aboutsummaryrefslogtreecommitdiffstats
path: root/system/doc/design_principles/statem.xml
blob: a0611a46daad34ef74975a18e12d8eb814689942 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2016</year><year>2017</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at

          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License.

    </legalnotice>

    <title>gen_statem Behavior</title>
    <prepared></prepared>
    <docno></docno>
    <date></date>
    <rev></rev>
    <file>statem.xml</file>
  </header>
  <marker id="gen_statem Behaviour" />
  <p>
    This section is to be read with the
    <seealso marker="stdlib:gen_statem"><c>gen_statem(3)</c></seealso>
    manual page in STDLIB, where all interface functions and callback
    functions are described in detail.
  </p>
  <note>
    <p>
      This is a new behavior in Erlang/OTP 19.0.
      It has been thoroughly reviewed, is stable enough
      to be used by at least two heavy OTP applications, and is here to stay.
      Depending on user feedback, we do not expect
      but can find it necessary to make minor
      not backward compatible changes into Erlang/OTP 20.0.
    </p>
  </note>

<!-- =================================================================== -->

  <section>
    <marker id="Event-Driven State Machines" />
    <title>Event-Driven State Machines</title>
    <p>
      Established Automata Theory does not deal much with
      how a state transition is triggered,
      but assumes that the output is a function
      of the input (and the state) and that they are
      some kind of values.
    </p>
    <p>
      For an Event-Driven State Machine, the input is an event
      that triggers a state transition and the output
      is actions executed during the state transition.
      It can analogously to the mathematical model of a
      Finite-State Machine be described as
      a set of relations of the following form:
    </p>
    <pre>
State(S) x Event(E) -> Actions(A), State(S')</pre>
    <p>These relations are interpreted as follows:
      if we are in state <c>S</c> and event <c>E</c> occurs, we
      are to perform actions <c>A</c> and make a transition to
      state <c>S'</c>. Notice that <c>S'</c> can be equal to <c>S</c>.
    </p>
    <p>
      As <c>A</c> and <c>S'</c> depend only on
      <c>S</c> and <c>E</c>, the kind of state machine described
      here is a Mealy Machine
      (see, for example, the corresponding Wikipedia article).
    </p>
    <p>
      Like most <c>gen_</c> behaviors, <c>gen_statem</c> keeps
      a server <c>Data</c> besides the state. Because of this, and as
      there is no restriction on the number of states
      (assuming that there is enough virtual machine memory)
      or on the number of distinct input events,
      a state machine implemented with this behavior
      is in fact Turing complete.
      But it feels mostly like an Event-Driven Mealy Machine.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Callback Modes" />
    <title>Callback Modes</title>
    <p>
      The <c>gen_statem</c> behavior supports two callback modes:
    </p>
    <list type="bulleted">
      <item>
        <p>
          In mode
	  <seealso marker="stdlib:gen_statem#type-callback_mode"><c>state_functions</c></seealso>,
          the state transition rules are written as some Erlang
          functions, which conform to the following convention:
        </p>
        <pre>
StateName(EventType, EventContent, Data) ->
    ... code for actions here ...
    {next_state, NewStateName, NewData}.
	</pre>
	<p>
	  This form is used in most examples here for example in section
	  <seealso marker="#Example">Example</seealso>.
	</p>
      </item>
      <item>
        <p>
          In mode
	  <seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>,
          only one Erlang function provides all state transition rules:
        </p>
        <pre>
handle_event(EventType, EventContent, State, Data) ->
    ... code for actions here ...
    {next_state, NewState, NewData}
	</pre>
	<p>
	  See section
	  <seealso marker="#One Event Handler">One Event Handler</seealso>
	  for an example.
	</p>
      </item>
    </list>
    <p>
      Both these modes allow other return tuples; see
      <seealso marker="stdlib:gen_statem#Module:StateName/3"><c>Module:StateName/3</c></seealso>
      in the <c>gen_statem</c> manual page.
      These other return tuples can, for example, stop the machine,
      execute state transition actions on the machine engine itself,
      and send replies.
    </p>

    <section>
      <marker id="Choosing the Callback Mode" />
      <title>Choosing the Callback Mode</title>
      <p>
	The two
	<seealso marker="#Callback Modes">callback modes</seealso>
	give different possibilities
	and restrictions, but one goal remains:
	you want to handle all possible combinations of
	events and states.
      </p>
      <p>
	This can be done, for example, by focusing on one state at the time
	and for every state ensure that all events are handled.
	Alternatively, you can focus on one event at the time
	and ensure that it is handled in every state.
	You can also use a mix of these strategies.
      </p>
      <p>
	With <c>state_functions</c>, you are restricted to use
	atom-only states, and the <c>gen_statem</c> engine
	branches depending on state name for you.
	This encourages the callback module to gather
	the implementation of all event actions particular
	to one state in the same place in the code,
	hence to focus on one state at the time.
      </p>
      <p>
	This mode fits well when you have a regular state diagram,
	like the ones in this chapter, which describes all events and actions
	belonging to a state visually around that state,
	and each state has its unique name.
      </p>
      <p>
	With <c>handle_event_function</c>, you are free to mix strategies,
	as all events and states are handled in the same callback function.
      </p>
      <p>
	This mode works equally well when you want to focus on
	one event at the time or on
	one state at the time, but function
	<seealso marker="stdlib:gen_statem#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>
	quickly grows too large to handle without branching to
	helper functions.
      </p>
      <p>
	The mode enables the use of non-atom states, for example,
	complex states or even hierarchical states.
	If, for example, a state diagram is largely alike
	for the client side and the server side of a protocol,
	you can have a state <c>{StateName,server}</c> or
	<c>{StateName,client}</c>,
	and make <c>StateName</c> determine where in the code
	to handle most events in the state.
	The second element of the tuple is then used to select
	whether to handle special client-side or server-side events.
      </p>
    </section>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="State Enter Calls" />
    <title>State Enter Calls</title>
    <p>
      The <c>gen_statem</c> behavior can regardless of callback mode
      automatically
      <seealso marker="stdlib:gen_statem#type-state_enter">
	call the state callback
      </seealso>
      with special arguments whenever the state changes
      so you can write state entry actions
      near the rest of the state transition rules.
      It typically looks like this:
    </p>
    <pre>
StateName(enter, _OldState, Data) ->
    ... code for state entry actions here ...
    {keep_state, NewData};
StateName(EventType, EventContent, Data) ->
    ... code for actions here ...
    {next_state, NewStateName, NewData}.</pre>
    <p>
      Depending on how your state machine is specified,
      this can be a very useful feature,
      but it forces you to handle the state enter calls in all states.
      See also the
      <seealso marker="#State Entry Actions">
	State Entry Actions
      </seealso>
      chapter.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Actions" />
    <title>Actions</title>
    <p>
      In the first section
      <seealso marker="#Event-Driven State Machines">
	Event-Driven State Machines
      </seealso>
      actions were mentioned as a part of
      the general state machine model. These general actions
      are implemented with the code that callback module
      <c>gen_statem</c> executes in an event-handling
      callback function before returning
      to the <c>gen_statem</c> engine.
    </p>
    <p>
      There are more specific state-transition actions
      that a callback function can order the <c>gen_statem</c>
      engine to do after the callback function return.
      These are ordered by returning a list of
      <seealso marker="stdlib:gen_statem#type-action">actions</seealso>
      in the
      <seealso marker="stdlib:gen_statem#type-state_callback_result">return tuple</seealso>
      from the
      <seealso marker="stdlib:gen_statem#Module:StateName/3">callback function</seealso>.
      These state transition actions affect the <c>gen_statem</c>
      engine itself and can do the following:
    </p>
    <list type="bulleted">
      <item>
	<seealso marker="stdlib:gen_statem#type-postpone">
	  Postpone
	</seealso>
	the current event, see section
	<seealso marker="#Postponing Events">Postponing Events</seealso>
      </item>
      <item>
	<seealso marker="stdlib:gen_statem#type-hibernate">
	  Hibernate
	</seealso>
	the <c>gen_statem</c>, treated in
	<seealso marker="#Hibernation">Hibernation</seealso>
      </item>
      <item>
	Start a
	<seealso marker="stdlib:gen_statem#type-state_timeout">
	  state time-out</seealso>,
	  read more in section
	<seealso marker="#State Time-Outs">State Time-Outs</seealso>
      </item>
      <item>
	Start a
	<seealso marker="stdlib:gen_statem#type-generic_timeout">
	  generic time-out</seealso>,
	  read more in section
	<seealso marker="#Generic Time-Outs">Generic Time-Outs</seealso>
      </item>
      <item>
	Start an
	<seealso marker="stdlib:gen_statem#type-event_timeout">event time-out</seealso>,
	see more in section
	<seealso marker="#Event Time-Outs">Event Time-Outs</seealso>
      </item>
      <item>
	<seealso marker="stdlib:gen_statem#type-reply_action">
	  Reply
	</seealso>
	to a caller, mentioned at the end of section
	<seealso marker="#All State Events">All State Events</seealso>
      </item>
      <item>
	Generate the
	<seealso marker="stdlib:gen_statem#type-action">
	  next event
	</seealso>
	to handle, see section 
	<seealso marker="#Self-Generated Events">Self-Generated Events</seealso>
      </item>
    </list>
    <p>
      For details, see the
      <seealso marker="stdlib:gen_statem#type-action">
	<c>gen_statem(3)</c>
      </seealso>
      manual page.
      You can, for example, reply to many callers,
      generate multiple next events,
      and set time-outs to relative or absolute times.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Event Types" />
    <title>Event Types</title>
    <p>
      Events are categorized in different
      <seealso marker="stdlib:gen_statem#type-event_type">event types</seealso>.
      Events of all types are handled in the same callback function,
      for a given state, and the function gets
      <c>EventType</c> and <c>EventContent</c> as arguments.
    </p>
    <p>
      The following is a complete list of event types and where
      they come from:
    </p>
    <taglist>
      <tag><c>cast</c></tag>
      <item>
	Generated by
	<seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast</c></seealso>.
      </item>
      <tag><c>{call,From}</c></tag>
      <item>
	Generated by
	<seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call</c></seealso>,
	where <c>From</c> is the reply address to use
	when replying either through the state transition action
	<c>{reply,From,Msg}</c> or by calling
	<seealso marker="stdlib:gen_statem#reply/1"><c>gen_statem:reply</c></seealso>.
      </item>
      <tag><c>info</c></tag>
      <item>
	Generated by any regular process message sent to
	the <c>gen_statem</c> process.
      </item>
      <tag><c>state_timeout</c></tag>
      <item>
	Generated by state transition action
	<seealso marker="stdlib:gen_statem#type-state_timeout">
	  <c>{state_timeout,Time,EventContent}</c>
	</seealso>
	state timer timing out.
      </item>
      <tag><c>{timeout,Name}</c></tag>
      <item>
	Generated by state transition action
	<seealso marker="stdlib:gen_statem#type-generic_timeout">
	  <c>{{timeout,Name},Time,EventContent}</c>
	</seealso>
	generic timer timing out.
      </item>
      <tag><c>timeout</c></tag>
      <item>
	Generated by state transition action
	<seealso marker="stdlib:gen_statem#type-event_timeout">
	  <c>{timeout,Time,EventContent}</c>
	</seealso>
	(or its short form <c>Time</c>)
	event timer timing out.
      </item>
      <tag><c>internal</c></tag>
      <item>
	Generated by state transition
	<seealso marker="stdlib:gen_statem#type-action">action</seealso>
	<c>{next_event,internal,EventContent}</c>.
	All event types above can also be generated using
	<c>{next_event,EventType,EventContent}</c>.
      </item>
    </taglist>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Example" />
    <title>Example</title>
    <p>
      A door with a code lock can be seen as a state machine.
      Initially, the door is locked. When someone presses a button,
      an event is generated.
      Depending on what buttons have been pressed before,
      the sequence so far can be correct, incomplete, or wrong.
      If correct, the door is unlocked for 10 seconds (10,000 milliseconds).
      If incomplete, we wait for another button to be pressed. If
      wrong, we start all over, waiting for a new button sequence.
    </p>
    <image file="../design_principles/code_lock.png">
      <icaption>Code Lock State Diagram</icaption>
    </image>
    <p>
      This code lock state machine can be implemented using
      <c>gen_statem</c> with the following callback module:
    </p>
    <code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock).

-export([start_link/1]).
-export([button/1]).
-export([init/1,callback_mode/0,terminate/3,code_change/4]).
-export([locked/3,open/3]).

start_link(Code) ->
    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

button(Digit) ->
    gen_statem:cast(?NAME, {button,Digit}).

init(Code) ->
    do_lock(),
    Data = #{code => Code, remaining => Code},
    {ok, locked, Data}.

callback_mode() ->
    state_functions.

locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] ->
	    do_unlock(),
            {next_state, open, Data#{remaining := Code},
             [{state_timeout,10000,lock}]};
        [Digit|Rest] -> % Incomplete
            {next_state, locked, Data#{remaining := Rest}};
        _Wrong ->
            {next_state, locked, Data#{remaining := Code}}
    end.

open(state_timeout, lock,  Data) ->
    do_lock(),
    {next_state, locked, Data};
open(cast, {button,_}, Data) ->
    {next_state, open, Data}.

do_lock() ->
    io:format("Lock~n", []).
do_unlock() ->
    io:format("Unlock~n", []).

terminate(_Reason, State, _Data) ->
    State =/= locked andalso do_lock(),
    ok.
code_change(_Vsn, State, Data, _Extra) ->
    {ok, State, Data}.
    ]]></code>
    <p>The code is explained in the next sections.</p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Starting gen_statem" />
    <title>Starting gen_statem</title>
    <p>
      In the example in the previous section, <c>gen_statem</c> is
      started by calling <c>code_lock:start_link(Code)</c>:
    </p>
    <code type="erl"><![CDATA[
start_link(Code) ->
    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
    ]]></code>
    <p>
      <c>start_link</c> calls function
      <seealso marker="stdlib:gen_statem#start_link/4"><c>gen_statem:start_link/4</c></seealso>,
      which spawns and links to a new process, a <c>gen_statem</c>.
    </p>
    <list type="bulleted">
      <item>
        <p>
          The first argument, <c>{local,?NAME}</c>, specifies
          the name. In this case, the <c>gen_statem</c> is locally
          registered as <c>code_lock</c> through the macro <c>?NAME</c>.
        </p>
        <p>
          If the name is omitted, the <c>gen_statem</c> is not registered.
          Instead its pid must be used. The name can also be specified
          as <c>{global,Name}</c>, then the <c>gen_statem</c> is
          registered using
          <seealso marker="kernel:global#register_name/2"><c>global:register_name/2</c></seealso>
          in Kernel.
        </p>
      </item>
      <item>
        <p>
          The second argument, <c>?MODULE</c>, is the name of
          the callback module, that is, the module where the callback
          functions are located, which is this module.
        </p>
        <p>
          The interface functions (<c>start_link/1</c> and <c>button/1</c>)
          are located in the same module as the callback functions
          (<c>init/1</c>, <c>locked/3</c>, and <c>open/3</c>).
          It is normally good programming practice to have the client-side
          code and the server-side code contained in one module.
        </p>
      </item>
      <item>
        <p>
          The third argument, <c>Code</c>, is a list of digits, which
          is the correct unlock code that is passed
          to callback function <c>init/1</c>.
	</p>
      </item>
      <item>
        <p>
          The fourth argument, <c>[]</c>, is a list of options.
          For the available options, see
          <seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link/3</c></seealso>.
	</p>
      </item>
    </list>
    <p>
      If name registration succeeds, the new <c>gen_statem</c> process
      calls callback function <c>code_lock:init(Code)</c>.
      This function is expected to return <c>{ok, State, Data}</c>,
      where <c>State</c> is the initial state of the <c>gen_statem</c>,
      in this case <c>locked</c>; assuming that the door is locked to begin
      with. <c>Data</c> is the internal server data of the <c>gen_statem</c>.
      Here the server data is a <seealso marker="stdlib:maps">map</seealso>
      with key <c>code</c> that stores
      the correct button sequence, and key <c>remaining</c>
      that stores the remaining correct button sequence
      (the same as the <c>code</c> to begin with).
    </p>

    <code type="erl"><![CDATA[
init(Code) ->
    do_lock(),
    Data = #{code => Code, remaining => Code},
    {ok,locked,Data}.
    ]]></code>
    <p>Function
      <seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link</c></seealso>
      is synchronous. It does not return until the <c>gen_statem</c>
      is initialized and is ready to receive events.
    </p>
    <p>
      Function
      <seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link</c></seealso>
      must be used if the <c>gen_statem</c>
      is part of a supervision tree, that is, started by a supervisor.
      Another function,
      <seealso marker="stdlib:gen_statem#start/3"><c>gen_statem:start</c></seealso>
      can be used to start a standalone <c>gen_statem</c>, that is,
      a <c>gen_statem</c> that is not part of a supervision tree.
    </p>

    <code type="erl"><![CDATA[
callback_mode() ->
    state_functions.
    ]]></code>
    <p>
      Function
      <seealso marker="stdlib:gen_statem#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>
      selects the
      <seealso marker="#Callback Modes"><c>CallbackMode</c></seealso>
      for the callback module, in this case
      <seealso marker="stdlib:gen_statem#type-callback_mode"><c>state_functions</c></seealso>.
      That is, each state has got its own handler function.
    </p>

  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Handling Events" />
    <title>Handling Events</title>
    <p>The function notifying the code lock about a button event is
      implemented using
      <seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast/2</c></seealso>:
    </p>
    <code type="erl"><![CDATA[
button(Digit) ->
    gen_statem:cast(?NAME, {button,Digit}).
    ]]></code>
    <p>
      The first argument is the name of the <c>gen_statem</c> and must
      agree with the name used to start it. So, we use the
      same macro <c>?NAME</c> as when starting.
      <c>{button,Digit}</c> is the event content.
    </p>
    <p>
      The event is made into a message and sent to the <c>gen_statem</c>.
      When the event is received, the <c>gen_statem</c> calls
      <c>StateName(cast, Event, Data)</c>, which is expected to
      return a tuple <c>{next_state, NewStateName, NewData}</c>,
      or <c>{next_state, NewStateName, NewData, Actions}</c>.
      <c>StateName</c> is the name of the current state and
      <c>NewStateName</c> is the name of the next state to go to.
      <c>NewData</c> is a new value for the server data of
      the <c>gen_statem</c>, and <c>Actions</c> is a list of
      actions on the <c>gen_statem</c> engine.
    </p>
    <code type="erl"><![CDATA[
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] -> % Complete
	    do_unlock(),
            {next_state, open, Data#{remaining := Code},
             [{state_timeout,10000,lock}]};
        [Digit|Rest] -> % Incomplete
            {next_state, locked, Data#{remaining := Rest}};
        [_|_] -> % Wrong
            {next_state, locked, Data#{remaining := Code}}
    end.

open(state_timeout, lock, Data) ->
    do_lock(),
    {next_state, locked, Data};
open(cast, {button,_}, Data) ->
    {next_state, open, Data}.
    ]]></code>
    <p>
      If the door is locked and a button is pressed, the pressed
      button is compared with the next correct button.
      Depending on the result, the door is either unlocked
      and the <c>gen_statem</c> goes to state <c>open</c>,
      or the door remains in state <c>locked</c>.
    </p>
    <p>
      If the pressed button is incorrect, the server data
      restarts from the start of the code sequence.
    </p>
    <p>
      If the whole code is correct, the server changes states
      to <c>open</c>.
    </p>
    <p>
      In state <c>open</c>, a button event is ignored
      by staying in the same state.  This can also be done
      by returning <c>{keep_state, Data}</c> or in this case
      since <c>Data</c> unchanged even by returning
      <c>keep_state_and_data</c>.
    </p>
  </section>

  <section>
    <marker id="State Time-Outs" />
    <title>State Time-Outs</title>
    <p>
      When a correct code has been given, the door is unlocked and
      the following tuple is returned from <c>locked/2</c>:
    </p>
    <code type="erl"><![CDATA[
{next_state, open, Data#{remaining := Code},
 [{state_timeout,10000,lock}]};
    ]]></code>
    <p>
      10,000 is a time-out value in milliseconds.
      After this time (10 seconds), a time-out occurs.
      Then, <c>StateName(state_timeout, lock, Data)</c> is called.
      The time-out occurs when the door has been in state <c>open</c>
      for 10 seconds. After that the door is locked again:
    </p>
    <code type="erl"><![CDATA[
open(state_timeout, lock,  Data) ->
    do_lock(),
    {next_state, locked, Data};
    ]]></code>
    <p>
      The timer for a state time-out is automatically cancelled
      when the state machine changes states.  You can restart
      a state time-out by setting it to a new time, which cancels
      the running timer and starts a new.  This implies that
      you can cancel a state time-out by restarting it with
      time <c>infinity</c>.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="All State Events" />
    <title>All State Events</title>
    <p>
      Sometimes events can arrive in any state of the <c>gen_statem</c>.
      It is convenient to handle these in a common state handler function
      that all state functions call for events not specific to the state.
    </p>
    <p>
      Consider a <c>code_length/0</c> function that returns
      the length of the correct code
      (that should not be sensitive to reveal).
      We dispatch all events that are not state-specific
      to the common function <c>handle_event/3</c>:
    </p>
    <code type="erl"><![CDATA[
...
-export([button/1,code_length/0]).
...

code_length() ->
    gen_statem:call(?NAME, code_length).

...
locked(...) -> ... ;
locked(EventType, EventContent, Data) ->
    handle_event(EventType, EventContent, Data).

...
open(...) -> ... ;
open(EventType, EventContent, Data) ->
    handle_event(EventType, EventContent, Data).

handle_event({call,From}, code_length, #{code := Code} = Data) ->
    {keep_state, Data, [{reply,From,length(Code)}]}.
    ]]></code>
    <p>
      This example uses
      <seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call/2</c></seealso>,
      which waits for a reply from the server.
      The reply is sent with a <c>{reply,From,Reply}</c> tuple
      in an action list in the <c>{keep_state, ...}</c> tuple
      that retains the current state.  This return form is convenient
      when you want to stay in the current state but do not know or
      care about what it is.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="One Event Handler" />
    <title>One Event Handler</title>
    <p>
      If mode <c>handle_event_function</c> is used,
      all events are handled in
      <seealso marker="stdlib:gen_statem#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>
      and we can (but do not have to) use an event-centered approach
      where we first branch depending on event
      and then depending on state:
    </p>
    <code type="erl"><![CDATA[
...
-export([handle_event/4]).

...
callback_mode() ->
    handle_event_function.

handle_event(cast, {button,Digit}, State, #{code := Code} = Data) ->
    case State of
	locked ->
	    case maps:get(remaining, Data) of
		[Digit] -> % Complete
		    do_unlock(),
		    {next_state, open, Data#{remaining := Code},
                     [{state_timeout,10000,lock}]};
		[Digit|Rest] -> % Incomplete
		    {keep_state, Data#{remaining := Rest}};
		[_|_] -> % Wrong
		    {keep_state, Data#{remaining := Code}}
	    end;
	open ->
            keep_state_and_data
    end;
handle_event(state_timeout, lock, open, Data) ->
    do_lock(),
    {next_state, locked, Data}.

...
    ]]></code>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Stopping" />
    <title>Stopping</title>

    <section>
      <marker id="In a Supervision Tree" />
      <title>In a Supervision Tree</title>
      <p>
	If the <c>gen_statem</c> is part of a supervision tree,
	no stop function is needed.
	The <c>gen_statem</c> is automatically terminated by its supervisor.
	Exactly how this is done is defined by a
	<seealso marker="sup_princ#shutdown">shutdown strategy</seealso>
	set in the supervisor.
      </p>
      <p>
	If it is necessary to clean up before termination, the shutdown
	strategy must be a time-out value and the <c>gen_statem</c> must
	in function <c>init/1</c> set itself to trap exit signals
	by calling
	<seealso marker="erts:erlang#process_flag/2"><c>process_flag(trap_exit, true)</c></seealso>:
      </p>
      <code type="erl"><![CDATA[
init(Args) ->
    process_flag(trap_exit, true),
    do_lock(),
    ...
      ]]></code>
      <p>
	When ordered to shut down, the <c>gen_statem</c> then calls
	callback function <c>terminate(shutdown, State, Data)</c>.
      </p>
      <p>
	In this example, function <c>terminate/3</c>
	locks the door if it is open, so we do not accidentally leave the door
	open when the supervision tree terminates:
      </p>
      <code type="erl"><![CDATA[
terminate(_Reason, State, _Data) ->
    State =/= locked andalso do_lock(),
    ok.
      ]]></code>
    </section>

    <section>
      <marker id="Standalone gen_statem" />
      <title>Standalone gen_statem</title>
      <p>
	If the <c>gen_statem</c> is not part of a supervision tree,
	it can be stopped using
	<seealso marker="stdlib:gen_statem#stop/1"><c>gen_statem:stop</c></seealso>,
	preferably through an API function:
      </p>
      <code type="erl"><![CDATA[
...
-export([start_link/1,stop/0]).

...
stop() ->
    gen_statem:stop(?NAME).
      ]]></code>
      <p>
	This makes the <c>gen_statem</c> call callback function
	<c>terminate/3</c> just like for a supervised server
	and waits for the process to terminate.
      </p>
    </section>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Event Time-Outs" />
    <title>Event Time-Outs</title>
    <p>
      A time-out feature inherited from <c>gen_statem</c>'s predecessor
      <seealso marker="stdlib:gen_fsm"><c>gen_fsm</c></seealso>,
      is an event time-out, that is,
      if an event arrives the timer is cancelled.
      You get either an event or a time-out, but not both.
    </p>
    <p>
      It is ordered by the state transition action
      <c>{timeout,Time,EventContent}</c>, or just <c>Time</c>,
      or even just <c>Time</c> instead of an action list
      (the latter is a form inherited from <c>gen_fsm</c>.
    </p>
    <p>
      This type of time-out is useful to for example act on inactivity.
      Let us restart the code sequence
      if no button is pressed for say 30 seconds:
    </p>
    <code type="erl"><![CDATA[
...

locked(
  timeout, _, 
  #{code := Code, remaining := Remaining} = Data) ->
    {next_state, locked, Data#{remaining := Code}};
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
...
        [Digit|Rest] -> % Incomplete
            {next_state, locked, Data#{remaining := Rest}, 30000};
...
     ]]></code>
    <p>
      Whenever we receive a button event we start an event time-out
      of 30 seconds, and if we get an event type <c>timeout</c>
      we reset the remaining code sequence.
    </p>
    <p>
      An event time-out is cancelled by any other event so you either
      get some other event or the time-out event.  It is therefore
      not possible nor needed to cancel or restart an event time-out.
      Whatever event you act on has already cancelled
      the event time-out...
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Generic Time-Outs" />
    <title>Generic Time-Outs</title>
    <p>
      The previous example of state time-outs only work if
      the state machine stays in the same state during the
      time-out time.  And event time-outs only work if no
      disturbing unrelated events occur.
    </p>
    <p>
      You may want to start a timer in one state and respond
      to the time-out in another, maybe cancel the time-out
      without changing states, or perhaps run multiple
      time-outs in parallel. All this can be accomplished with
      <seealso marker="stdlib:gen_statem#type-generic_timeout">generic time-outs</seealso>.
      They may look a little bit like
      <seealso marker="stdlib:gen_statem#type-event_timeout">event time-outs</seealso>
      but contain a name to allow for any number of them simultaneously
      and they are not automatically cancelled.
    </p>
    <p>
      Here is how to accomplish the state time-out
      in the previous example by instead using a generic time-out
      named <c>open_tm</c>:
    </p>
    <code type="erl"><![CDATA[
...
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] ->
	    do_unlock(),
            {next_state, open, Data#{remaining := Code},
	     [{{timeout,open_tm},10000,lock}]};
...

open({timeout,open_tm}, lock, Data) ->
    do_lock(),
    {next_state,locked,Data};
open(cast, {button,_}, Data) ->
    {keep_state,Data};
...
    ]]></code>
    <p>
      Just as
      <seealso marker="#State Time-Outs">state time-outs</seealso>
      you can restart or cancel a specific generic time-out
      by setting it to a new time or <c>infinity</c>.
    </p>
    <p>
      Another way to handle a late time-out can be to not cancel it,
      but to ignore it if it arrives in a state
      where it is known to be late.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Erlang Timers" />
    <title>Erlang Timers</title>
    <p>
      The most versatile way to handle time-outs is to use
      Erlang Timers; see
      <seealso marker="erts:erlang#start_timer/4"><c>erlang:start_timer3,4</c></seealso>.
      Most time-out tasks can be performed with the
      time-out features in <c>gen_statem</c>,
      but an example of one that can not is if you should need
      the return value from
      <seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>, that is; the remaining time of the timer.
    </p>
    <p>
      Here is how to accomplish the state time-out
      in the previous example by instead using an Erlang Timer:
    </p>
    <code type="erl"><![CDATA[
...
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] ->
	    do_unlock(),
	    Tref = erlang:start_timer(10000, self(), lock),
            {next_state, open, Data#{remaining := Code, timer => Tref}};
...

open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
    do_lock(),
    {next_state,locked,maps:remove(timer, Data)};
open(cast, {button,_}, Data) ->
    {keep_state,Data};
...
    ]]></code>
    <p>
      Removing the <c>timer</c> key from the map when we
      change to state <c>locked</c> is not strictly
      necessary since we can only get into state <c>open</c>
      with an updated <c>timer</c> map value.  But it can be nice
      to not have outdated values in the state <c>Data</c>!
    </p>
    <p>
      If you need to cancel a timer because of some other event, you can use
      <seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>.
      Note that a time-out message cannot arrive after this,
      unless you have postponed it before (see the next section),
      so ensure that you do not accidentally postpone such messages.
      Also note that a time-out message may have arrived
      just before you cancelling it, so you may have to read out
      such a message from the process mailbox depending on
      the return value from 
      <seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>.
    </p>
    <p>
      Another way to handle a late time-out can be to not cancel it,
      but to ignore it if it arrives in a state
      where it is known to be late.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Postponing Events" />
    <title>Postponing Events</title>
    <p>
      If you want to ignore a particular event in the current state
      and handle it in a future state, you can postpone the event.
      A postponed event is retried after the state has
      changed, that is, <c>OldState =/= NewState</c>.
    </p>
    <p>
      Postponing is ordered by the state transition
      <seealso marker="stdlib:gen_statem#type-action">action</seealso>
      <c>postpone</c>.
    </p>
    <p>
      In this example, instead of ignoring button events
      while in the <c>open</c> state, we can postpone them
      and they are queued and later handled in the <c>locked</c> state:
    </p>
    <code type="erl"><![CDATA[
...
open(cast, {button,_}, Data) ->
    {keep_state,Data,[postpone]};
...
    ]]></code>
    <p>
      Since a postponed event is only retried after a state change,
      you have to think about where to keep a state data item.
      You can keep it in the server <c>Data</c>
      or in the <c>State</c> itself,
      for example by having two more or less identical states
      to keep a boolean value, or by using a complex state with
      <seealso marker="#Callback Modes">callback mode</seealso>
      <seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>.
      If a change in the value changes the set of events that is handled,
      then the value should be kept in the State.
      Otherwise no postponed events will be retried
      since only the server Data changes.
    </p>
    <p>
      This is not important if you do not postpone events.
      But if you later decide to start postponing some events,
      then the design flaw of not having separate states
      when they should be, might become a hard to find bug.
    </p>

    <section>
      <marker id="Fuzzy State Diagrams" />
      <title>Fuzzy State Diagrams</title>
      <p>
	It is not uncommon that a state diagram does not specify
	how to handle events that are not illustrated
	in a particular state in the diagram.
	Hopefully this is described in an associated text
	or from the context.
      </p>
      <p>
	Possible actions: ignore as in drop the event
	(maybe log it) or deal with the event in some other state
	as in postpone it.
      </p>
    </section>

    <section>
      <marker id="Selective Receive" />
      <title>Selective Receive</title>
      <p>
        Erlang's selective receive statement is often used to
        describe simple state machine examples in straightforward
        Erlang code. The following is a possible implementation of
        the first example:
      </p>
    <code type="erl"><![CDATA[
-module(code_lock).
-define(NAME, code_lock_1).
-export([start_link/1,button/1]).

start_link(Code) ->
    spawn(
      fun () ->
	      true = register(?NAME, self()),
	      do_lock(),
	      locked(Code, Code)
      end).

button(Digit) ->
    ?NAME ! {button,Digit}.

locked(Code, [Digit|Remaining]) ->
    receive
	{button,Digit} when Remaining =:= [] ->
	    do_unlock(),
	    open(Code);
	{button,Digit} ->
	    locked(Code, Remaining);
	{button,_} ->
	    locked(Code, Code)
    end.

open(Code) ->
    receive
    after 10000 ->
	    do_lock(),
	    locked(Code, Code)
    end.

do_lock() ->
    io:format("Locked~n", []).
do_unlock() ->
    io:format("Open~n", []).
    ]]></code>
    <p>
      The selective receive in this case causes implicitly <c>open</c>
      to postpone any events to the <c>locked</c> state.
    </p>
    <p>
      A selective receive cannot be used from a <c>gen_statem</c>
      behavior as for any <c>gen_*</c> behavior,
      as the receive statement is within the <c>gen_*</c> engine itself.
      It must be there because all
      <seealso marker="stdlib:sys"><c>sys</c></seealso>
      compatible behaviors must respond to system messages and therefore
      do that in their engine receive loop,
      passing non-system messages to the callback module.
    </p>
    <p>
      The state transition
      <seealso marker="stdlib:gen_statem#type-action">action</seealso>
      <c>postpone</c> is designed to model
      selective receives. A selective receive implicitly postpones
      any not received events, but the <c>postpone</c>
      state transition action explicitly postpones one received event.
    </p>
    <p>
      Both mechanisms have the same theoretical
      time and memory complexity, while the selective receive
      language construct has smaller constant factors.
    </p>
    </section>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="State Entry Actions" />
    <title>State Entry Actions</title>
    <p>
      Say you have a state machine specification
      that uses state entry actions.
      Allthough you can code this using self-generated events
      (described in the next section), especially if just
      one or a few states has got state entry actions,
      this is a perfect use case for the built in
      <seealso marker="#State Enter Calls">state enter calls</seealso>.
    </p>
    <p>
      You return a list containing <c>state_enter</c> from your
      <seealso marker="stdlib:gen_statem#Module:callback_mode/0"><c>callback_mode/0</c></seealso>
      function and the <c>gen_statem</c> engine will call your
      state callback once with the arguments
      <c>(enter, OldState, ...)</c> whenever the state changes.
      Then you just need to handle these event-like calls in all states.
    </p>
    <code type="erl"><![CDATA[
...
init(Code) ->
    process_flag(trap_exit, true),
    Data = #{code => Code},
    {ok, locked, Data}.

callback_mode() ->
    [state_functions,state_enter].

locked(enter, _OldState, Data) ->
    do_lock(),
    {keep_state,Data#{remaining => Code}};
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] ->
	    {next_state, open, Data};
...

open(enter, _OldState, _Data) ->
    do_unlock(),
    {keep_state_and_data, [{state_timeout,10000,lock}]};
open(state_timeout, lock, Data) ->
    {next_state, locked, Data};
...
    ]]></code>
    <p>
      You can repeat the state entry code by returning one of
      <c>{repeat_state, ...}</c>, <c>{repeat_state_and_data,_}</c>
      or <c>repeat_state_and_data</c> that otherwise behaves
      exactly like their <c>keep_state</c> siblings.
      See the type
      <seealso marker="stdlib:gen_statem#type-state_callback_result">
	<c>state_callback_result()</c>
      </seealso>
      in the reference manual.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Self-Generated Events" />
    <title>Self-Generated Events</title>
    <p>
      It can sometimes be beneficial to be able to generate events
      to your own state machine.
      This can be done with the state transition
      <seealso marker="stdlib:gen_statem#type-action">action</seealso>
      <c>{next_event,EventType,EventContent}</c>.
    </p>
    <p>
      You can generate events of any existing
      <seealso marker="stdlib:gen_statem#type-action">type</seealso>,
      but the <c>internal</c> type can only be generated through action
      <c>next_event</c>. Hence, it cannot come from an external source,
      so you can be certain that an <c>internal</c> event is an event
      from your state machine to itself.
    </p>
    <p>
      One example for this is to pre-process incoming data, for example
      decrypting chunks or collecting characters up to a line break.
      Purists may argue that this should be modelled with a separate
      state machine that sends pre-processed events
      to the main state machine.
      But to decrease overhead the small pre-processing state machine
      can be implemented in the common state event handling
      of the main state machine using a few state data variables
      that then sends the pre-processed events as internal events
      to the main state machine.
    </p>
    <p>
      The following example uses an input model where you give the lock
      characters with <c>put_chars(Chars)</c> and then call
      <c>enter()</c> to finish the input.
    </p>
    <code type="erl"><![CDATA[
...
-export(put_chars/1, enter/0).
...
put_chars(Chars) when is_binary(Chars) ->
    gen_statem:call(?NAME, {chars,Chars}).

enter() ->
    gen_statem:call(?NAME, enter).

...

locked(enter, _OldState, Data) ->
    do_lock(),
    {keep_state,Data#{remaining => Code, buf => []}};
...

handle_event({call,From}, {chars,Chars}, #{buf := Buf} = Data) ->
    {keep_state, Data#{buf := [Chars|Buf],
     [{reply,From,ok}]};
handle_event({call,From}, enter, #{buf := Buf} = Data) ->
    Chars = unicode:characters_to_binary(lists:reverse(Buf)),
    try binary_to_integer(Chars) of
        Digit ->
            {keep_state, Data#{buf := []},
             [{reply,From,ok},
              {next_event,internal,{button,Chars}}]}
    catch
        error:badarg ->
            {keep_state, Data#{buf := []},
             [{reply,From,{error,not_an_integer}}]}
    end;
...
    ]]></code>
    <p>
      If you start this program with <c>code_lock:start([17])</c>
      you can unlock with <c>code_lock:put_chars(&lt;&lt;"001">>),
      code_lock:put_chars(&lt;&lt;"7">>), code_lock:enter()</c>.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Example Revisited" />
    <title>Example Revisited</title>
    <p>
      This section includes the example after most of the mentioned
      modifications and some more using state enter calls,
      which deserves a new state diagram:
    </p>
    <image file="../design_principles/code_lock_2.png">
      <icaption>Code Lock State Diagram Revisited</icaption>
    </image>
    <p>
      Notice that this state diagram does not specify how to handle
      a button event in the state <c>open</c>. So, you need to
      read somewhere else that unspecified events
      must be ignored as in not consumed but handled in some other state.
      Also, the state diagram does not show that the <c>code_length/0</c>
      call must be handled in every state.
    </p>

    <section>
      <marker id="Callback Mode: state_functions" />
      <title>Callback Mode: state_functions</title>
      <p>
	Using state functions:
      </p>
      <code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_2).

-export([start_link/1,stop/0]).
-export([button/1,code_length/0]).
-export([init/1,callback_mode/0,terminate/3,code_change/4]).
-export([locked/3,open/3]).

start_link(Code) ->
    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
stop() ->
    gen_statem:stop(?NAME).

button(Digit) ->
    gen_statem:cast(?NAME, {button,Digit}).
code_length() ->
    gen_statem:call(?NAME, code_length).

init(Code) ->
    process_flag(trap_exit, true),
    Data = #{code => Code},
    {ok, locked, Data}.

callback_mode() ->
    [state_functions,state_enter].

locked(enter, _OldState, #{code := Code} = Data) ->
    do_lock(),
    {keep_state, Data#{remaining => Code}};
locked(
  timeout, _, 
  #{code := Code, remaining := Remaining} = Data) ->
    {keep_state, Data#{remaining := Code}};
locked(
  cast, {button,Digit},
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] -> % Complete
            {next_state, open, Data};
        [Digit|Rest] -> % Incomplete
            {keep_state, Data#{remaining := Rest}, 30000};
        [_|_] -> % Wrong
            {keep_state, Data#{remaining := Code}}
    end;
locked(EventType, EventContent, Data) ->
    handle_event(EventType, EventContent, Data).

open(enter, _OldState, _Data) ->
    do_unlock(),
    {keep_state_and_data, [{state_timeout,10000,lock}]};
open(state_timeout, lock, Data) ->
    {next_state, locked, Data};
open(cast, {button,_}, _) ->
    {keep_state_and_data, [postpone]};
open(EventType, EventContent, Data) ->
    handle_event(EventType, EventContent, Data).

handle_event({call,From}, code_length, #{code := Code}) ->
    {keep_state_and_data, [{reply,From,length(Code)}]}.

do_lock() ->
    io:format("Locked~n", []).
do_unlock() ->
    io:format("Open~n", []).

terminate(_Reason, State, _Data) ->
    State =/= locked andalso do_lock(),
    ok.
code_change(_Vsn, State, Data, _Extra) ->
    {ok,State,Data}.
      ]]></code>
    </section>

    <section>
      <marker id="Callback Mode: handle_event_function" />
      <title>Callback Mode: handle_event_function</title>
      <p>
        This section describes what to change in the example
        to use one <c>handle_event/4</c> function.
        The previously used approach to first branch depending on event
	does not work that well here because of the state enter calls,
        so this example first branches depending on state:
      </p>
      <code type="erl"><![CDATA[
...
-export([handle_event/4]).

...
callback_mode() ->
    [handle_event_function,state_enter].

%% State: locked
handle_event(
  enter, _OldState, locked,
  #{code := Code} = Data) ->
    do_lock(),
    {keep_state, Data#{remaining => Code}};
handle_event(
  timeout, _, locked,
  #{code := Code, remaining := Remaining} = Data) ->
    {keep_state, Data#{remaining := Code}};
handle_event(
  cast, {button,Digit}, locked,
  #{code := Code, remaining := Remaining} = Data) ->
    case Remaining of
        [Digit] -> % Complete
            {next_state, open, Data};
        [Digit|Rest] -> % Incomplete
            {keep_state, Data#{remaining := Rest}, 30000};
        [_|_] -> % Wrong
            {keep_state, Data#{remaining := Code}}
    end;
%%
%% State: open
handle_event(enter, _OldState, open, _Data) ->
    do_unlock(),
    {keep_state_and_data, [{state_timeout,10000,lock}]};
handle_event(state_timeout, lock, open, Data) ->
    {next_state, locked, Data};
handle_event(cast, {button,_}, open, _) ->
    {keep_state_and_data,[postpone]};
%%
%% Any state
handle_event({call,From}, code_length, _State, #{code := Code}) ->
    {keep_state_and_data, [{reply,From,length(Code)}]}.

...
      ]]></code>
    </section>
    <p>
      Notice that postponing buttons from the <c>locked</c> state
      to the <c>open</c> state feels like a strange thing to do
      for a code lock, but it at least illustrates event postponing.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Filter the State" />
    <title>Filter the State</title>
    <p>
      The example servers so far in this chapter
      print the full internal state in the error log, for example,
      when killed by an exit signal or because of an internal error.
      This state contains both the code lock code
      and which digits that remain to unlock.
    </p>
    <p>
      This state data can be regarded as sensitive,
      and maybe not what you want in the error log
      because of some unpredictable event.
    </p>
    <p>
      Another reason to filter the state can be
      that the state is too large to print, as it fills
      the error log with uninteresting details.
    </p>
    <p>
      To avoid this, you can format the internal state
      that gets in the error log and gets returned from
      <seealso marker="stdlib:sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
      by implementing function
      <seealso marker="stdlib:gen_statem#Module:format_status/2"><c>Module:format_status/2</c></seealso>,
      for example like this:
    </p>
    <code type="erl"><![CDATA[
...
-export([init/1,terminate/3,code_change/4,format_status/2]).
...

format_status(Opt, [_PDict,State,Data]) ->
    StateData =
	{State,
	 maps:filter(
	   fun (code, _) -> false;
	       (remaining, _) -> false;
	       (_, _) -> true
	   end,
	   Data)},
    case Opt of
	terminate ->
	    StateData;
	normal ->
	    [{data,[{"State",StateData}]}]
    end.
    ]]></code>
    <p>
      It is not mandatory to implement a
      <seealso marker="stdlib:gen_statem#Module:format_status/2"><c>Module:format_status/2</c></seealso>
      function. If you do not, a default implementation is used that
      does the same as this example function without filtering
      the <c>Data</c> term, that is, <c>StateData = {State,Data}</c>,
      in this example containing sensitive information.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Complex State" />
    <title>Complex State</title>
    <p>
      The callback mode
      <seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>
      enables using a non-atom state as described in section
      <seealso marker="#Callback Modes">Callback Modes</seealso>,
      for example, a complex state term like a tuple.
    </p>
    <p>
      One reason to use this is when you have a state item
      that when changed should cancel the
      <seealso marker="#State Time-Outs">state time-out</seealso>,
      or one that affects the event handling
      in combination with postponing events.
      We will complicate the previous example
      by introducing a configurable lock button
      (this is the state item in question),
      which in the <c>open</c> state immediately locks the door,
      and an API function <c>set_lock_button/1</c> to set the lock button.
    </p>
    <p>
      Suppose now that we call <c>set_lock_button</c>
      while the door is open,
      and have already postponed a button event
      that until now was not the lock button.
      The sensible thing can be to say that
      the button was pressed too early so it is
      not to be recognized as the lock button.
      However, then it can be surprising that a button event
      that now is the lock button event arrives (as retried postponed)
      immediately after the state transits to <c>locked</c>.
    </p>
    <p>
      So we make the <c>button/1</c> function synchronous
      by using
      <seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call</c></seealso>
      and still postpone its events in the <c>open</c> state.
      Then a call to <c>button/1</c> during the <c>open</c>
      state does not return until the state transits to <c>locked</c>,
      as it is there the event is handled and the reply is sent.
    </p>
    <p>
      If a process now calls <c>set_lock_button/1</c>
      to change the lock button while another process
      hangs in <c>button/1</c> with the new lock button,
      it can be expected that the hanging lock button call
      immediately takes effect and locks the lock.
      Therefore, we make the current lock button a part of the state,
      so that when we change the lock button, the state changes
      and all postponed events are retried.
    </p>
    <p>
      We define the state as <c>{StateName,LockButton}</c>,
      where <c>StateName</c> is as before
      and <c>LockButton</c> is the current lock button:
    </p>
    <code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_3).

-export([start_link/2,stop/0]).
-export([button/1,code_length/0,set_lock_button/1]).
-export([init/1,callback_mode/0,terminate/3,code_change/4,format_status/2]).
-export([handle_event/4]).

start_link(Code, LockButton) ->
    gen_statem:start_link(
        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
stop() ->
    gen_statem:stop(?NAME).

button(Digit) ->
    gen_statem:call(?NAME, {button,Digit}).
code_length() ->
    gen_statem:call(?NAME, code_length).
set_lock_button(LockButton) ->
    gen_statem:call(?NAME, {set_lock_button,LockButton}).

init({Code,LockButton}) ->
    process_flag(trap_exit, true),
    Data = #{code => Code, remaining => undefined},
    {ok, {locked,LockButton}, Data}.

callback_mode() ->
    [handle_event_function,state_enter].

handle_event(
  {call,From}, {set_lock_button,NewLockButton},
  {StateName,OldLockButton}, Data) ->
    {next_state, {StateName,NewLockButton}, Data,
     [{reply,From,OldLockButton}]};
handle_event(
  {call,From}, code_length,
  {_StateName,_LockButton}, #{code := Code}) ->
    {keep_state_and_data,
     [{reply,From,length(Code)}]};
%%
%% State: locked
handle_event(
  EventType, EventContent,
  {locked,LockButton}, #{code := Code, remaining := Remaining} = Data) ->
    case {EventType, EventContent} of
	{enter, _OldState} ->
	    do_lock(),
	    {keep_state, Data#{remaining := Code}};
        {timeout, _} ->
            {keep_state, Data#{remaining := Code}};
	{{call,From}, {button,Digit}} ->
	    case Remaining of
		[Digit] -> % Complete
		    {next_state, {open,LockButton}, Data,
		     [{reply,From,ok}]};
		[Digit|Rest] -> % Incomplete
		    {keep_state, Data#{remaining := Rest, 30000},
		     [{reply,From,ok}]};
		[_|_] -> % Wrong
		    {keep_state, Data#{remaining := Code},
		     [{reply,From,ok}]}
	    end
    end;
%%
%% State: open
handle_event(
  EventType, EventContent,
  {open,LockButton}, Data) ->
    case {EventType, EventContent} of
	{enter, _OldState} ->
	    do_unlock(),
	    {keep_state_and_data, [{state_timeout,10000,lock}]};
	{state_timeout, lock} ->
	    {next_state, {locked,LockButton}, Data};
	{{call,From}, {button,Digit}} ->
	    if
		Digit =:= LockButton ->
		    {next_state, {locked,LockButton}, Data,
		     [{reply,From,locked}]};
		true ->
		    {keep_state_and_data,
		     [postpone]}
	    end
    end.

do_lock() ->
    io:format("Locked~n", []).
do_unlock() ->
    io:format("Open~n", []).

terminate(_Reason, State, _Data) ->
    State =/= locked andalso do_lock(),
    ok.
code_change(_Vsn, State, Data, _Extra) ->
    {ok,State,Data}.
format_status(Opt, [_PDict,State,Data]) ->
    StateData =
	{State,
	 maps:filter(
	   fun (code, _) -> false;
	       (remaining, _) -> false;
	       (_, _) -> true
	   end,
	   Data)},
    case Opt of
	terminate ->
	    StateData;
	normal ->
	    [{data,[{"State",StateData}]}]
    end.
    ]]></code>
    <p>
      It can be an ill-fitting model for a physical code lock
      that the <c>button/1</c> call can hang until the lock
      is locked. But for an API in general it is not that strange.
    </p>
  </section>

<!-- =================================================================== -->

  <section>
    <marker id="Hibernation" />
    <title>Hibernation</title>
    <p>
      If you have many servers in one node
      and they have some state(s) in their lifetime in which
      the servers can be expected to idle for a while,
      and the amount of heap memory all these servers need
      is a problem, then the memory footprint of a server
      can be mimimized by hibernating it through
      <seealso marker="stdlib:proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>.
    </p>
    <note>
      <p>
        It is rather costly to hibernate a process; see
        <seealso marker="erts:erlang#hibernate/3"><c>erlang:hibernate/3</c></seealso>.
        It is not something you want to do after every event.
      </p>
    </note>
    <p>
      We can in this example hibernate in the <c>{open,_}</c> state,
      because what normally occurs in that state is that
      the state time-out after a while
      triggers a transition to <c>{locked,_}</c>:
    </p>
    <code type="erl"><![CDATA[
...
%% State: open
handle_event(
  EventType, EventContent,
  {open,LockButton}, Data) ->
    case {EventType, EventContent} of
        {enter, _OldState} ->
            do_unlock(),
            {keep_state_and_data,
             [{state_timeout,10000,lock},hibernate]};
...
    ]]></code>
    <p>
      The atom
      <seealso marker="stdlib:gen_statem#type-hibernate"><c>hibernate</c></seealso>
      in the action list on the last line
      when entering the <c>{open,_}</c> state is the only change.
      If any event arrives in the <c>{open,_},</c> state, we
      do not bother to rehibernate, so the server stays
      awake after any event.
    </p>
    <p>
      To change that we would need to insert
      action <c>hibernate</c> in more places.
      For example, for the state-independent <c>set_lock_button</c>
      and <c>code_length</c> operations that then would have to
      be aware of using <c>hibernate</c> while in the
      <c>{open,_}</c> state, which would clutter the code.
    </p>
    <p>
      Another not uncommon scenario is to use the event time-out
      to triger hibernation after a certain time of inactivity.
    </p>
    <p>
      This server probably does not use
      heap memory worth hibernating for.
      To gain anything from hibernation, your server would
      have to produce some garbage during callback execution,
      for which this example server can serve as a bad example.
    </p>
  </section>

</chapter>