%
%% ``gl:pauseTransformFeedback'' pauses transform feedback operations on the currently
%% active transform feedback object. When transform feedback operations are paused, transform
%% feedback is still considered active and changing most transform feedback state related
%% to the object results in an error. However, a new transform feedback object may be bound
%% while transform feedback is paused.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glPauseTransformFeedback.xml">external</a> documentation.
-spec pauseTransformFeedback() -> 'ok'.
pauseTransformFeedback() ->
cast(5761, <<>>).
%% @doc Resume transform feedback operations
%%
%% ``gl:resumeTransformFeedback'' resumes transform feedback operations on the currently
%% active transform feedback object. When transform feedback operations are paused, transform
%% feedback is still considered active and changing most transform feedback state related
%% to the object results in an error. However, a new transform feedback object may be bound
%% while transform feedback is paused.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glResumeTransformFeedback.xml">external</a> documentation.
-spec resumeTransformFeedback() -> 'ok'.
resumeTransformFeedback() ->
cast(5762, <<>>).
%% @doc Render primitives using a count derived from a transform feedback object
%%
%% ``gl:drawTransformFeedback'' draws primitives of a type specified by `Mode' using
%% a count retrieved from the transform feedback specified by `Id' . Calling ``gl:drawTransformFeedback''
%% is equivalent to calling {@link gl:drawArrays/3} with `Mode' as specified, `First'
%% set to zero, and `Count' set to the number of vertices captured on vertex stream
%% zero the last time transform feedback was active on the transform feedback object named
%% by `Id' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawTransformFeedback.xml">external</a> documentation.
-spec drawTransformFeedback(Mode, Id) -> 'ok' when Mode :: enum(),Id :: integer().
drawTransformFeedback(Mode,Id) ->
cast(5763, <<Mode:?GLenum,Id:?GLuint>>).
%% @doc Render primitives using a count derived from a specifed stream of a transform feedback object
%%
%% ``gl:drawTransformFeedbackStream'' draws primitives of a type specified by `Mode'
%% using a count retrieved from the transform feedback stream specified by `Stream'
%% of the transform feedback object specified by `Id' . Calling ``gl:drawTransformFeedbackStream''
%% is equivalent to calling {@link gl:drawArrays/3} with `Mode' as specified, `First'
%% set to zero, and `Count' set to the number of vertices captured on vertex stream `Stream'
%% the last time transform feedback was active on the transform feedback object named by `Id'
%% .
%%
%% Calling {@link gl:drawTransformFeedback/2} is equivalent to calling ``gl:drawTransformFeedbackStream''
%% with `Stream' set to zero.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawTransformFeedbackStream.xml">external</a> documentation.
-spec drawTransformFeedbackStream(Mode, Id, Stream) -> 'ok' when Mode :: enum(),Id :: integer(),Stream :: integer().
drawTransformFeedbackStream(Mode,Id,Stream) ->
cast(5764, <<Mode:?GLenum,Id:?GLuint,Stream:?GLuint>>).
%% @doc glBeginQueryIndexe
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginQueryIndexe.xml">external</a> documentation.
-spec beginQueryIndexed(Target, Index, Id) -> 'ok' when Target :: enum(),Index :: integer(),Id :: integer().
beginQueryIndexed(Target,Index,Id) ->
cast(5765, <<Target:?GLenum,Index:?GLuint,Id:?GLuint>>).
%% @doc Delimit the boundaries of a query object on an indexed target
%%
%% ``gl:beginQueryIndexed'' and {@link gl:endQueryIndexed/2} delimit the boundaries of a
%% query object. `Query' must be a name previously returned from a call to {@link gl:genQueries/1}
%% . If a query object with name `Id' does not yet exist it is created with the type
%% determined by `Target' . `Target' must be one of `?GL_SAMPLES_PASSED', `?GL_ANY_SAMPLES_PASSED'
%% , `?GL_PRIMITIVES_GENERATED', `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN', or `?GL_TIME_ELAPSED'
%% . The behavior of the query object depends on its type and is as follows.
%%
%% `Index' specifies the index of the query target and must be between a `Target' -specific
%% maximum.
%%
%% If `Target' is `?GL_SAMPLES_PASSED', `Id' must be an unused name, or the
%% name of an existing occlusion query object. When ``gl:beginQueryIndexed'' is executed,
%% the query object's samples-passed counter is reset to 0. Subsequent rendering will increment
%% the counter for every sample that passes the depth test. If the value of `?GL_SAMPLE_BUFFERS'
%% is 0, then the samples-passed count is incremented by 1 for each fragment. If the value
%% of `?GL_SAMPLE_BUFFERS' is 1, then the samples-passed count is incremented by the
%% number of samples whose coverage bit is set. However, implementations, at their discression
%% may instead increase the samples-passed count by the value of `?GL_SAMPLES' if any
%% sample in the fragment is covered. When ``gl:endQueryIndexed'' is executed, the samples-passed
%% counter is assigned to the query object's result value. This value can be queried by calling
%% {@link gl:getQueryObjectiv/2} with `Pname' `?GL_QUERY_RESULT'. When `Target'
%% is `?GL_SAMPLES_PASSED', `Index' must be zero.
%%
%% If `Target' is `?GL_ANY_SAMPLES_PASSED', `Id' must be an unused name,
%% or the name of an existing boolean occlusion query object. When ``gl:beginQueryIndexed''
%% is executed, the query object's samples-passed flag is reset to `?GL_FALSE'. Subsequent
%% rendering causes the flag to be set to `?GL_TRUE' if any sample passes the depth
%% test. When ``gl:endQueryIndexed'' is executed, the samples-passed flag is assigned to
%% the query object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'. When `Target' is `?GL_ANY_SAMPLES_PASSED'
%% , `Index' must be zero.
%%
%% If `Target' is `?GL_PRIMITIVES_GENERATED', `Id' must be an unused name,
%% or the name of an existing primitive query object previously bound to the `?GL_PRIMITIVES_GENERATED'
%% query binding. When ``gl:beginQueryIndexed'' is executed, the query object's primitives-generated
%% counter is reset to 0. Subsequent rendering will increment the counter once for every
%% vertex that is emitted from the geometry shader to the stream given by `Index' , or
%% from the vertex shader if `Index' is zero and no geometry shader is present. When ``gl:endQueryIndexed''
%% is executed, the primitives-generated counter for stream `Index' is assigned to
%% the query object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'. When `Target' is `?GL_PRIMITIVES_GENERATED'
%% , `Index' must be less than the value of `?GL_MAX_VERTEX_STREAMS'.
%%
%% If `Target' is `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN', `Id' must
%% be an unused name, or the name of an existing primitive query object previously bound
%% to the `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN' query binding. When ``gl:beginQueryIndexed''
%% is executed, the query object's primitives-written counter for the stream specified by `Index'
%% is reset to 0. Subsequent rendering will increment the counter once for every vertex
%% that is written into the bound transform feedback buffer(s) for stream `Index' . If
%% transform feedback mode is not activated between the call to ``gl:beginQueryIndexed''
%% and ``gl:endQueryIndexed'', the counter will not be incremented. When ``gl:endQueryIndexed''
%% is executed, the primitives-written counter for stream `Index' is assigned to the
%% query object's result value. This value can be queried by calling {@link gl:getQueryObjectiv/2}
%% with `Pname' `?GL_QUERY_RESULT'. When `Target' is `?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN'
%% , `Index' must be less than the value of `?GL_MAX_VERTEX_STREAMS'.
%%
%% If `Target' is `?GL_TIME_ELAPSED', `Id' must be an unused name, or the
%% name of an existing timer query object previously bound to the `?GL_TIME_ELAPSED'
%% query binding. When ``gl:beginQueryIndexed'' is executed, the query object's time counter
%% is reset to 0. When ``gl:endQueryIndexed'' is executed, the elapsed server time that
%% has passed since the call to ``gl:beginQueryIndexed'' is written into the query object's
%% time counter. This value can be queried by calling {@link gl:getQueryObjectiv/2} with `Pname'
%% `?GL_QUERY_RESULT'. When `Target' is `?GL_TIME_ELAPSED', `Index' must
%% be zero.
%%
%% Querying the `?GL_QUERY_RESULT' implicitly flushes the GL pipeline until the rendering
%% delimited by the query object has completed and the result is available. `?GL_QUERY_RESULT_AVAILABLE'
%% can be queried to determine if the result is immediately available or if the rendering
%% is not yet complete.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBeginQueryIndexed.xml">external</a> documentation.
-spec endQueryIndexed(Target, Index) -> 'ok' when Target :: enum(),Index :: integer().
endQueryIndexed(Target,Index) ->
cast(5766, <<Target:?GLenum,Index:?GLuint>>).
%% @doc Return parameters of an indexed query object target
%%
%% ``gl:getQueryIndexediv'' returns in `Params' a selected parameter of the indexed
%% query object target specified by `Target' and `Index' . `Index' specifies
%% the index of the query object target and must be between zero and a target-specific maxiumum.
%%
%%
%% `Pname' names a specific query object target parameter. When `Pname' is `?GL_CURRENT_QUERY'
%% , the name of the currently active query for the specified `Index' of `Target' ,
%% or zero if no query is active, will be placed in `Params' . If `Pname' is `?GL_QUERY_COUNTER_BITS'
%% , the implementation-dependent number of bits used to hold the result of queries for `Target'
%% is returned in `Params' .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetQueryIndexed.xml">external</a> documentation.
-spec getQueryIndexediv(Target, Index, Pname) -> integer() when Target :: enum(),Index :: integer(),Pname :: enum().
getQueryIndexediv(Target,Index,Pname) ->
call(5767, <<Target:?GLenum,Index:?GLuint,Pname:?GLenum>>).
%% @doc Release resources consumed by the implementation's shader compiler
%%
%% ``gl:releaseShaderCompiler'' provides a hint to the implementation that it may free
%% internal resources associated with its shader compiler. {@link gl:compileShader/1} may
%% subsequently be called and the implementation may at that time reallocate resources previously
%% freed by the call to ``gl:releaseShaderCompiler''.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glReleaseShaderCompiler.xml">external</a> documentation.
-spec releaseShaderCompiler() -> 'ok'.
releaseShaderCompiler() ->
cast(5768, <<>>).
%% @doc Load pre-compiled shader binaries
%%
%% ``gl:shaderBinary'' loads pre-compiled shader binary code into the `Count' shader
%% objects whose handles are given in `Shaders' . `Binary' points to `Length'
%% bytes of binary shader code stored in client memory. `BinaryFormat' specifies the
%% format of the pre-compiled code.
%%
%% The binary image contained in `Binary' will be decoded according to the extension
%% specification defining the specified `BinaryFormat' token. OpenGL does not define
%% any specific binary formats, but it does provide a mechanism to obtain token vaues for
%% such formats provided by such extensions.
%%
%% Depending on the types of the shader objects in `Shaders' , ``gl:shaderBinary''
%% will individually load binary vertex or fragment shaders, or load an executable binary
%% that contains an optimized pair of vertex and fragment shaders stored in the same binary.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glShaderBinary.xml">external</a> documentation.
-spec shaderBinary(Shaders, Binaryformat, Binary) -> 'ok' when Shaders :: [integer()],Binaryformat :: enum(),Binary :: binary().
shaderBinary(Shaders,Binaryformat,Binary) ->
send_bin(Binary),
cast(5769, <<(length(Shaders)):?GLuint,
(<< <<C:?GLuint>> || C <- Shaders>>)/binary,0:(((1+length(Shaders)) rem 2)*32),Binaryformat:?GLenum>>).
%% @doc Retrieve the range and precision for numeric formats supported by the shader compiler
%%
%% ``gl:getShaderPrecisionFormat'' retrieves the numeric range and precision for the implementation's
%% representation of quantities in different numeric formats in specified shader type. `ShaderType'
%% specifies the type of shader for which the numeric precision and range is to be retrieved
%% and must be one of `?GL_VERTEX_SHADER' or `?GL_FRAGMENT_SHADER'. `PrecisionType'
%% specifies the numeric format to query and must be one of `?GL_LOW_FLOAT', `?GL_MEDIUM_FLOAT'
%% `?GL_HIGH_FLOAT', `?GL_LOW_INT', `?GL_MEDIUM_INT', or `?GL_HIGH_INT'.
%%
%%
%% `Range' points to an array of two integers into which the format's numeric range
%% will be returned. If min and max are the smallest values representable in the format,
%% then the values returned are defined to be: `Range' [0] = floor(log2(|min|)) and `Range'
%% [1] = floor(log2(|max|)).
%%
%% `Precision' specifies the address of an integer into which will be written the log2
%% value of the number of bits of precision of the format. If the smallest representable
%% value greater than 1 is 1 + `eps', then the integer addressed by `Precision'
%% will contain floor(-log2(eps)).
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetShaderPrecisionFormat.xml">external</a> documentation.
-spec getShaderPrecisionFormat(Shadertype, Precisiontype) -> {Range :: {integer(),integer()},Precision :: integer()} when Shadertype :: enum(),Precisiontype :: enum().
getShaderPrecisionFormat(Shadertype,Precisiontype) ->
call(5770, <<Shadertype:?GLenum,Precisiontype:?GLenum>>).
%% @doc
%% See {@link depthRange/2}
-spec depthRangef(N, F) -> 'ok' when N :: clamp(),F :: clamp().
depthRangef(N,F) ->
cast(5771, <<N:?GLclampf,F:?GLclampf>>).
%% @doc glClearDepthf
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glClearDepthf.xml">external</a> documentation.
-spec clearDepthf(D) -> 'ok' when D :: clamp().
clearDepthf(D) ->
cast(5772, <<D:?GLclampf>>).
%% @doc Return a binary representation of a program object's compiled and linked executable source
%%
%% ``gl:getProgramBinary'' returns a binary representation of the compiled and linked executable
%% for `Program' into the array of bytes whose address is specified in `Binary' .
%% The maximum number of bytes that may be written into `Binary' is specified by `BufSize'
%% . If the program binary is greater in size than `BufSize' bytes, then an error is
%% generated, otherwise the actual number of bytes written into `Binary' is returned
%% in the variable whose address is given by `Length' . If `Length' is `?NULL',
%% then no length is returned.
%%
%% The format of the program binary written into `Binary' is returned in the variable
%% whose address is given by `BinaryFormat' , and may be implementation dependent. The
%% binary produced by the GL may subsequently be returned to the GL by calling {@link gl:programBinary/3}
%% , with `BinaryFormat' and `Length' set to the values returned by ``gl:getProgramBinary''
%% , and passing the returned binary data in the `Binary' parameter.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramBinary.xml">external</a> documentation.
-spec getProgramBinary(Program, BufSize) -> {BinaryFormat :: enum(),Binary :: binary()} when Program :: integer(),BufSize :: integer().
getProgramBinary(Program,BufSize) ->
call(5773, <<Program:?GLuint,BufSize:?GLsizei>>).
%% @doc Load a program object with a program binary
%%
%% ``gl:programBinary'' loads a program object with a program binary previously returned
%% from {@link gl:getProgramBinary/2} . `BinaryFormat' and `Binary' must be those
%% returned by a previous call to {@link gl:getProgramBinary/2} , and `Length' must be
%% the length returned by {@link gl:getProgramBinary/2} , or by {@link gl:getProgramiv/2} when
%% called with `Pname' set to `?GL_PROGRAM_BINARY_LENGTH'. If these conditions
%% are not met, loading the program binary will fail and `Program' 's `?GL_LINK_STATUS'
%% will be set to `?GL_FALSE'.
%%
%% A program object's program binary is replaced by calls to {@link gl:linkProgram/1} or ``gl:programBinary''
%% . When linking success or failure is concerned, ``gl:programBinary'' can be considered
%% to perform an implicit linking operation. {@link gl:linkProgram/1} and ``gl:programBinary''
%% both set the program object's `?GL_LINK_STATUS' to `?GL_TRUE' or `?GL_FALSE'
%% .
%%
%% A successful call to ``gl:programBinary'' will reset all uniform variables to their
%% initial values. The initial value is either the value of the variable's initializer as
%% specified in the original shader source, or zero if no initializer was present. Additionally,
%% all vertex shader input and fragment shader output assignments that were in effect when
%% the program was linked before saving are restored with ``gl:programBinary'' is called.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramBinary.xml">external</a> documentation.
-spec programBinary(Program, BinaryFormat, Binary) -> 'ok' when Program :: integer(),BinaryFormat :: enum(),Binary :: binary().
programBinary(Program,BinaryFormat,Binary) ->
send_bin(Binary),
cast(5774, <<Program:?GLuint,BinaryFormat:?GLenum>>).
%% @doc Specify a parameter for a program object
%%
%% ``gl:programParameter'' specifies a new value for the parameter nameed by `Pname'
%% for the program object `Program' .
%%
%% If `Pname' is `?GL_PROGRAM_BINARY_RETRIEVABLE_HINT', `Value' should be `?GL_FALSE'
%% or `?GL_TRUE' to indicate to the implementation the intention of the application
%% to retrieve the program's binary representation with {@link gl:getProgramBinary/2} . The
%% implementation may use this information to store information that may be useful for a
%% future query of the program's binary. It is recommended to set `?GL_PROGRAM_BINARY_RETRIEVABLE_HINT'
%% for the program to `?GL_TRUE' before calling {@link gl:linkProgram/1} , and using
%% the program at run-time if the binary is to be retrieved later.
%%
%% If `Pname' is `?GL_PROGRAM_SEPARABLE', `Value' must be `?GL_TRUE'
%% or `?GL_FALSE' and indicates whether `Program' can be bound to individual pipeline
%% stages via {@link gl:useProgramStages/3} . A program's `?GL_PROGRAM_SEPARABLE' parameter
%% must be set to `?GL_TRUE'`before' {@link gl:linkProgram/1} is called in order
%% for it to be usable with a program pipeline object. The initial state of `?GL_PROGRAM_SEPARABLE'
%% is `?GL_FALSE'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramParameter.xml">external</a> documentation.
-spec programParameteri(Program, Pname, Value) -> 'ok' when Program :: integer(),Pname :: enum(),Value :: integer().
programParameteri(Program,Pname,Value) ->
cast(5775, <<Program:?GLuint,Pname:?GLenum,Value:?GLint>>).
%% @doc Bind stages of a program object to a program pipeline
%%
%% ``gl:useProgramStages'' binds executables from a program object associated with a specified
%% set of shader stages to the program pipeline object given by `Pipeline' . `Pipeline'
%% specifies the program pipeline object to which to bind the executables. `Stages'
%% contains a logical combination of bits indicating the shader stages to use within `Program'
%% with the program pipeline object `Pipeline' . `Stages' must be a logical combination
%% of `?GL_VERTEX_SHADER_BIT', `?GL_TESS_CONTROL_SHADER_BIT', `?GL_TESS_EVALUATION_SHADER_BIT'
%% , `?GL_GEOMETRY_SHADER_BIT', and `?GL_FRAGMENT_SHADER_BIT'. Additionally, the
%% special value `?GL_ALL_SHADER_BITS' may be specified to indicate that all executables
%% contained in `Program' should be installed in `Pipeline' .
%%
%% If `Program' refers to a program object with a valid shader attached for an indicated
%% shader stage, ``gl:useProgramStages'' installs the executable code for that stage in
%% the indicated program pipeline object `Pipeline' . If `Program' is zero, or refers
%% to a program object with no valid shader executable for a given stage, it is as if the
%% pipeline object has no programmable stage configured for the indicated shader stages. If `Stages'
%% contains bits other than those listed above, and is not equal to `?GL_ALL_SHADER_BITS'
%% , an error is generated.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glUseProgramStages.xml">external</a> documentation.
-spec useProgramStages(Pipeline, Stages, Program) -> 'ok' when Pipeline :: integer(),Stages :: integer(),Program :: integer().
useProgramStages(Pipeline,Stages,Program) ->
cast(5776, <<Pipeline:?GLuint,Stages:?GLbitfield,Program:?GLuint>>).
%% @doc Set the active program object for a program pipeline object
%%
%% ``gl:activeShaderProgram'' sets the linked program named by `Program' to be the
%% active program for the program pipeline object `Pipeline' . The active program in
%% the active program pipeline object is the target of calls to {@link gl:uniform1f/2} when
%% no program has been made current through a call to {@link gl:useProgram/1} .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glActiveShaderProgram.xml">external</a> documentation.
-spec activeShaderProgram(Pipeline, Program) -> 'ok' when Pipeline :: integer(),Program :: integer().
activeShaderProgram(Pipeline,Program) ->
cast(5777, <<Pipeline:?GLuint,Program:?GLuint>>).
%% @doc glCreateShaderProgramv
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCreateShaderProgramv.xml">external</a> documentation.
-spec createShaderProgramv(Type, Strings) -> integer() when Type :: enum(),Strings :: iolist().
createShaderProgramv(Type,Strings) ->
StringsTemp = list_to_binary([[Str|[0]] || Str <- Strings ]),
call(5778, <<Type:?GLenum,(length(Strings)):?GLuint,(size(StringsTemp)):?GLuint,(StringsTemp)/binary,0:((8-((size(StringsTemp)+0) rem 8)) rem 8)>>).
%% @doc Bind a program pipeline to the current context
%%
%% ``gl:bindProgramPipeline'' binds a program pipeline object to the current context. `Pipeline'
%% must be a name previously returned from a call to {@link gl:genProgramPipelines/1} . If
%% no program pipeline exists with name `Pipeline' then a new pipeline object is created
%% with that name and initialized to the default state vector.
%%
%% When a program pipeline object is bound using ``gl:bindProgramPipeline'', any previous
%% binding is broken and is replaced with a binding to the specified pipeline object. If `Pipeline'
%% is zero, the previous binding is broken and is not replaced, leaving no pipeline object
%% bound. If no current program object has been established by {@link gl:useProgram/1} , the
%% program objects used for each stage and for uniform updates are taken from the bound program
%% pipeline object, if any. If there is a current program object established by {@link gl:useProgram/1}
%% , the bound program pipeline object has no effect on rendering or uniform updates. When
%% a bound program pipeline object is used for rendering, individual shader executables are
%% taken from its program objects.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindProgramPipeline.xml">external</a> documentation.
-spec bindProgramPipeline(Pipeline) -> 'ok' when Pipeline :: integer().
bindProgramPipeline(Pipeline) ->
cast(5779, <<Pipeline:?GLuint>>).
%% @doc Delete program pipeline objects
%%
%% ``gl:deleteProgramPipelines'' deletes the `N' program pipeline objects whose names
%% are stored in the array `Pipelines' . Unused names in `Pipelines' are ignored,
%% as is the name zero. After a program pipeline object is deleted, its name is again unused
%% and it has no contents. If program pipeline object that is currently bound is deleted,
%% the binding for that object reverts to zero and no program pipeline object becomes current.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDeleteProgramPipelines.xml">external</a> documentation.
-spec deleteProgramPipelines(Pipelines) -> 'ok' when Pipelines :: [integer()].
deleteProgramPipelines(Pipelines) ->
cast(5780, <<(length(Pipelines)):?GLuint,
(<< <<C:?GLuint>> || C <- Pipelines>>)/binary,0:(((1+length(Pipelines)) rem 2)*32)>>).
%% @doc Reserve program pipeline object names
%%
%% ``gl:genProgramPipelines'' returns `N' previously unused program pipeline object
%% names in `Pipelines' . These names are marked as used, for the purposes of ``gl:genProgramPipelines''
%% only, but they acquire program pipeline state only when they are first bound.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGenProgramPipelines.xml">external</a> documentation.
-spec genProgramPipelines(N) -> [integer()] when N :: integer().
genProgramPipelines(N) ->
call(5781, <<N:?GLsizei>>).
%% @doc Determine if a name corresponds to a program pipeline object
%%
%% ``gl:isProgramPipeline'' returns `?GL_TRUE' if `Pipeline' is currently the
%% name of a program pipeline object. If `Pipeline' is zero, or if `?pipeline'
%% is not the name of a program pipeline object, or if an error occurs, ``gl:isProgramPipeline''
%% returns `?GL_FALSE'. If `Pipeline' is a name returned by {@link gl:genProgramPipelines/1}
%% , but that has not yet been bound through a call to {@link gl:bindProgramPipeline/1} , then
%% the name is not a program pipeline object and ``gl:isProgramPipeline'' returns `?GL_FALSE'
%% .
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glIsProgramPipeline.xml">external</a> documentation.
-spec isProgramPipeline(Pipeline) -> 0|1 when Pipeline :: integer().
isProgramPipeline(Pipeline) ->
call(5782, <<Pipeline:?GLuint>>).
%% @doc Retrieve properties of a program pipeline object
%%
%% ``gl:getProgramPipelineiv'' retrieves the value of a property of the program pipeline
%% object `Pipeline' . `Pname' specifies the name of the parameter whose value to
%% retrieve. The value of the parameter is written to the variable whose address is given
%% by `Params' .
%%
%% If `Pname' is `?GL_ACTIVE_PROGRAM', the name of the active program object of
%% the program pipeline object is returned in `Params' .
%%
%% If `Pname' is `?GL_VERTEX_SHADER', the name of the current program object for
%% the vertex shader type of the program pipeline object is returned in `Params' .
%%
%% If `Pname' is `?GL_TESS_CONTROL_SHADER', the name of the current program object
%% for the tessellation control shader type of the program pipeline object is returned in `Params'
%% .
%%
%% If `Pname' is `?GL_TESS_EVALUATION_SHADER', the name of the current program
%% object for the tessellation evaluation shader type of the program pipeline object is returned
%% in `Params' .
%%
%% If `Pname' is `?GL_GEOMETRY_SHADER', the name of the current program object
%% for the geometry shader type of the program pipeline object is returned in `Params' .
%%
%%
%% If `Pname' is `?GL_FRAGMENT_SHADER', the name of the current program object
%% for the fragment shader type of the program pipeline object is returned in `Params' .
%%
%%
%% If `Pname' is `?GL_INFO_LOG_LENGTH', the length of the info log, including
%% the null terminator, is returned in `Params' . If there is no info log, zero is returned.
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramPipeline.xml">external</a> documentation.
-spec getProgramPipelineiv(Pipeline, Pname) -> integer() when Pipeline :: integer(),Pname :: enum().
getProgramPipelineiv(Pipeline,Pname) ->
call(5783, <<Pipeline:?GLuint,Pname:?GLenum>>).
%% @doc Specify the value of a uniform variable for a specified program object
%%
%% ``gl:programUniform'' modifies the value of a uniform variable or a uniform variable
%% array. The location of the uniform variable to be modified is specified by `Location' ,
%% which should be a value returned by {@link gl:getUniformLocation/2} . ``gl:programUniform''
%% operates on the program object specified by `Program' .
%%
%% The commands ``gl:programUniform{1|2|3|4}{f|i|ui}'' are used to change the value of
%% the uniform variable specified by `Location' using the values passed as arguments.
%% The number specified in the command should match the number of components in the data
%% type of the specified uniform variable (e.g., `1' for float, int, unsigned int, bool;
%% `2' for vec2, ivec2, uvec2, bvec2, etc.). The suffix `f' indicates that floating-point
%% values are being passed; the suffix `i' indicates that integer values are being passed;
%% the suffix `ui' indicates that unsigned integer values are being passed, and this
%% type should also match the data type of the specified uniform variable. The `i' variants
%% of this function should be used to provide values for uniform variables defined as int, ivec2
%% , ivec3, ivec4, or arrays of these. The `ui' variants of this function should be
%% used to provide values for uniform variables defined as unsigned int, uvec2, uvec3, uvec4,
%% or arrays of these. The `f' variants should be used to provide values for uniform
%% variables of type float, vec2, vec3, vec4, or arrays of these. Either the `i', `ui'
%% or `f' variants may be used to provide values for uniform variables of type bool, bvec2
%% , bvec3, bvec4, or arrays of these. The uniform variable will be set to false if the input
%% value is 0 or 0.0f, and it will be set to true otherwise.
%%
%% All active uniform variables defined in a program object are initialized to 0 when the
%% program object is linked successfully. They retain the values assigned to them by a call
%% to ``gl:programUniform'' until the next successful link operation occurs on the program
%% object, when they are once again initialized to 0.
%%
%% The commands ``gl:programUniform{1|2|3|4}{f|i|ui}v'' can be used to modify a single
%% uniform variable or a uniform variable array. These commands pass a count and a pointer
%% to the values to be loaded into a uniform variable or a uniform variable array. A count
%% of 1 should be used if modifying the value of a single uniform variable, and a count of
%% 1 or greater can be used to modify an entire array or part of an array. When loading `n'
%% elements starting at an arbitrary position `m' in a uniform variable array, elements
%% `m' + `n' - 1 in the array will be replaced with the new values. If `M' + `N'
%% - 1 is larger than the size of the uniform variable array, values for all array elements
%% beyond the end of the array will be ignored. The number specified in the name of the command
%% indicates the number of components for each element in `Value' , and it should match
%% the number of components in the data type of the specified uniform variable (e.g., `1'
%% for float, int, bool; `2' for vec2, ivec2, bvec2, etc.). The data type specified
%% in the name of the command must match the data type for the specified uniform variable
%% as described previously for ``gl:programUniform{1|2|3|4}{f|i|ui}''.
%%
%% For uniform variable arrays, each element of the array is considered to be of the type
%% indicated in the name of the command (e.g., ``gl:programUniform3f'' or ``gl:programUniform3fv''
%% can be used to load a uniform variable array of type vec3). The number of elements of
%% the uniform variable array to be modified is specified by `Count'
%%
%% The commands ``gl:programUniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used
%% to modify a matrix or an array of matrices. The numbers in the command name are interpreted
%% as the dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e.,
%% 4 values), the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the
%% number of matrices to be passed. A count of 1 should be used if modifying the value of
%% a single matrix, and a count greater than 1 can be used to modify an array of matrices.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glProgramUniform.xml">external</a> documentation.
-spec programUniform1i(Program, Location, V0) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer().
programUniform1i(Program,Location,V0) ->
cast(5784, <<Program:?GLuint,Location:?GLint,V0:?GLint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1iv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [integer()].
programUniform1iv(Program,Location,Value) ->
cast(5785, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLint>> || C <- Value>>)/binary,0:(((1+length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1f(Program, Location, V0) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float().
programUniform1f(Program,Location,V0) ->
cast(5786, <<Program:?GLuint,Location:?GLint,V0:?GLfloat>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1fv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [float()].
programUniform1fv(Program,Location,Value) ->
cast(5787, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLfloat>> || C <- Value>>)/binary,0:(((1+length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1d(Program, Location, V0) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float().
programUniform1d(Program,Location,V0) ->
cast(5788, <<Program:?GLuint,Location:?GLint,V0:?GLdouble>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1dv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [float()].
programUniform1dv(Program,Location,Value) ->
cast(5789, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,0:32,
(<< <<C:?GLdouble>> || C <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1ui(Program, Location, V0) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer().
programUniform1ui(Program,Location,V0) ->
cast(5790, <<Program:?GLuint,Location:?GLint,V0:?GLuint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform1uiv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [integer()].
programUniform1uiv(Program,Location,Value) ->
cast(5791, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<C:?GLuint>> || C <- Value>>)/binary,0:(((1+length(Value)) rem 2)*32)>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2i(Program, Location, V0, V1) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer().
programUniform2i(Program,Location,V0,V1) ->
cast(5792, <<Program:?GLuint,Location:?GLint,V0:?GLint,V1:?GLint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2iv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer()}].
programUniform2iv(Program,Location,Value) ->
cast(5793, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2f(Program, Location, V0, V1) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float().
programUniform2f(Program,Location,V0,V1) ->
cast(5794, <<Program:?GLuint,Location:?GLint,V0:?GLfloat,V1:?GLfloat>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2fv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float()}].
programUniform2fv(Program,Location,Value) ->
cast(5795, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2d(Program, Location, V0, V1) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float().
programUniform2d(Program,Location,V0,V1) ->
cast(5796, <<Program:?GLuint,Location:?GLint,V0:?GLdouble,V1:?GLdouble>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2dv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float()}].
programUniform2dv(Program,Location,Value) ->
cast(5797, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2ui(Program, Location, V0, V1) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer().
programUniform2ui(Program,Location,V0,V1) ->
cast(5798, <<Program:?GLuint,Location:?GLint,V0:?GLuint,V1:?GLuint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform2uiv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer()}].
programUniform2uiv(Program,Location,Value) ->
cast(5799, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint>> || {V1,V2} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3i(Program, Location, V0, V1, V2) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer().
programUniform3i(Program,Location,V0,V1,V2) ->
cast(5800, <<Program:?GLuint,Location:?GLint,V0:?GLint,V1:?GLint,V2:?GLint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3iv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer(),integer()}].
programUniform3iv(Program,Location,Value) ->
cast(5801, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint,V3:?GLint>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3f(Program, Location, V0, V1, V2) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float().
programUniform3f(Program,Location,V0,V1,V2) ->
cast(5802, <<Program:?GLuint,Location:?GLint,V0:?GLfloat,V1:?GLfloat,V2:?GLfloat>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3fv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float(),float()}].
programUniform3fv(Program,Location,Value) ->
cast(5803, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3d(Program, Location, V0, V1, V2) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float().
programUniform3d(Program,Location,V0,V1,V2) ->
cast(5804, <<Program:?GLuint,Location:?GLint,V0:?GLdouble,V1:?GLdouble,V2:?GLdouble>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3dv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float(),float()}].
programUniform3dv(Program,Location,Value) ->
cast(5805, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3ui(Program, Location, V0, V1, V2) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer().
programUniform3ui(Program,Location,V0,V1,V2) ->
cast(5806, <<Program:?GLuint,Location:?GLint,V0:?GLuint,V1:?GLuint,V2:?GLuint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform3uiv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer(),integer()}].
programUniform3uiv(Program,Location,Value) ->
cast(5807, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint,V3:?GLuint>> || {V1,V2,V3} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4i(Program, Location, V0, V1, V2, V3) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer(),V3 :: integer().
programUniform4i(Program,Location,V0,V1,V2,V3) ->
cast(5808, <<Program:?GLuint,Location:?GLint,V0:?GLint,V1:?GLint,V2:?GLint,V3:?GLint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4iv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer(),integer(),integer()}].
programUniform4iv(Program,Location,Value) ->
cast(5809, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4f(Program, Location, V0, V1, V2, V3) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float(),V3 :: float().
programUniform4f(Program,Location,V0,V1,V2,V3) ->
cast(5810, <<Program:?GLuint,Location:?GLint,V0:?GLfloat,V1:?GLfloat,V2:?GLfloat,V3:?GLfloat>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4fv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float(),float(),float()}].
programUniform4fv(Program,Location,Value) ->
cast(5811, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4d(Program, Location, V0, V1, V2, V3) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: float(),V1 :: float(),V2 :: float(),V3 :: float().
programUniform4d(Program,Location,V0,V1,V2,V3) ->
cast(5812, <<Program:?GLuint,Location:?GLint,V0:?GLdouble,V1:?GLdouble,V2:?GLdouble,V3:?GLdouble>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4dv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{float(),float(),float(),float()}].
programUniform4dv(Program,Location,Value) ->
cast(5813, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4ui(Program, Location, V0, V1, V2, V3) -> 'ok' when Program :: integer(),Location :: integer(),V0 :: integer(),V1 :: integer(),V2 :: integer(),V3 :: integer().
programUniform4ui(Program,Location,V0,V1,V2,V3) ->
cast(5814, <<Program:?GLuint,Location:?GLint,V0:?GLuint,V1:?GLuint,V2:?GLuint,V3:?GLuint>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniform4uiv(Program, Location, Value) -> 'ok' when Program :: integer(),Location :: integer(),Value :: [{integer(),integer(),integer(),integer()}].
programUniform4uiv(Program,Location,Value) ->
cast(5815, <<Program:?GLuint,Location:?GLint,(length(Value)):?GLuint,
(<< <<V1:?GLuint,V2:?GLuint,V3:?GLuint,V4:?GLuint>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float()}].
programUniformMatrix2fv(Program,Location,Transpose,Value) ->
cast(5816, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix3fv(Program,Location,Transpose,Value) ->
cast(5817, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4fv(Program,Location,Transpose,Value) ->
cast(5818, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat,V13:?GLfloat,V14:?GLfloat,V15:?GLfloat,V16:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float()}].
programUniformMatrix2dv(Program,Location,Transpose,Value) ->
cast(5819, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble>> || {V1,V2,V3,V4} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix3dv(Program,Location,Transpose,Value) ->
cast(5820, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4dv(Program,Location,Transpose,Value) ->
cast(5821, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble,V13:?GLdouble,V14:?GLdouble,V15:?GLdouble,V16:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2x3fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
programUniformMatrix2x3fv(Program,Location,Transpose,Value) ->
cast(5822, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3x2fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
programUniformMatrix3x2fv(Program,Location,Transpose,Value) ->
cast(5823, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2x4fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix2x4fv(Program,Location,Transpose,Value) ->
cast(5824, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4x2fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4x2fv(Program,Location,Transpose,Value) ->
cast(5825, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3x4fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix3x4fv(Program,Location,Transpose,Value) ->
cast(5826, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4x3fv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4x3fv(Program,Location,Transpose,Value) ->
cast(5827, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:24,(length(Value)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat,V5:?GLfloat,V6:?GLfloat,V7:?GLfloat,V8:?GLfloat,V9:?GLfloat,V10:?GLfloat,V11:?GLfloat,V12:?GLfloat>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2x3dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
programUniformMatrix2x3dv(Program,Location,Transpose,Value) ->
cast(5828, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3x2dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float()}].
programUniformMatrix3x2dv(Program,Location,Transpose,Value) ->
cast(5829, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble>> || {V1,V2,V3,V4,V5,V6} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix2x4dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix2x4dv(Program,Location,Transpose,Value) ->
cast(5830, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4x2dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4x2dv(Program,Location,Transpose,Value) ->
cast(5831, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix3x4dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix3x4dv(Program,Location,Transpose,Value) ->
cast(5832, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc
%% See {@link programUniform1i/3}
-spec programUniformMatrix4x3dv(Program, Location, Transpose, Value) -> 'ok' when Program :: integer(),Location :: integer(),Transpose :: 0|1,Value :: [{float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float(),float()}].
programUniformMatrix4x3dv(Program,Location,Transpose,Value) ->
cast(5833, <<Program:?GLuint,Location:?GLint,Transpose:?GLboolean,0:56,(length(Value)):?GLuint,0:32,
(<< <<V1:?GLdouble,V2:?GLdouble,V3:?GLdouble,V4:?GLdouble,V5:?GLdouble,V6:?GLdouble,V7:?GLdouble,V8:?GLdouble,V9:?GLdouble,V10:?GLdouble,V11:?GLdouble,V12:?GLdouble>> || {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12} <- Value>>)/binary>>).
%% @doc Validate a program pipeline object against current GL state
%%
%% ``gl:validateProgramPipeline'' instructs the implementation to validate the shader executables
%% contained in `Pipeline' against the current GL state. The implementation may use
%% this as an opportunity to perform any internal shader modifications that may be required
%% to ensure correct operation of the installed shaders given the current GL state.
%%
%% After a program pipeline has been validated, its validation status is set to `?GL_TRUE'
%% . The validation status of a program pipeline object may be queried by calling {@link gl:getProgramPipelineiv/2}
%% with parameter `?GL_VALIDATE_STATUS'.
%%
%% If `Pipeline' is a name previously returned from a call to {@link gl:genProgramPipelines/1}
%% but that has not yet been bound by a call to {@link gl:bindProgramPipeline/1} , a new program
%% pipeline object is created with name `Pipeline' and the default state vector.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glValidateProgramPipeline.xml">external</a> documentation.
-spec validateProgramPipeline(Pipeline) -> 'ok' when Pipeline :: integer().
validateProgramPipeline(Pipeline) ->
cast(5834, <<Pipeline:?GLuint>>).
%% @doc Retrieve the info log string from a program pipeline object
%%
%% ``gl:getProgramPipelineInfoLog'' retrieves the info log for the program pipeline object
%% `Pipeline' . The info log, including its null terminator, is written into the array
%% of characters whose address is given by `InfoLog' . The maximum number of characters
%% that may be written into `InfoLog' is given by `BufSize' , and the actual number
%% of characters written into `InfoLog' is returned in the integer whose address is
%% given by `Length' . If `Length' is `?NULL', no length is returned.
%%
%% The actual length of the info log for the program pipeline may be determined by calling {@link gl:getProgramPipelineiv/2}
%% with `Pname' set to `?GL_INFO_LOG_LENGTH'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetProgramPipelineInfoLog.xml">external</a> documentation.
-spec getProgramPipelineInfoLog(Pipeline, BufSize) -> string() when Pipeline :: integer(),BufSize :: integer().
getProgramPipelineInfoLog(Pipeline,BufSize) ->
call(5835, <<Pipeline:?GLuint,BufSize:?GLsizei>>).
%% @doc glVertexAttribL
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribL.xml">external</a> documentation.
-spec vertexAttribL1d(Index, X) -> 'ok' when Index :: integer(),X :: float().
vertexAttribL1d(Index,X) ->
cast(5836, <<Index:?GLuint,0:32,X:?GLdouble>>).
%% @doc glVertexAttribL
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribL.xml">external</a> documentation.
-spec vertexAttribL2d(Index, X, Y) -> 'ok' when Index :: integer(),X :: float(),Y :: float().
vertexAttribL2d(Index,X,Y) ->
cast(5837, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble>>).
%% @doc glVertexAttribL
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribL.xml">external</a> documentation.
-spec vertexAttribL3d(Index, X, Y, Z) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float().
vertexAttribL3d(Index,X,Y,Z) ->
cast(5838, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble>>).
%% @doc glVertexAttribL
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribL.xml">external</a> documentation.
-spec vertexAttribL4d(Index, X, Y, Z, W) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),Z :: float(),W :: float().
vertexAttribL4d(Index,X,Y,Z,W) ->
cast(5839, <<Index:?GLuint,0:32,X:?GLdouble,Y:?GLdouble,Z:?GLdouble,W:?GLdouble>>).
%% @equiv vertexAttribL1d(Index,X)
-spec vertexAttribL1dv(Index :: integer(),V) -> 'ok' when V :: {X :: float()}.
vertexAttribL1dv(Index,{X}) -> vertexAttribL1d(Index,X).
%% @equiv vertexAttribL2d(Index,X,Y)
-spec vertexAttribL2dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float()}.
vertexAttribL2dv(Index,{X,Y}) -> vertexAttribL2d(Index,X,Y).
%% @equiv vertexAttribL3d(Index,X,Y,Z)
-spec vertexAttribL3dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float()}.
vertexAttribL3dv(Index,{X,Y,Z}) -> vertexAttribL3d(Index,X,Y,Z).
%% @equiv vertexAttribL4d(Index,X,Y,Z,W)
-spec vertexAttribL4dv(Index :: integer(),V) -> 'ok' when V :: {X :: float(),Y :: float(),Z :: float(),W :: float()}.
vertexAttribL4dv(Index,{X,Y,Z,W}) -> vertexAttribL4d(Index,X,Y,Z,W).
%% @doc glVertexAttribLPointer
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribLPointer.xml">external</a> documentation.
-spec vertexAttribLPointer(Index, Size, Type, Stride, Pointer) -> 'ok' when Index :: integer(),Size :: integer(),Type :: enum(),Stride :: integer(),Pointer :: offset()|mem().
vertexAttribLPointer(Index,Size,Type,Stride,Pointer) when is_integer(Pointer) ->
cast(5840, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Stride:?GLsizei,Pointer:?GLuint>>);
vertexAttribLPointer(Index,Size,Type,Stride,Pointer) ->
send_bin(Pointer),
cast(5841, <<Index:?GLuint,Size:?GLint,Type:?GLenum,Stride:?GLsizei>>).
%% @doc glGetVertexAttribL
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetVertexAttribL.xml">external</a> documentation.
-spec getVertexAttribLdv(Index, Pname) -> {float(),float(),float(),float()} when Index :: integer(),Pname :: enum().
getVertexAttribLdv(Index,Pname) ->
call(5842, <<Index:?GLuint,Pname:?GLenum>>).
%% @doc glViewportArrayv
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glViewportArrayv.xml">external</a> documentation.
-spec viewportArrayv(First, V) -> 'ok' when First :: integer(),V :: [{float(),float(),float(),float()}].
viewportArrayv(First,V) ->
cast(5843, <<First:?GLuint,(length(V)):?GLuint,
(<< <<V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>> || {V1,V2,V3,V4} <- V>>)/binary>>).
%% @doc Set a specified viewport
%%
%% ``gl:viewportIndexedf'' and ``gl:viewportIndexedfv'' specify the parameters for a
%% single viewport. `Index' specifies the index of the viewport to modify. `Index'
%% must be less than the value of `?GL_MAX_VIEWPORTS'. For ``gl:viewportIndexedf'', `X'
%% , `Y' , `W' , and `H' specify the left, bottom, width and height of the viewport
%% in pixels, respectively. For ``gl:viewportIndexedfv'', `V' contains the address
%% of an array of floating point values specifying the left ( x), bottom ( y), width ( w),
%% and height ( h) of each viewport, in that order. x and y give the location of the viewport's
%% lower left corner, and w and h give the width and height of the viewport, respectively.
%% The viewport specifies the affine transformation of x and y from normalized device
%% coordinates to window coordinates. Let (x nd y nd) be normalized device coordinates. Then the window
%% coordinates (x w y w) are computed as follows:
%%
%% x w=(x nd+1) (width/2)+x
%%
%% y w=(y nd+1) (height/2)+y
%%
%% The location of the viewport's bottom left corner, given by ( x, y) is clamped to be
%% within the implementaiton-dependent viewport bounds range. The viewport bounds range [
%% min, max] can be determined by calling {@link gl:getBooleanv/1} with argument `?GL_VIEWPORT_BOUNDS_RANGE'
%% . Viewport width and height are silently clamped to a range that depends on the implementation.
%% To query this range, call {@link gl:getBooleanv/1} with argument `?GL_MAX_VIEWPORT_DIMS'.
%%
%% The precision with which the GL interprets the floating point viewport bounds is implementation-dependent
%% and may be determined by querying the impementation-defined constant `?GL_VIEWPORT_SUBPIXEL_BITS'
%% .
%%
%% Calling ``gl:viewportIndexedfv'' is equivalent to calling see `glViewportArray'
%% with `First' set to `Index' , `Count' set to 1 and `V' passsed directly.
%% ``gl:viewportIndexedf'' is equivalent to: void glViewportIndexedf(GLuint index, GLfloat
%% x, GLfloat y, GLfloat w, GLfloat h) { const float v[4] = { x, y, w, h }; glViewportArrayv(index,
%% 1, v); }
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glViewportIndexed.xml">external</a> documentation.
-spec viewportIndexedf(Index, X, Y, W, H) -> 'ok' when Index :: integer(),X :: float(),Y :: float(),W :: float(),H :: float().
viewportIndexedf(Index,X,Y,W,H) ->
cast(5844, <<Index:?GLuint,X:?GLfloat,Y:?GLfloat,W:?GLfloat,H:?GLfloat>>).
%% @doc
%% See {@link viewportIndexedf/5}
-spec viewportIndexedfv(Index, V) -> 'ok' when Index :: integer(),V :: {float(),float(),float(),float()}.
viewportIndexedfv(Index,{V1,V2,V3,V4}) ->
cast(5845, <<Index:?GLuint,V1:?GLfloat,V2:?GLfloat,V3:?GLfloat,V4:?GLfloat>>).
%% @doc glScissorArrayv
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glScissorArrayv.xml">external</a> documentation.
-spec scissorArrayv(First, V) -> 'ok' when First :: integer(),V :: [{integer(),integer(),integer(),integer()}].
scissorArrayv(First,V) ->
cast(5846, <<First:?GLuint,(length(V)):?GLuint,
(<< <<V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>> || {V1,V2,V3,V4} <- V>>)/binary>>).
%% @doc glScissorIndexe
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glScissorIndexe.xml">external</a> documentation.
-spec scissorIndexed(Index, Left, Bottom, Width, Height) -> 'ok' when Index :: integer(),Left :: integer(),Bottom :: integer(),Width :: integer(),Height :: integer().
scissorIndexed(Index,Left,Bottom,Width,Height) ->
cast(5847, <<Index:?GLuint,Left:?GLint,Bottom:?GLint,Width:?GLsizei,Height:?GLsizei>>).
%% @doc glScissorIndexe
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glScissorIndexe.xml">external</a> documentation.
-spec scissorIndexedv(Index, V) -> 'ok' when Index :: integer(),V :: {integer(),integer(),integer(),integer()}.
scissorIndexedv(Index,{V1,V2,V3,V4}) ->
cast(5848, <<Index:?GLuint,V1:?GLint,V2:?GLint,V3:?GLint,V4:?GLint>>).
%% @doc glDepthRangeArrayv
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthRangeArrayv.xml">external</a> documentation.
-spec depthRangeArrayv(First, V) -> 'ok' when First :: integer(),V :: [{clamp(),clamp()}].
depthRangeArrayv(First,V) ->
cast(5849, <<First:?GLuint,0:32,(length(V)):?GLuint,0:32,
(<< <<V1:?GLclampd,V2:?GLclampd>> || {V1,V2} <- V>>)/binary>>).
%% @doc glDepthRangeIndexe
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthRangeIndexe.xml">external</a> documentation.
-spec depthRangeIndexed(Index, N, F) -> 'ok' when Index :: integer(),N :: clamp(),F :: clamp().
depthRangeIndexed(Index,N,F) ->
cast(5850, <<Index:?GLuint,0:32,N:?GLclampd,F:?GLclampd>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getFloati_v(Target, Index) -> [float()] when Target :: enum(),Index :: integer().
getFloati_v(Target,Index) ->
call(5851, <<Target:?GLenum,Index:?GLuint>>).
%% @doc
%% See {@link getBooleanv/1}
-spec getDoublei_v(Target, Index) -> [float()] when Target :: enum(),Index :: integer().
getDoublei_v(Target,Index) ->
call(5852, <<Target:?GLenum,Index:?GLuint>>).
%% @doc glDebugMessageControlARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDebugMessageControlARB.xml">external</a> documentation.
-spec debugMessageControlARB(Source, Type, Severity, Ids, Enabled) -> 'ok' when Source :: enum(),Type :: enum(),Severity :: enum(),Ids :: [integer()],Enabled :: 0|1.
debugMessageControlARB(Source,Type,Severity,Ids,Enabled) ->
cast(5853, <<Source:?GLenum,Type:?GLenum,Severity:?GLenum,(length(Ids)):?GLuint,
(<< <<C:?GLuint>> || C <- Ids>>)/binary,0:(((length(Ids)) rem 2)*32),Enabled:?GLboolean>>).
%% @doc glDebugMessageInsertARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDebugMessageInsertARB.xml">external</a> documentation.
-spec debugMessageInsertARB(Source, Type, Id, Severity, Buf) -> 'ok' when Source :: enum(),Type :: enum(),Id :: integer(),Severity :: enum(),Buf :: string().
debugMessageInsertARB(Source,Type,Id,Severity,Buf) ->
cast(5854, <<Source:?GLenum,Type:?GLenum,Id:?GLuint,Severity:?GLenum,(list_to_binary([Buf|[0]]))/binary,0:((8-((length(Buf)+ 1) rem 8)) rem 8)>>).
%% @doc glGetDebugMessageLogARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetDebugMessageLogARB.xml">external</a> documentation.
-spec getDebugMessageLogARB(Count, Bufsize) -> {integer(),Sources :: [enum()],Types :: [enum()],Ids :: [integer()],Severities :: [enum()],MessageLog :: [string()]} when Count :: integer(),Bufsize :: integer().
getDebugMessageLogARB(Count,Bufsize) ->
call(5855, <<Count:?GLuint,Bufsize:?GLsizei>>).
%% @doc glGetGraphicsResetStatusARB
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetGraphicsResetStatusARB.xml">external</a> documentation.
-spec getGraphicsResetStatusARB() -> enum().
getGraphicsResetStatusARB() ->
call(5856, <<>>).
%% @doc Draw multiple instances of a range of elements with offset applied to instanced attributes
%%
%% ``gl:drawArraysInstancedBaseInstance'' behaves identically to {@link gl:drawArrays/3}
%% except that `Primcount' instances of the range of elements are executed and the value
%% of the internal counter `InstanceID' advances for each iteration. `InstanceID'
%% is an internal 32-bit integer counter that may be read by a vertex shader as `?gl_InstanceID'
%% .
%%
%% ``gl:drawArraysInstancedBaseInstance'' has the same effect as: if ( mode or count is
%% invalid ) generate appropriate error else { for (int i = 0; i < primcount ; i++) {
%% instanceID = i; glDrawArrays(mode, first, count); } instanceID = 0; }
%%
%% Specific vertex attributes may be classified as `instanced' through the use of {@link gl:vertexAttribDivisor/2}
%% . Instanced vertex attributes supply per-instance vertex data to the vertex shader. The
%% index of the vertex fetched from the enabled instanced vertex attribute arrays is calculated
%% as: |gl_ InstanceID/divisor|&plus; baseInstance. Note that `Baseinstance' does not affect the shader-visible
%% value of `?gl_InstanceID'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawArraysInstancedBaseInstance.xml">external</a> documentation.
-spec drawArraysInstancedBaseInstance(Mode, First, Count, Primcount, Baseinstance) -> 'ok' when Mode :: enum(),First :: integer(),Count :: integer(),Primcount :: integer(),Baseinstance :: integer().
drawArraysInstancedBaseInstance(Mode,First,Count,Primcount,Baseinstance) ->
cast(5857, <<Mode:?GLenum,First:?GLint,Count:?GLsizei,Primcount:?GLsizei,Baseinstance:?GLuint>>).
%% @doc Draw multiple instances of a set of elements with offset applied to instanced attributes
%%
%% ``gl:drawElementsInstancedBaseInstance'' behaves identically to {@link gl:drawElements/4}
%% except that `Primcount' instances of the set of elements are executed and the value
%% of the internal counter `InstanceID' advances for each iteration. `InstanceID'
%% is an internal 32-bit integer counter that may be read by a vertex shader as `?gl_InstanceID'
%% .
%%
%% ``gl:drawElementsInstancedBaseInstance'' has the same effect as: if (mode, count, or
%% type is invalid ) generate appropriate error else { for (int i = 0; i < primcount ;
%% i++) { instanceID = i; glDrawElements(mode, count, type, indices); } instanceID = 0; }
%%
%% Specific vertex attributes may be classified as `instanced' through the use of {@link gl:vertexAttribDivisor/2}
%% . Instanced vertex attributes supply per-instance vertex data to the vertex shader. The
%% index of the vertex fetched from the enabled instanced vertex attribute arrays is calculated
%% as |gl_ InstanceID/divisor|&plus; baseInstance. Note that `Baseinstance' does not affect the shader-visible
%% value of `?gl_InstanceID'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsInstancedBaseInstance.xml">external</a> documentation.
-spec drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Primcount, Baseinstance) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Primcount :: integer(),Baseinstance :: integer().
drawElementsInstancedBaseInstance(Mode,Count,Type,Indices,Primcount,Baseinstance) when is_integer(Indices) ->
cast(5858, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Primcount:?GLsizei,Baseinstance:?GLuint>>);
drawElementsInstancedBaseInstance(Mode,Count,Type,Indices,Primcount,Baseinstance) ->
send_bin(Indices),
cast(5859, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Primcount:?GLsizei,Baseinstance:?GLuint>>).
%% @doc Render multiple instances of a set of primitives from array data with a per-element offset
%%
%% ``gl:drawElementsInstancedBaseVertexBaseInstance'' behaves identically to {@link gl:drawElementsInstanced/5}
%% except that the `i'th element transferred by the corresponding draw call will be
%% taken from element `Indices' [i] + `Basevertex' of each enabled array. If the
%% resulting value is larger than the maximum value representable by `Type' , it is as
%% if the calculation were upconverted to 32-bit unsigned integers (with wrapping on overflow
%% conditions). The operation is undefined if the sum would be negative. The `Basevertex'
%% has no effect on the shader-visible value of `?gl_VertexID'.
%%
%% Specific vertex attributes may be classified as `instanced' through the use of {@link gl:vertexAttribDivisor/2}
%% . Instanced vertex attributes supply per-instance vertex data to the vertex shader. The
%% index of the vertex fetched from the enabled instanced vertex attribute arrays is calculated
%% as |gl_ InstanceID/divisor|&plus; baseInstance. Note that `Baseinstance' does not affect the shader-visible
%% value of `?gl_InstanceID'.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawElementsInstancedBaseVertexBaseInstance.xml">external</a> documentation.
-spec drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Primcount, Basevertex, Baseinstance) -> 'ok' when Mode :: enum(),Count :: integer(),Type :: enum(),Indices :: offset()|mem(),Primcount :: integer(),Basevertex :: integer(),Baseinstance :: integer().
drawElementsInstancedBaseVertexBaseInstance(Mode,Count,Type,Indices,Primcount,Basevertex,Baseinstance) when is_integer(Indices) ->
cast(5860, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Indices:?GLuint,Primcount:?GLsizei,Basevertex:?GLint,Baseinstance:?GLuint>>);
drawElementsInstancedBaseVertexBaseInstance(Mode,Count,Type,Indices,Primcount,Basevertex,Baseinstance) ->
send_bin(Indices),
cast(5861, <<Mode:?GLenum,Count:?GLsizei,Type:?GLenum,Primcount:?GLsizei,Basevertex:?GLint,Baseinstance:?GLuint>>).
%% @doc glDrawTransformFeedbackInstance
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawTransformFeedbackInstance.xml">external</a> documentation.
-spec drawTransformFeedbackInstanced(Mode, Id, Primcount) -> 'ok' when Mode :: enum(),Id :: integer(),Primcount :: integer().
drawTransformFeedbackInstanced(Mode,Id,Primcount) ->
cast(5862, <<Mode:?GLenum,Id:?GLuint,Primcount:?GLsizei>>).
%% @doc glDrawTransformFeedbackStreamInstance
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDrawTransformFeedbackStreamInstance.xml">external</a> documentation.
-spec drawTransformFeedbackStreamInstanced(Mode, Id, Stream, Primcount) -> 'ok' when Mode :: enum(),Id :: integer(),Stream :: integer(),Primcount :: integer().
drawTransformFeedbackStreamInstanced(Mode,Id,Stream,Primcount) ->
cast(5863, <<Mode:?GLenum,Id:?GLuint,Stream:?GLuint,Primcount:?GLsizei>>).
%% @doc glGetInternalformat
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glGetInternalformat.xml">external</a> documentation.
-spec getInternalformativ(Target, Internalformat, Pname, BufSize) -> [integer()] when Target :: enum(),Internalformat :: enum(),Pname :: enum(),BufSize :: integer().
getInternalformativ(Target,Internalformat,Pname,BufSize) ->
call(5864, <<Target:?GLenum,Internalformat:?GLenum,Pname:?GLenum,BufSize:?GLsizei>>).
%% @doc Bind a level of a texture to an image unit
%%
%% ``gl:bindImageTexture'' binds a single level of a texture to an image unit for the purpose
%% of reading and writing it from shaders. `Unit' specifies the zero-based index of
%% the image unit to which to bind the texture level. `Texture' specifies the name of
%% an existing texture object to bind to the image unit. If `Texture' is zero, then
%% any existing binding to the image unit is broken. `Level' specifies the level of
%% the texture to bind to the image unit.
%%
%% If `Texture' is the name of a one-, two-, or three-dimensional array texture, a
%% cube map or cube map array texture, or a two-dimensional multisample array texture, then
%% it is possible to bind either the entire array, or only a single layer of the array to
%% the image unit. In such cases, if `Layered' is `?GL_TRUE', the entire array
%% is attached to the image unit and `Layer' is ignored. However, if `Layered' is `?GL_FALSE'
%% then `Layer' specifies the layer of the array to attach to the image unit.
%%
%% `Access' specifies the access types to be performed by shaders and may be set to `?GL_READ_ONLY'
%% , `?GL_WRITE_ONLY', or `?GL_READ_WRITE' to indicate read-only, write-only or
%% read-write access, respectively. Violation of the access type specified in `Access'
%% (for example, if a shader writes to an image bound with `Access' set to `?GL_READ_ONLY'
%% ) will lead to undefined results, possibly including program termination.
%%
%% `Format' specifies the format that is to be used when performing formatted stores
%% into the image from shaders. `Format' must be compatible with the texture's internal
%% format and must be one of the formats listed in the following table.
%%
%% <table><tbody><tr><td>` Image Unit Format '</td><td>` Format Qualifier '</td></tr>
%% </tbody><tbody><tr><td>`?GL_RGBA32F'</td><td>rgba32f</td></tr><tr><td>`?GL_RGBA16F'
%% </td><td>rgba16f</td></tr><tr><td>`?GL_RG32F'</td><td>rg32f</td></tr><tr><td>`?GL_RG16F'
%% </td><td>rg16f</td></tr><tr><td>`?GL_R11F_G11F_B10F'</td><td>r11f_g11f_b10f</td></tr>
%% <tr><td>`?GL_R32F'</td><td>r32f</td></tr><tr><td>`?GL_R16F'</td><td>r16f</td></tr>
%% <tr><td>`?GL_RGBA32UI'</td><td>rgba32ui</td></tr><tr><td>`?GL_RGBA16UI'</td><td>
%% rgba16ui</td></tr><tr><td>`?GL_RGB10_A2UI'</td><td>rgb10_a2ui</td></tr><tr><td>`?GL_RGBA8UI'
%% </td><td>rgba8ui</td></tr><tr><td>`?GL_RG32UI'</td><td>rg32ui</td></tr><tr><td>`?GL_RG16UI'
%% </td><td>rg16ui</td></tr><tr><td>`?GL_RG8UI'</td><td>rg8ui</td></tr><tr><td>`?GL_R32UI'
%% </td><td>r32ui</td></tr><tr><td>`?GL_R16UI'</td><td>r16ui</td></tr><tr><td>`?GL_R8UI'
%% </td><td>r8ui</td></tr><tr><td>`?GL_RGBA32I'</td><td>rgba32i</td></tr><tr><td>`?GL_RGBA16I'
%% </td><td>rgba16i</td></tr><tr><td>`?GL_RGBA8I'</td><td>rgba8i</td></tr><tr><td>`?GL_RG32I'
%% </td><td>rg32i</td></tr><tr><td>`?GL_RG16I'</td><td>rg16i</td></tr><tr><td>`?GL_RG8I'
%% </td><td>rg8i</td></tr><tr><td>`?GL_R32I'</td><td>r32i</td></tr><tr><td>`?GL_R16I'
%% </td><td>r16i</td></tr><tr><td>`?GL_R8I'</td><td>r8i</td></tr><tr><td>`?GL_RGBA16'
%% </td><td>rgba16</td></tr><tr><td>`?GL_RGB10_A2'</td><td>rgb10_a2</td></tr><tr><td>`?GL_RGBA8'
%% </td><td>rgba8</td></tr><tr><td>`?GL_RG16'</td><td>rg16</td></tr><tr><td>`?GL_RG8'
%% </td><td>rg8</td></tr><tr><td>`?GL_R16'</td><td>r16</td></tr><tr><td>`?GL_R8'</td>
%% <td>r8</td></tr><tr><td>`?GL_RGBA16_SNORM'</td><td>rgba16_snorm</td></tr><tr><td>`?GL_RGBA8_SNORM'
%% </td><td>rgba8_snorm</td></tr><tr><td>`?GL_RG16_SNORM'</td><td>rg16_snorm</td></tr><tr>
%% <td>`?GL_RG8_SNORM'</td><td>rg8_snorm</td></tr><tr><td>`?GL_R16_SNORM'</td><td>r16_snorm
%% </td></tr><tr><td>`?GL_R8_SNORM'</td><td>r8_snorm</td></tr></tbody></table>
%%
%% When a texture is bound to an image unit, the `Format' parameter for the image unit
%% need not exactly match the texture internal format as long as the formats are considered
%% compatible as defined in the OpenGL Specification. The matching criterion used for a given
%% texture may be determined by calling {@link gl:getTexParameterfv/2} with `Value' set
%% to `?GL_IMAGE_FORMAT_COMPATIBILITY_TYPE', with return values of `?GL_IMAGE_FORMAT_COMPATIBILITY_BY_SIZE'
%% and `?GL_IMAGE_FORMAT_COMPATIBILITY_BY_CLASS', specifying matches by size and class,
%% respectively.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glBindImageTexture.xml">external</a> documentation.
-spec bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format) -> 'ok' when Unit :: integer(),Texture :: integer(),Level :: integer(),Layered :: 0|1,Layer :: integer(),Access :: enum(),Format :: enum().
bindImageTexture(Unit,Texture,Level,Layered,Layer,Access,Format) ->
cast(5865, <<Unit:?GLuint,Texture:?GLuint,Level:?GLint,Layered:?GLboolean,0:24,Layer:?GLint,Access:?GLenum,Format:?GLenum>>).
%% @doc Defines a barrier ordering memory transactions
%%
%% ``gl:memoryBarrier'' defines a barrier ordering the memory transactions issued prior
%% to the command relative to those issued after the barrier. For the purposes of this ordering,
%% memory transactions performed by shaders are considered to be issued by the rendering
%% command that triggered the execution of the shader. `Barriers' is a bitfield indicating
%% the set of operations that are synchronized with shader stores; the bits used in `Barriers'
%% are as follows:
%%
%%
%%
%% `?GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT': If set, vertex data sourced from buffer objects
%% after the barrier will reflect data written by shaders prior to the barrier. The set of
%% buffer objects affected by this bit is derived from the buffer object bindings used for
%% generic vertex attributes derived from the `?GL_VERTEX_ATTRIB_ARRAY_BUFFER' bindings.
%%
%%
%% `?GL_ELEMENT_ARRAY_BARRIER_BIT': If set, vertex array indices sourced from buffer
%% objects after the barrier will reflect data written by shaders prior to the barrier. The
%% buffer objects affected by this bit are derived from the `?GL_ELEMENT_ARRAY_BUFFER'
%% binding.
%%
%% `?GL_UNIFORM_BARRIER_BIT': Shader uniforms sourced from buffer objects after the
%% barrier will reflect data written by shaders prior to the barrier.
%%
%% `?GL_TEXTURE_FETCH_BARRIER_BIT': Texture fetches from shaders, including fetches
%% from buffer object memory via buffer textures, after the barrier will reflect data written
%% by shaders prior to the barrier.
%%
%% `?GL_SHADER_IMAGE_ACCESS_BARRIER_BIT': Memory accesses using shader image load,
%% store, and atomic built-in functions issued after the barrier will reflect data written
%% by shaders prior to the barrier. Additionally, image stores and atomics issued after the
%% barrier will not execute until all memory accesses (e.g., loads, stores, texture fetches,
%% vertex fetches) initiated prior to the barrier complete.
%%
%% `?GL_COMMAND_BARRIER_BIT': Command data sourced from buffer objects by Draw*Indirect
%% commands after the barrier will reflect data written by shaders prior to the barrier.
%% The buffer objects affected by this bit are derived from the `?GL_DRAW_INDIRECT_BUFFER'
%% binding.
%%
%% `?GL_PIXEL_BUFFER_BARRIER_BIT': Reads and writes of buffer objects via the `?GL_PIXEL_PACK_BUFFER'
%% and `?GL_PIXEL_UNPACK_BUFFER' bindings (via {@link gl:readPixels/7} , {@link gl:texSubImage1D/7}
%% , etc.) after the barrier will reflect data written by shaders prior to the barrier. Additionally,
%% buffer object writes issued after the barrier will wait on the completion of all shader
%% writes initiated prior to the barrier.
%%
%% `?GL_TEXTURE_UPDATE_BARRIER_BIT': Writes to a texture via ``gl:tex(Sub)Image*'', ``gl:copyTex(Sub)Image*''
%% , ``gl:compressedTex(Sub)Image*'', and reads via {@link gl:getTexImage/5} after the barrier
%% will reflect data written by shaders prior to the barrier. Additionally, texture writes
%% from these commands issued after the barrier will not execute until all shader writes
%% initiated prior to the barrier complete.
%%
%% `?GL_BUFFER_UPDATE_BARRIER_BIT': Reads or writes via {@link gl:bufferSubData/4} , {@link gl:copyBufferSubData/5}
%% , or {@link gl:getBufferSubData/4} , or to buffer object memory mapped by see `glMapBuffer'
%% or see `glMapBufferRange' after the barrier will reflect data written by shaders
%% prior to the barrier. Additionally, writes via these commands issued after the barrier
%% will wait on the completion of any shader writes to the same memory initiated prior to
%% the barrier.
%%
%% `?GL_FRAMEBUFFER_BARRIER_BIT': Reads and writes via framebuffer object attachments
%% after the barrier will reflect data written by shaders prior to the barrier. Additionally,
%% framebuffer writes issued after the barrier will wait on the completion of all shader
%% writes issued prior to the barrier.
%%
%% `?GL_TRANSFORM_FEEDBACK_BARRIER_BIT': Writes via transform feedback bindings after
%% the barrier will reflect data written by shaders prior to the barrier. Additionally, transform
%% feedback writes issued after the barrier will wait on the completion of all shader writes
%% issued prior to the barrier.
%%
%% `?GL_ATOMIC_COUNTER_BARRIER_BIT': Accesses to atomic counters after the barrier
%% will reflect writes prior to the barrier.
%%
%% If `Barriers' is `?GL_ALL_BARRIER_BITS', shader memory accesses will be synchronized
%% relative to all the operations described above.
%%
%% Implementations may cache buffer object and texture image memory that could be written
%% by shaders in multiple caches; for example, there may be separate caches for texture,
%% vertex fetching, and one or more caches for shader memory accesses. Implementations are
%% not required to keep these caches coherent with shader memory writes. Stores issued by
%% one invocation may not be immediately observable by other pipeline stages or other shader
%% invocations because the value stored may remain in a cache local to the processor executing
%% the store, or because data overwritten by the store is still in a cache elsewhere in the
%% system. When ``gl:memoryBarrier'' is called, the GL flushes and/or invalidates any caches
%% relevant to the operations specified by the `Barriers' parameter to ensure consistent
%% ordering of operations across the barrier.
%%
%% To allow for independent shader invocations to communicate by reads and writes to a common
%% memory address, image variables in the OpenGL Shading Language may be declared as "coherent".
%% Buffer object or texture image memory accessed through such variables may be cached only
%% if caches are automatically updated due to stores issued by any other shader invocation.
%% If the same address is accessed using both coherent and non-coherent variables, the accesses
%% using variables declared as coherent will observe the results stored using coherent variables
%% in other invocations. Using variables declared as "coherent" guarantees only that the
%% results of stores will be immediately visible to shader invocations using similarly-declared
%% variables; calling ``gl:memoryBarrier'' is required to ensure that the stores are visible
%% to other operations.
%%
%% The following guidelines may be helpful in choosing when to use coherent memory accesses
%% and when to use barriers.
%%
%% Data that are read-only or constant may be accessed without using coherent variables or
%% calling MemoryBarrier(). Updates to the read-only data via API calls such as BufferSubData
%% will invalidate shader caches implicitly as required.
%%
%% Data that are shared between shader invocations at a fine granularity (e.g., written by
%% one invocation, consumed by another invocation) should use coherent variables to read
%% and write the shared data.
%%
%% Data written by one shader invocation and consumed by other shader invocations launched
%% as a result of its execution ("dependent invocations") should use coherent variables in
%% the producing shader invocation and call memoryBarrier() after the last write. The consuming
%% shader invocation should also use coherent variables.
%%
%% Data written to image variables in one rendering pass and read by the shader in a later
%% pass need not use coherent variables or memoryBarrier(). Calling MemoryBarrier() with
%% the SHADER_IMAGE_ACCESS_BARRIER_BIT set in `Barriers' between passes is necessary.
%%
%% Data written by the shader in one rendering pass and read by another mechanism (e.g.,
%% vertex or index buffer pulling) in a later pass need not use coherent variables or memoryBarrier().
%% Calling ``gl:memoryBarrier'' with the appropriate bits set in `Barriers' between
%% passes is necessary.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glMemoryBarrier.xml">external</a> documentation.
-spec memoryBarrier(Barriers) -> 'ok' when Barriers :: integer().
memoryBarrier(Barriers) ->
cast(5866, <<Barriers:?GLbitfield>>).
%% @doc Simultaneously specify storage for all levels of a one-dimensional texture
%%
%% ``gl:texStorage1D'' specifies the storage requirements for all levels of a one-dimensional
%% texture simultaneously. Once a texture is specified with this command, the format and
%% dimensions of all levels become immutable unless it is a proxy texture. The contents of
%% the image may still be modified, however, its storage requirements may not change. Such
%% a texture is referred to as an `immutable-format' texture.
%%
%% Calling ``gl:texStorage1D'' is equivalent, assuming no errors are generated, to executing
%% the following pseudo-code: for (i = 0; i < levels; i++) { glTexImage1D(target, i,
%% internalformat, width, 0, format, type, NULL); width = max(1, (width / 2)); }
%%
%% Since no texture data is actually provided, the values used in the pseudo-code for `Format'
%% and `Type' are irrelevant and may be considered to be any values that are legal
%% for the chosen `Internalformat' enumerant. `Internalformat' must be one of the
%% sized internal formats given in Table 1 below, one of the sized depth-component formats `?GL_DEPTH_COMPONENT32F'
%% , `?GL_DEPTH_COMPONENT24', or `?GL_DEPTH_COMPONENT16', or one of the combined
%% depth-stencil formats, `?GL_DEPTH32F_STENCIL8', or `?GL_DEPTH24_STENCIL8'. Upon
%% success, the value of `?GL_TEXTURE_IMMUTABLE_FORMAT' becomes `?GL_TRUE'. The
%% value of `?GL_TEXTURE_IMMUTABLE_FORMAT' may be discovered by calling {@link gl:getTexParameterfv/2}
%% with `Pname' set to `?GL_TEXTURE_IMMUTABLE_FORMAT'. No further changes to the
%% dimensions or format of the texture object may be made. Using any command that might alter
%% the dimensions or format of the texture object (such as {@link gl:texImage1D/8} or another
%% call to ``gl:texStorage1D'') will result in the generation of a `?GL_INVALID_OPERATION'
%% error, even if it would not, in fact, alter the dimensions or format of the object.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexStorage1D.xml">external</a> documentation.
-spec texStorage1D(Target, Levels, Internalformat, Width) -> 'ok' when Target :: enum(),Levels :: integer(),Internalformat :: enum(),Width :: integer().
texStorage1D(Target,Levels,Internalformat,Width) ->
cast(5867, <<Target:?GLenum,Levels:?GLsizei,Internalformat:?GLenum,Width:?GLsizei>>).
%% @doc Simultaneously specify storage for all levels of a two-dimensional or one-dimensional array texture
%%
%% ``gl:texStorage2D'' specifies the storage requirements for all levels of a two-dimensional
%% texture or one-dimensional texture array simultaneously. Once a texture is specified with
%% this command, the format and dimensions of all levels become immutable unless it is a
%% proxy texture. The contents of the image may still be modified, however, its storage requirements
%% may not change. Such a texture is referred to as an `immutable-format' texture.
%%
%% The behavior of ``gl:texStorage2D'' depends on the `Target' parameter. When `Target'
%% is `?GL_TEXTURE_2D', `?GL_PROXY_TEXTURE_2D', `?GL_TEXTURE_RECTANGLE', `?GL_PROXY_TEXTURE_RECTANGLE'
%% or `?GL_PROXY_TEXTURE_CUBE_MAP', calling ``gl:texStorage2D'' is equivalent, assuming
%% no errors are generated, to executing the following pseudo-code: for (i = 0; i < levels;
%% i++) { glTexImage2D(target, i, internalformat, width, height, 0, format, type, NULL);
%% width = max(1, (width / 2)); height = max(1, (height / 2)); }
%%
%% When `Target' is `?GL_TEXTURE_CUBE_MAP', ``gl:texStorage2D'' is equivalent
%% to: for (i = 0; i < levels; i++) { for (face in (+X, -X, +Y, -Y, +Z, -Z)) { glTexImage2D(face,
%% i, internalformat, width, height, 0, format, type, NULL); } width = max(1, (width / 2));
%% height = max(1, (height / 2)); }
%%
%% When `Target' is `?GL_TEXTURE_1D' or `?GL_TEXTURE_1D_ARRAY', ``gl:texStorage2D''
%% is equivalent to: for (i = 0; i < levels; i++) { glTexImage2D(target, i, internalformat,
%% width, height, 0, format, type, NULL); width = max(1, (width / 2)); }
%%
%% Since no texture data is actually provided, the values used in the pseudo-code for `Format'
%% and `Type' are irrelevant and may be considered to be any values that are legal
%% for the chosen `Internalformat' enumerant. `Internalformat' must be one of the
%% sized internal formats given in Table 1 below, one of the sized depth-component formats `?GL_DEPTH_COMPONENT32F'
%% , `?GL_DEPTH_COMPONENT24', or `?GL_DEPTH_COMPONENT16', or one of the combined
%% depth-stencil formats, `?GL_DEPTH32F_STENCIL8', or `?GL_DEPTH24_STENCIL8'. Upon
%% success, the value of `?GL_TEXTURE_IMMUTABLE_FORMAT' becomes `?GL_TRUE'. The
%% value of `?GL_TEXTURE_IMMUTABLE_FORMAT' may be discovered by calling {@link gl:getTexParameterfv/2}
%% with `Pname' set to `?GL_TEXTURE_IMMUTABLE_FORMAT'. No further changes to the
%% dimensions or format of the texture object may be made. Using any command that might alter
%% the dimensions or format of the texture object (such as {@link gl:texImage2D/9} or another
%% call to ``gl:texStorage2D'') will result in the generation of a `?GL_INVALID_OPERATION'
%% error, even if it would not, in fact, alter the dimensions or format of the object.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexStorage2D.xml">external</a> documentation.
-spec texStorage2D(Target, Levels, Internalformat, Width, Height) -> 'ok' when Target :: enum(),Levels :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer().
texStorage2D(Target,Levels,Internalformat,Width,Height) ->
cast(5868, <<Target:?GLenum,Levels:?GLsizei,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei>>).
%% @doc Simultaneously specify storage for all levels of a three-dimensional, two-dimensional array or cube-map array texture
%%
%% ``gl:texStorage3D'' specifies the storage requirements for all levels of a three-dimensional,
%% two-dimensional array or cube-map array texture simultaneously. Once a texture is specified
%% with this command, the format and dimensions of all levels become immutable unless it
%% is a proxy texture. The contents of the image may still be modified, however, its storage
%% requirements may not change. Such a texture is referred to as an `immutable-format'
%% texture.
%%
%% The behavior of ``gl:texStorage3D'' depends on the `Target' parameter. When `Target'
%% is `?GL_TEXTURE_3D', or `?GL_PROXY_TEXTURE_3D', calling ``gl:texStorage3D''
%% is equivalent, assuming no errors are generated, to executing the following pseudo-code:
%% for (i = 0; i < levels; i++) { glTexImage3D(target, i, internalformat, width, height,
%% depth, 0, format, type, NULL); width = max(1, (width / 2)); height = max(1, (height /
%% 2)); depth = max(1, (depth / 2)); }
%%
%% When `Target' is `?GL_TEXTURE_2D_ARRAY', `?GL_PROXY_TEXTURE_2D_ARRAY', `?GL_TEXTURE_CUBE_MAP_ARRAY'
%% , or `?GL_PROXY_TEXTURE_CUBE_MAP_ARRAY', ``gl:texStorage3D'' is equivalent to:
%% for (i = 0; i < levels; i++) { glTexImage3D(target, i, internalformat, width, height,
%% depth, 0, format, type, NULL); width = max(1, (width / 2)); height = max(1, (height /
%% 2)); }
%%
%% Since no texture data is actually provided, the values used in the pseudo-code for `Format'
%% and `Type' are irrelevant and may be considered to be any values that are legal
%% for the chosen `Internalformat' enumerant. `Internalformat' must be one of the
%% sized internal formats given in Table 1 below, one of the sized depth-component formats `?GL_DEPTH_COMPONENT32F'
%% , `?GL_DEPTH_COMPONENT24', or `?GL_DEPTH_COMPONENT16', or one of the combined
%% depth-stencil formats, `?GL_DEPTH32F_STENCIL8', or `?GL_DEPTH24_STENCIL8'. Upon
%% success, the value of `?GL_TEXTURE_IMMUTABLE_FORMAT' becomes `?GL_TRUE'. The
%% value of `?GL_TEXTURE_IMMUTABLE_FORMAT' may be discovered by calling {@link gl:getTexParameterfv/2}
%% with `Pname' set to `?GL_TEXTURE_IMMUTABLE_FORMAT'. No further changes to the
%% dimensions or format of the texture object may be made. Using any command that might alter
%% the dimensions or format of the texture object (such as {@link gl:texImage3D/10} or another
%% call to ``gl:texStorage3D'') will result in the generation of a `?GL_INVALID_OPERATION'
%% error, even if it would not, in fact, alter the dimensions or format of the object.
%%
%%
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glTexStorage3D.xml">external</a> documentation.
-spec texStorage3D(Target, Levels, Internalformat, Width, Height, Depth) -> 'ok' when Target :: enum(),Levels :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Depth :: integer().
texStorage3D(Target,Levels,Internalformat,Width,Height,Depth) ->
cast(5869, <<Target:?GLenum,Levels:?GLsizei,Internalformat:?GLenum,Width:?GLsizei,Height:?GLsizei,Depth:?GLsizei>>).
%% @doc glDepthBoundsEXT
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glDepthBoundsEXT.xml">external</a> documentation.
-spec depthBoundsEXT(Zmin, Zmax) -> 'ok' when Zmin :: clamp(),Zmax :: clamp().
depthBoundsEXT(Zmin,Zmax) ->
cast(5870, <<Zmin:?GLclampd,Zmax:?GLclampd>>).
%% @doc glStencilClearTagEXT
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glStencilClearTagEXT.xml">external</a> documentation.
-spec stencilClearTagEXT(StencilTagBits, StencilClearTag) -> 'ok' when StencilTagBits :: integer(),StencilClearTag :: integer().
stencilClearTagEXT(StencilTagBits,StencilClearTag) ->
cast(5871, <<StencilTagBits:?GLsizei,StencilClearTag:?GLuint>>).
|