1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2016</year><year>2018</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>gen_statem Behavior</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
<file>statem.xml</file>
</header>
<marker id="gen_statem Behaviour" />
<p>
This section is to be read with the
<seealso marker="stdlib:gen_statem"><c>gen_statem(3)</c></seealso>
manual page in STDLIB, where all interface functions and callback
functions are described in detail.
</p>
<!-- =================================================================== -->
<section>
<marker id="Event-Driven State Machines" />
<title>Event-Driven State Machines</title>
<p>
Established Automata Theory does not deal much with
how a state transition is triggered,
but assumes that the output is a function
of the input (and the state) and that they are
some kind of values.
</p>
<p>
For an Event-Driven State Machine, the input is an event
that triggers a state transition and the output
is actions executed during the state transition.
It can analogously to the mathematical model of a
Finite-State Machine be described as
a set of relations of the following form:
</p>
<pre>
State(S) x Event(E) -> Actions(A), State(S')</pre>
<p>These relations are interpreted as follows:
if we are in state <c>S</c> and event <c>E</c> occurs, we
are to perform actions <c>A</c> and make a transition to
state <c>S'</c>. Notice that <c>S'</c> can be equal to <c>S</c>
and that <c>A</c> can be empty.
</p>
<p>
As <c>A</c> and <c>S'</c> depend only on
<c>S</c> and <c>E</c>, the kind of state machine described
here is a Mealy machine
(see, for example, the Wikipedia article "Mealy machine").
</p>
<p>
Like most <c>gen_</c> behaviors, <c>gen_statem</c> keeps
a server <c>Data</c> besides the state. Because of this, and as
there is no restriction on the number of states
(assuming that there is enough virtual machine memory)
or on the number of distinct input events,
a state machine implemented with this behavior
is in fact Turing complete.
But it feels mostly like an Event-Driven Mealy machine.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="When to use gen_statem" />
<title>When to use gen_statem</title>
<p>
If your process logic is convenient to describe as a state machine,
and you want any of these <c>gen_statem</c> key features:
</p>
<list type="bulleted">
<item>
Co-located callback code for each state,
regardless of
<seealso marker="#Event Types">Event Type</seealso>
(such as <em>call</em>, <em>cast</em> and <em>info</em>)
</item>
<item>
<seealso marker="#Postponing Events">
Postponing Events
</seealso>
(a substitute for selective receive)
</item>
<item>
<seealso marker="#Inserted Events">
Inserted Events
</seealso>
that is: events from the state machine to itself
(in particular purely internal events)
</item>
<item>
<seealso marker="#State Enter Calls">
State Enter Calls
</seealso>
(callback on state entry co-located with the rest
of each state's callback code)
</item>
<item>
Easy-to-use timeouts
(<seealso marker="#State Time-Outs">State Time-Outs</seealso>,
<seealso marker="#Event Time-Outs">Event Time-Outs</seealso>
and
<seealso marker="#Generic Time-Outs">Generic Time-outs</seealso>
(named time-outs))
</item>
</list>
<p>
If so, or if possibly needed in future versions,
then you should consider using <c>gen_statem</c> over
<seealso marker="stdlib:gen_server"><c>gen_server</c></seealso>.
</p>
<p>
For simple state machines not needing these features
<seealso marker="stdlib:gen_server"><c>gen_server</c></seealso>
works just fine.
It also has got smaller call overhead,
but we are talking about something like 2 vs 3.3 microseconds
call roundtrip time here, so if the server callback
does just a little bit more than just replying,
or if the call is not extremely frequent,
that difference will be hard to notice.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Callback Module" />
<title>Callback Module</title>
<p>
The callback module contains functions that implement
the state machine.
When an event occurs,
the <c>gen_statem</c> behaviour engine
calls a function in the callback module with the event,
current state and server data.
This function performs the actions for this event,
and returns the new state and server data
and also actions to be performed by the behaviour engine.
</p>
<p>
The behaviour engine holds the state machine state,
server data, timer references, a queue of posponed messages
and other metadata. It receives all process messages,
handles the system messages, and calls the callback module
with machine specific events.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Callback Modes" />
<title>Callback Modes</title>
<p>
The <c>gen_statem</c> behavior supports two callback modes:
</p>
<taglist>
<tag>
<seealso marker="stdlib:gen_statem#type-callback_mode">
<c>state_functions</c>
</seealso>
</tag>
<item>
<p>
Events are handled by one callback function per state.
</p>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-callback_mode">
<c>handle_event_function</c>
</seealso>
</tag>
<item>
<p>
Events are handled by one single callback function.
</p>
</item>
</taglist>
<p>
The callback mode is selected at server start
and may be changed with a code upgrade/downgrade.
</p>
<p>
See the section
<seealso marker="#Event Handler">Event Handler</seealso>
that describes the event handling callback function(s).
</p>
<p>
The callback mode is selected by implementing
a mandatory callback function
<seealso marker="stdlib:gen_statem#Module:callback_mode/0">
<c>Module:callback_mode()</c>
</seealso>
that returns one of the callback modes.
</p>
<p>
The
<seealso marker="stdlib:gen_statem#Module:callback_mode/0">
<c>Module:callback_mode()</c>
</seealso>
function may also return a list containing the callback mode
and the atom <c>state_enter</c> in which case
<seealso marker="#State Enter Calls">State Enter Calls</seealso>
are activated for the callback mode.
</p>
<section>
<marker id="Choosing the Callback Mode" />
<title>Choosing the Callback Mode</title>
<p>
The short version: choose <c>state_functions</c> -
it is the one most like <c>gen_fsm</c>.
But if you do not want the restriction that the state
must be an atom, or if you do not want to write
one event handler function per state; please read on...
</p>
<p>
The two
<seealso marker="#Callback Modes">Callback Modes</seealso>
give different possibilities and restrictions,
with one common goal:
to handle all possible combinations of events and states.
</p>
<p>
This can be done, for example, by focusing on one state at the time
and for every state ensure that all events are handled.
Alternatively, you can focus on one event at the time
and ensure that it is handled in every state.
You can also use a mix of these strategies.
</p>
<p>
With <c>state_functions</c>, you are restricted to use
atom-only states, and the <c>gen_statem</c> engine
branches depending on state name for you.
This encourages the callback module to co-locate
the implementation of all event actions particular
to one state in the same place in the code,
hence to focus on one state at the time.
</p>
<p>
This mode fits well when you have a regular state diagram,
like the ones in this chapter, which describes all events and actions
belonging to a state visually around that state,
and each state has its unique name.
</p>
<p>
With <c>handle_event_function</c>, you are free to mix strategies,
as all events and states are handled in the same callback function.
</p>
<p>
This mode works equally well when you want to focus on
one event at the time or on
one state at the time, but function
<seealso marker="stdlib:gen_statem#Module:handle_event/4">
<c>Module:handle_event/4</c>
</seealso>
quickly grows too large to handle without branching to
helper functions.
</p>
<p>
The mode enables the use of non-atom states, for example,
complex states or even hierarchical states.
See section
<seealso marker="#Complex State">Complex State</seealso>.
If, for example, a state diagram is largely alike
for the client side and the server side of a protocol,
you can have a state <c>{StateName,server}</c> or
<c>{StateName,client}</c>,
and make <c>StateName</c> determine where in the code
to handle most events in the state.
The second element of the tuple is then used to select
whether to handle special client-side or server-side events.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<marker id="Event Handler" />
<title>Event Handler</title>
<p>
Which callback function that handles an event
depends on the callback mode:
</p>
<taglist>
<tag><c>state_functions</c></tag>
<item>
The event is handled by:<br />
<seealso marker="stdlib:gen_statem#Module:StateName/3">
<c>Module:StateName(EventType, EventContent, Data)</c>
</seealso>
<p>
This form is the one mostly used in the
<seealso marker="#Example">Example</seealso>
section.
</p>
</item>
<tag><c>handle_event_function</c></tag>
<item>
The event is handled by:<br />
<seealso marker="stdlib:gen_statem#Module:handle_event/4">
<c>Module:handle_event(EventType, EventContent, State, Data)</c>
</seealso>
<p>
See section
<seealso marker="#One Event Handler">One Event Handler</seealso>
for an example.
</p>
</item>
</taglist>
<p>
The state is either the name of the function itself or an argument to it.
The other arguments are the <c>EventType</c> described in section
<seealso marker="#Event Types">Event Types</seealso>,
the event dependent <c>EventContent</c>, and the current server <c>Data</c>.
</p>
<p>
State enter calls are also handled by the event handler and have
slightly different arguments. See the section
<seealso marker="#State Enter Calls">State Enter Calls</seealso>.
</p>
<p>
The event handler return values are defined in the description of
<seealso marker="stdlib:gen_statem#Module:StateName/3">
<c>Module:StateName/3</c>
</seealso>
in the <c>gen_statem</c> manual page, but here is
a more readable list:
</p>
<taglist>
<tag>
<c>{next_state, NextState, NewData, Actions}</c><br />
<c>{next_state, NextState, NewData}</c>
</tag>
<item>
<p>
Set next state and update the server data.
If the <c>Actions</c> field is used, execute state transition actions.
An empty <c>Actions</c> list is equivalent to not returning the field.
</p>
<p>
See section
<seealso marker="#State Transition Actions">
State Transition Actions
</seealso>
for a list of possible
state transition actions.
</p>
<p>
If <c>NextState =/= State</c> the state machine changes
to a new state. A
<seealso marker="#State Enter Calls">state enter call</seealso>
is performed if enabled and all
<seealso marker="#Postponing Events">postponed events</seealso>
are retried.
</p>
</item>
<tag>
<c>{keep_state, NewData, Actions}</c><br />
<c>{keep_state, NewData}</c>
</tag>
<item>
<p>
Same as the <c>next_state</c> values with
<c>NextState =:= State</c>, that is, no state change.
</p>
</item>
<tag>
<c>{keep_state_and_data, Actions}</c><br />
<c>keep_state_and_data</c>
</tag>
<item>
<p>
Same as the <c>keep_state</c> values with
<c>NextData =:= Data</c>, that is, no change in server data.
</p>
</item>
<tag>
<c>{repeat_state, NewData, Actions}</c><br />
<c>{repeat_state, NewData}</c><br />
<c>{repeat_state_and_data, Actions}</c><br />
<c>repeat_state_and_data</c>
</tag>
<item>
<p>
Same as the <c>keep_state</c> or <c>keep_state_and_data</c> values,
and if
<seealso marker="#State Enter Calls">
State Enter Calls
</seealso>
are enabled, repeat the state enter call
as if this state was entered again.
</p>
</item>
<tag>
<c>{stop, Reason, NewData}</c><br />
<c>{stop, Reason}</c>
</tag>
<item>
<p>
Stop the server with reason <c>Reason</c>.
If the <c>NewData</c> field is used, first update the server data.
</p>
</item>
<tag>
<c>{stop_and_reply, Reason, NewData, ReplyActions}</c><br />
<c>{stop_and_reply, Reason, ReplyActions}</c>
</tag>
<item>
<p>
Same as the <c>stop</c> values, but first execute the given
state transition actions that may only be reply actions.
</p>
</item>
</taglist>
<section>
<marker id="The First State" />
<title>The First State</title>
<p>
To decide the first state the
<seealso marker="stdlib:gen_statem#Module:init/1">
<c>Module:init(Args)</c>
</seealso>
callback function is called before any
<seealso marker="#Event Handler">Event Handler</seealso>
is called. This function behaves like an event handler
function, but gets its only argument <c>Args</c> from
the <c>gen_statem</c>
<seealso marker="stdlib:gen_statem#start/3">
<c>start/3,4</c>
</seealso>
or
<seealso marker="stdlib:gen_statem#start_link/3">
<c>start_link/3,4</c>
</seealso>
function, and returns <c>{ok, State, Data}</c>
or <c>{ok, State, Data, Actions}</c>.
If you use the
<seealso marker="#Postponing Events"><c>postpone</c></seealso>
action from this function, that action is ignored,
since there is no event to postpone.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<marker id="State Transition Actions" />
<title>State Transition Actions</title>
<p>
In the first section
<seealso marker="#Event-Driven State Machines">
Event-Driven State Machines
</seealso>
actions were mentioned as a part of
the general state machine model. These general actions
are implemented with the code that callback module
<c>gen_statem</c> executes in an event-handling
callback function before returning
to the <c>gen_statem</c> engine.
</p>
<p>
There are more specific state-transition actions
that a callback function can command the <c>gen_statem</c>
engine to do after the callback function return.
These are commanded by returning a list of
<seealso marker="stdlib:gen_statem#type-action">actions</seealso>
in the
<seealso marker="stdlib:gen_statem#type-state_callback_result">
return value
</seealso>
from the
<seealso marker="stdlib:gen_statem#Module:StateName/3">callback function</seealso>.
These are the possible state transition actions:
</p>
<taglist>
<tag>
<seealso marker="stdlib:gen_statem#type-postpone">
<c>postpone</c>
</seealso>
<br />
<c>{postpone, Boolean}</c>
</tag>
<item>
If set postpone the current event, see section
<seealso marker="#Postponing Events">Postponing Events</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-hibernate">
<c>hibernate</c>
</seealso>
<br />
<c>{hibernate, Boolean}</c>
</tag>
<item>
If set hibernate the <c>gen_statem</c>, treated in section
<seealso marker="#Hibernation">Hibernation</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-state_timeout">
<c>{state_timeout, Time}</c>
</seealso>
<br />
<c>{state_timeout, Time, Opts}</c>
</tag>
<item>
Start a state time-out, read more in section
<seealso marker="#State Time-Outs">State Time-Outs</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-generic_timeout">
<c>{{timeout, Name}, Time}</c>
</seealso>
<br />
<c>{{timeout, Name}, Time, Opts}</c>
</tag>
<item>
Start a generic time-out, read more in section
<seealso marker="#Generic Time-Outs">Generic Time-Outs</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-event_timeout">
<c>{timeout, Time}</c>
</seealso>
<br />
<c>{timeout, Time, Opts}</c><br />
<c>Time</c>
</tag>
<item>
Start an event time-out, see more in section
<seealso marker="#Event Time-Outs">Event Time-Outs</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-reply_action">
<c>{reply, From, Reply}</c>
</seealso>
</tag>
<item>
Reply to a caller, mentioned at the end of section
<seealso marker="#All State Events">All State Events</seealso>
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-action">
<c>{next_event, EventType, EventContent}</c>
</seealso>
</tag>
<item>
Generate the next event to handle, see section
<seealso marker="#Inserted Events">Inserted Events</seealso>
</item>
</taglist>
<p>
For details, see the <c>gen_statem(3)</c>
manual page for type
<seealso marker="stdlib:gen_statem#type-action"><c>action()</c></seealso>.
You can, for example, reply to many callers,
generate multiple next events,
and set a time-out to use absolute instead of relative time
(using the <c>Opts</c> field).
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Event Types" />
<title>Event Types</title>
<p>
Events are categorized in different
<seealso marker="stdlib:gen_statem#type-event_type">event types</seealso>.
Events of all types are for a given state
handled in the same callback function, and that function gets
<c>EventType</c> and <c>EventContent</c> as arguments.
</p>
<p>
The following is a complete list of event types and where
they come from:
</p>
<taglist>
<tag>
<seealso marker="stdlib:gen_statem#type-external_event_type">
<c>cast</c>
</seealso>
</tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast</c></seealso>.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-external_event_type">
<c>{call,From}</c>
</seealso>
</tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call</c></seealso>,
where <c>From</c> is the reply address to use
when replying either through the state transition action
<c>{reply,From,Msg}</c> or by calling
<seealso marker="stdlib:gen_statem#reply/1"><c>gen_statem:reply</c></seealso>.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-external_event_type">
<c>info</c>
</seealso>
</tag>
<item>
Generated by any regular process message sent to
the <c>gen_statem</c> process.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-timeout_event_type">
<c>state_timeout</c>
</seealso>
</tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-state_timeout">
<c>{state_timeout,Time,EventContent}</c>
</seealso>
state timer timing out.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-timeout_event_type">
<c>{timeout,Name}</c>
</seealso>
</tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-generic_timeout">
<c>{{timeout,Name},Time,EventContent}</c>
</seealso>
generic timer timing out.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-timeout_event_type">
<c>timeout</c>
</seealso>
</tag>
<item>
Generated by state transition action
<seealso marker="stdlib:gen_statem#type-event_timeout">
<c>{timeout,Time,EventContent}</c>
</seealso>
(or its short form <c>Time</c>)
event timer timing out.
</item>
<tag>
<seealso marker="stdlib:gen_statem#type-event_type">
<c>internal</c>
</seealso>
</tag>
<item>
Generated by state transition
<seealso marker="stdlib:gen_statem#type-action">action</seealso>
<c>{next_event,internal,EventContent}</c>.
All event types above can also be generated using
<c>{next_event,EventType,EventContent}</c>.
</item>
</taglist>
</section>
<!-- =================================================================== -->
<section>
<marker id="State Enter Calls" />
<title>State Enter Calls</title>
<p>
The <c>gen_statem</c> behavior can if this is enabled,
regardless of callback mode,
automatically
<seealso marker="stdlib:gen_statem#type-state_enter">
call the state callback
</seealso>
with special arguments whenever the state changes
so you can write state enter actions
near the rest of the state transition rules.
It typically looks like this:
</p>
<pre>
StateName(enter, OldState, Data) ->
... code for state enter actions here ...
{keep_state, NewData};
StateName(EventType, EventContent, Data) ->
... code for actions here ...
{next_state, NewStateName, NewData}.</pre>
<p>
Since the state enter call is not an event there are restrictions
on the allowed return value and
<seealso marker="#State Transition Actions">State Transition Actions</seealso>.
You may not change the state,
<seealso marker="#Postponing Events">postpone</seealso>
this non-event, or
<seealso marker="#Inserted Events">insert events</seealso>.
</p>
<p>
The first state that is entered will get a state enter call
with <c>OldState</c> equal to the current state.
</p>
<p>
You may repeat the state enter call using the <c>{repeat_state,...}</c>
return value from the
<seealso marker="#Event Handler">Event Handler</seealso>.
In this case <c>OldState</c> will also be equal to the current state.
</p>
<p>
Depending on how your state machine is specified,
this can be a very useful feature,
but it forces you to handle the state enter calls in all states.
See also the
<seealso marker="#State Enter Actions">
State Enter Actions
</seealso>
chapter.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Example" />
<title>Example</title>
<p>
A door with a code lock can be seen as a state machine.
Initially, the door is locked. When someone presses a button,
an event is generated.
The pressed buttons are collected, up to the number of buttons
in the correct code.
If correct, the door is unlocked for 10 seconds.
If not correct, we wait for a new button to be pressed.
</p>
<!-- The image is edited with dia in a .dia file,
then exported to Scalable Vector Graphics. -->
<image file="../design_principles/code_lock.svg" width="80%">
<icaption>Code Lock State Diagram</icaption>
</image>
<p>
This code lock state machine can be implemented using
<c>gen_statem</c> with the following callback module:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock).
-export([start_link/1]).
-export([button/1]).
-export([init/1,callback_mode/0,terminate/3]).
-export([locked/3,open/3]).
start_link(Code) ->
gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
button(Button) ->
gen_statem:cast(?NAME, {button,Button}).
init(Code) ->
do_lock(),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.
callback_mode() ->
state_functions.
]]></code>
<code type="erl"><![CDATA[
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next_state, open, Data#{buttons := []},
[{state_timeout,10000,lock}]}; % Time in milliseconds
true -> % Incomplete | Incorrect
{next_state, locked, Data#{buttons := NewButtons}}
end.
]]></code>
<code type="erl"><![CDATA[
open(state_timeout, lock, Data) ->
do_lock(),
{next_state, locked, Data};
open(cast, {button,_}, Data) ->
{next_state, open, Data}.
]]></code>
<code type="erl"><![CDATA[
do_lock() ->
io:format("Lock~n", []).
do_unlock() ->
io:format("Unlock~n", []).
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
]]></code>
<p>The code is explained in the next sections.</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Starting gen_statem" />
<title>Starting gen_statem</title>
<p>
In the example in the previous section, <c>gen_statem</c> is
started by calling <c>code_lock:start_link(Code)</c>:
</p>
<code type="erl"><![CDATA[
start_link(Code) ->
gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
]]></code>
<p>
<c>start_link</c> calls function
<seealso marker="stdlib:gen_statem#start_link/4"><c>gen_statem:start_link/4</c></seealso>,
which spawns and links to a new process, a <c>gen_statem</c>.
</p>
<list type="bulleted">
<item>
<p>
The first argument, <c>{local,?NAME}</c>, specifies
the name. In this case, the <c>gen_statem</c> is locally
registered as <c>code_lock</c> through the macro <c>?NAME</c>.
</p>
<p>
If the name is omitted, the <c>gen_statem</c> is not registered.
Instead its pid must be used. The name can also be specified
as <c>{global,Name}</c>, then the <c>gen_statem</c> is
registered using
<seealso marker="kernel:global#register_name/2"><c>global:register_name/2</c></seealso>
in Kernel.
</p>
</item>
<item>
<p>
The second argument, <c>?MODULE</c>, is the name of
the callback module, that is, the module where the callback
functions are located, which is this module.
</p>
<p>
The interface functions (<c>start_link/1</c> and <c>button/1</c>)
are located in the same module as the callback functions
(<c>init/1</c>, <c>locked/3</c>, and <c>open/3</c>).
It is normally good programming practice to have the client-side
code and the server-side code contained in one module.
</p>
</item>
<item>
<p>
The third argument, <c>Code</c>, is a list of digits, which
is the correct unlock code that is passed
to callback function <c>init/1</c>.
</p>
</item>
<item>
<p>
The fourth argument, <c>[]</c>, is a list of options.
For the available options, see
<seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link/3</c></seealso>.
</p>
</item>
</list>
<p>
If name registration succeeds, the new <c>gen_statem</c> process
calls callback function <c>code_lock:init(Code)</c>.
This function is expected to return <c>{ok, State, Data}</c>,
where <c>State</c> is the initial state of the <c>gen_statem</c>,
in this case <c>locked</c>; assuming that the door is locked to begin
with. <c>Data</c> is the internal server data of the <c>gen_statem</c>.
Here the server data is a <seealso marker="stdlib:maps">map</seealso>
with key <c>code</c> that stores the correct button sequence,
key <c>length</c> store its length,
and key <c>buttons</c> that stores the collected buttons
up to the same length.
</p>
<code type="erl"><![CDATA[
init(Code) ->
do_lock(),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.
]]></code>
<p>Function
<seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link</c></seealso>
is synchronous. It does not return until the <c>gen_statem</c>
is initialized and is ready to receive events.
</p>
<p>
Function
<seealso marker="stdlib:gen_statem#start_link/3"><c>gen_statem:start_link</c></seealso>
must be used if the <c>gen_statem</c>
is part of a supervision tree, that is, started by a supervisor.
Another function,
<seealso marker="stdlib:gen_statem#start/3"><c>gen_statem:start</c></seealso>
can be used to start a standalone <c>gen_statem</c>, that is,
a <c>gen_statem</c> that is not part of a supervision tree.
</p>
<p>
Function
<seealso marker="stdlib:gen_statem#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>
selects the
<seealso marker="#Callback Modes"><c>CallbackMode</c></seealso>
for the callback module, in this case
<seealso marker="stdlib:gen_statem#type-callback_mode"><c>state_functions</c></seealso>.
That is, each state has got its own handler function:
</p>
<code type="erl"><![CDATA[
callback_mode() ->
state_functions.
]]></code>
</section>
<!-- =================================================================== -->
<section>
<marker id="Handling Events" />
<title>Handling Events</title>
<p>The function notifying the code lock about a button event is
implemented using
<seealso marker="stdlib:gen_statem#cast/2"><c>gen_statem:cast/2</c></seealso>:
</p>
<code type="erl"><![CDATA[
button(Button) ->
gen_statem:cast(?NAME, {button,Button}).
]]></code>
<p>
The first argument is the name of the <c>gen_statem</c> and must
agree with the name used to start it. So, we use the
same macro <c>?NAME</c> as when starting.
<c>{button,Button}</c> is the event content.
</p>
<p>
The event is sent to the <c>gen_statem</c>.
When the event is received, the <c>gen_statem</c> calls
<c>StateName(cast, Event, Data)</c>, which is expected to
return a tuple <c>{next_state, NewStateName, NewData}</c>,
or <c>{next_state, NewStateName, NewData, Actions}</c>.
<c>StateName</c> is the name of the current state and
<c>NewStateName</c> is the name of the next state to go to.
<c>NewData</c> is a new value for the server data of
the <c>gen_statem</c>, and <c>Actions</c> is a list of
actions to be performed by the <c>gen_statem</c> engine.
</p>
<code type="erl"><![CDATA[
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next_state, open, Data#{buttons := []},
[{state_timeout,10000,lock}]}; % Time in milliseconds
true -> % Incomplete | Incorrect
{next_state, locked, Data#{buttons := NewButtons}}
end.
]]></code>
<p>
In state <c>locked</c>, when a button is pressed,
it is collected with the last pressed buttons
up to the length of the correct code,
and compared with the correct code.
Depending on the result, the door is either unlocked
and the <c>gen_statem</c> goes to state <c>open</c>,
or the door remains in state <c>locked</c>.
</p>
<p>
When changing to state <c>open</c>, the collected
buttons are reset, the lock unlocked, and a state timer
for 10 s is started.
</p>
<code type="erl"><![CDATA[
open(cast, {button,_}, Data) ->
{next_state, open, Data}.
]]></code>
<p>
In state <c>open</c>, a button event is ignored
by staying in the same state. This can also be done
by returning <c>{keep_state, Data}</c> or in this case
since <c>Data</c> unchanged even by returning
<c>keep_state_and_data</c>.
</p>
</section>
<section>
<marker id="State Time-Outs" />
<title>State Time-Outs</title>
<p>
When a correct code has been given, the door is unlocked and
the following tuple is returned from <c>locked/2</c>:
</p>
<code type="erl"><![CDATA[
{next_state, open, Data#{buttons := []},
[{state_timeout,10000,lock}]}; % Time in milliseconds
]]></code>
<p>
10,000 is a time-out value in milliseconds.
After this time (10 seconds), a time-out occurs.
Then, <c>StateName(state_timeout, lock, Data)</c> is called.
The time-out occurs when the door has been in state <c>open</c>
for 10 seconds. After that the door is locked again:
</p>
<code type="erl"><![CDATA[
open(state_timeout, lock, Data) ->
do_lock(),
{next_state, locked, Data};
]]></code>
<p>
The timer for a state time-out is automatically cancelled
when the state machine changes states. You can restart
a state time-out by setting it to a new time, which cancels
the running timer and starts a new. This implies that
you can cancel a state time-out by restarting it with
time <c>infinity</c>.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="All State Events" />
<title>All State Events</title>
<p>
Sometimes events can arrive in any state of the <c>gen_statem</c>.
It is convenient to handle these in a common state handler function
that all state functions call for events not specific to the state.
</p>
<p>
Consider a <c>code_length/0</c> function that returns
the length of the correct code.
We dispatch all events that are not state-specific
to the common function <c>handle_common/3</c>:
</p>
<code type="erl"><![CDATA[
...
-export([button/1,code_length/0]).
...
code_length() ->
gen_statem:call(?NAME, code_length).
...
locked(...) -> ... ;
locked(EventType, EventContent, Data) ->
handle_common(EventType, EventContent, Data).
...
open(...) -> ... ;
open(EventType, EventContent, Data) ->
handle_common(EventType, EventContent, Data).
handle_common({call,From}, code_length, #{code := Code} = Data) ->
{keep_state, Data,
[{reply,From,length(Code)}]}.
]]></code>
<p>
Another way to do it is through a convenience macro
<c>?HANDLE_COMMON/0</c>:
</p>
<code type="erl"><![CDATA[
...
-export([button/1,code_length/0]).
...
code_length() ->
gen_statem:call(?NAME, code_length).
-define(HANDLE_COMMON,
?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
%%
handle_common({call,From}, code_length, #{code := Code} = Data) ->
{keep_state, Data,
[{reply,From,length(Code)}]}.
...
locked(...) -> ... ;
?HANDLE_COMMON.
...
open(...) -> ... ;
?HANDLE_COMMON.
]]></code>
<p>
This example uses
<seealso marker="stdlib:gen_statem#call/2"><c>gen_statem:call/2</c></seealso>,
which waits for a reply from the server.
The reply is sent with a <c>{reply,From,Reply}</c> tuple
in an action list in the <c>{keep_state, ...}</c> tuple
that retains the current state. This return form is convenient
when you want to stay in the current state but do not know or
care about what it is.
</p>
<p>
If the common event handler needs to know the current state
a function <c>handle_common/4</c> can be used instead:
</p>
<code type="erl"><![CDATA[
-define(HANDLE_COMMON,
?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).
]]></code>
</section>
<!-- =================================================================== -->
<section>
<marker id="One Event Handler" />
<title>One Event Handler</title>
<p>
If
<seealso marker="#Callback Modes">
Callback Mode
</seealso>
<c>handle_event_function</c> is used,
all events are handled in
<seealso marker="stdlib:gen_statem#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>
and we can (but do not have to) use an event-centered approach
where we first branch depending on event
and then depending on state:
</p>
<code type="erl"><![CDATA[
...
-export([handle_event/4]).
...
callback_mode() ->
handle_event_function.
handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
case State of
locked ->
#{length := Length, buttons := Buttons} = Data,
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next_state, open, Data#{buttons := []},
[{state_timeout,10000,lock}]}; % Time in milliseconds
true -> % Incomplete | Incorrect
{keep_state, Data#{buttons := NewButtons}}
end;
open ->
keep_state_and_data
end;
handle_event(state_timeout, lock, open, Data) ->
do_lock(),
{next_state, locked, Data};
handle_event(
{call,From}, code_length, _State, #{code := Code} = Data) ->
{keep_state, Data,
[{reply,From,length(Code)}]}.
...
]]></code>
</section>
<!-- =================================================================== -->
<section>
<marker id="Stopping" />
<title>Stopping</title>
<section>
<marker id="In a Supervision Tree" />
<title>In a Supervision Tree</title>
<p>
If the <c>gen_statem</c> is part of a supervision tree,
no stop function is needed.
The <c>gen_statem</c> is automatically terminated by its supervisor.
Exactly how this is done is defined by a
<seealso marker="sup_princ#shutdown">shutdown strategy</seealso>
set in the supervisor.
</p>
<p>
If it is necessary to clean up before termination, the shutdown
strategy must be a time-out value and the <c>gen_statem</c> must
in function <c>init/1</c> set itself to trap exit signals
by calling
<seealso marker="erts:erlang#process_flag/2"><c>process_flag(trap_exit, true)</c></seealso>:
</p>
<code type="erl"><![CDATA[
init(Args) ->
process_flag(trap_exit, true),
do_lock(),
...
]]></code>
<p>
When ordered to shut down, the <c>gen_statem</c> then calls
callback function <c>terminate(shutdown, State, Data)</c>.
</p>
<p>
In this example, function <c>terminate/3</c>
locks the door if it is open, so we do not accidentally leave the door
open when the supervision tree terminates:
</p>
<code type="erl"><![CDATA[
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
]]></code>
</section>
<section>
<marker id="Standalone gen_statem" />
<title>Standalone gen_statem</title>
<p>
If the <c>gen_statem</c> is not part of a supervision tree,
it can be stopped using
<seealso marker="stdlib:gen_statem#stop/1"><c>gen_statem:stop</c></seealso>,
preferably through an API function:
</p>
<code type="erl"><![CDATA[
...
-export([start_link/1,stop/0]).
...
stop() ->
gen_statem:stop(?NAME).
]]></code>
<p>
This makes the <c>gen_statem</c> call callback function
<c>terminate/3</c> just like for a supervised server
and waits for the process to terminate.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<marker id="Event Time-Outs" />
<title>Event Time-Outs</title>
<p>
A time-out feature inherited from <c>gen_statem</c>'s predecessor
<seealso marker="stdlib:gen_fsm"><c>gen_fsm</c></seealso>,
is an event time-out, that is,
if an event arrives the timer is cancelled.
You get either an event or a time-out, but not both.
</p>
<p>
It is ordered by the state transition action
<c>{timeout,Time,EventContent}</c>, or just an integer <c>Time</c>,
even without the enclosing actions list
(the latter is a form inherited from <c>gen_fsm</c>.
</p>
<p>
This type of time-out is useful for example to act on inactivity.
Let us restart the code sequence
if no button is pressed for say 30 seconds:
</p>
<code type="erl"><![CDATA[
...
locked(timeout, _, Data) ->
{next_state, locked, Data#{buttons := []}};
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
...
true -> % Incomplete | Incorrect
{next_state, locked, Data#{buttons := NewButtons},
30000} % Time in milliseconds
...
]]></code>
<p>
Whenever we receive a button event we start an event time-out
of 30 seconds, and if we get an event type <c>timeout</c>
we reset the remaining code sequence.
</p>
<p>
An event time-out is cancelled by any other event so you either
get some other event or the time-out event. It is therefore
not possible nor needed to cancel or restart an event time-out.
Whatever event you act on has already cancelled
the event time-out...
</p>
<p>
Note that an event time-out does not work well with
when you have for example a status call as in
<seealso marker="#All State Events">All State Events</seealso>,
or handle unknown events, since all kinds of events
will cancel the event time-out.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Generic Time-Outs" />
<title>Generic Time-Outs</title>
<p>
The previous example of state time-outs only work if
the state machine stays in the same state during the
time-out time. And event time-outs only work if no
disturbing unrelated events occur.
</p>
<p>
You may want to start a timer in one state and respond
to the time-out in another, maybe cancel the time-out
without changing states, or perhaps run multiple
time-outs in parallel. All this can be accomplished with
<seealso marker="stdlib:gen_statem#type-generic_timeout">generic time-outs</seealso>.
They may look a little bit like
<seealso marker="stdlib:gen_statem#type-event_timeout">event time-outs</seealso>
but contain a name to allow for any number of them simultaneously
and they are not automatically cancelled.
</p>
<p>
Here is how to accomplish the state time-out
in the previous example by instead using a generic time-out
named for example <c>open</c>:
</p>
<code type="erl"><![CDATA[
...
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
...
if
NewButtons =:= Code -> % Correct
do_unlock(),
{next_state, open, Data#{buttons := []},
[{{timeout,open},10000,lock}]}; % Time in milliseconds
...
open({timeout,open}, lock, Data) ->
do_lock(),
{next_state,locked,Data};
open(cast, {button,_}, Data) ->
{keep_state,Data};
...
]]></code>
<p>
Specific generic time-outs can just as
<seealso marker="#State Time-Outs">State Time-Outs</seealso>
be restarted or cancelled
by setting it to a new time or <c>infinity</c>.
</p>
<p>
In this particular case we do not need to cancel the timeout
since the timeout event is the only possible reason to
change the state from <c>open</c> to <c>locked</c>.
</p>
<p>
Instead of bothering with when to cancel a time-out,
a late time-out event can be handled by ignoring it
if it arrives in a state where it is known to be late.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Erlang Timers" />
<title>Erlang Timers</title>
<p>
The most versatile way to handle time-outs is to use
Erlang Timers; see
<seealso marker="erts:erlang#start_timer/4"><c>erlang:start_timer/3,4</c></seealso>.
Most time-out tasks can be performed with the
time-out features in <c>gen_statem</c>,
but an example of one that can not is if you should need
the return value from
<seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>, that is; the remaining time of the timer.
</p>
<p>
Here is how to accomplish the state time-out
in the previous example by instead using an Erlang Timer:
</p>
<code type="erl"><![CDATA[
...
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
...
if
NewButtons =:= Code -> % Correct
do_unlock(),
Tref =
erlang:start_timer(
10000, self(), lock), % Time in milliseconds
{next_state, open, Data#{buttons := [], timer => Tref}};
...
open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
do_lock(),
{next_state,locked,maps:remove(timer, Data)};
open(cast, {button,_}, Data) ->
{keep_state,Data};
...
]]></code>
<p>
Removing the <c>timer</c> key from the map when we
change to state <c>locked</c> is not strictly
necessary since we can only get into state <c>open</c>
with an updated <c>timer</c> map value. But it can be nice
to not have outdated values in the state <c>Data</c>!
</p>
<p>
If you need to cancel a timer because of some other event, you can use
<seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>.
Note that a time-out message cannot arrive after this,
unless you have postponed it before (see the next section),
so ensure that you do not accidentally postpone such messages.
Also note that a time-out message may have arrived
just before you cancelling it, so you may have to read out
such a message from the process mailbox depending on
the return value from
<seealso marker="erts:erlang#cancel_timer/2"><c>erlang:cancel_timer(Tref)</c></seealso>.
</p>
<p>
Another way to handle a late time-out can be to not cancel it,
but to ignore it if it arrives in a state
where it is known to be late.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Postponing Events" />
<title>Postponing Events</title>
<p>
If you want to ignore a particular event in the current state
and handle it in a future state, you can postpone the event.
A postponed event is retried after the state has
changed, that is, <c>OldState =/= NewState</c>.
</p>
<p>
Postponing is ordered by the state transition
<seealso marker="#State Transition Actions">
State Transition Action
</seealso>
<c>postpone</c>.
</p>
<p>
In this example, instead of ignoring button events
while in the <c>open</c> state, we can postpone them
and they are queued and later handled in the <c>locked</c> state:
</p>
<code type="erl"><![CDATA[
...
open(cast, {button,_}, Data) ->
{keep_state,Data,[postpone]};
...
]]></code>
<p>
Since a postponed event is only retried after a state change,
you have to think about where to keep a state data item.
You can keep it in the server <c>Data</c>
or in the <c>State</c> itself,
for example by having two more or less identical states
to keep a boolean value, or by using a complex state
(see section
<seealso marker="#Complex State">Complex State</seealso>)
with
<seealso marker="#Callback Modes">Callback Mode</seealso>
<seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>.
If a change in the value changes the set of events that is handled,
then the value should be kept in the State.
Otherwise no postponed events will be retried
since only the server Data changes.
</p>
<p>
This is not important if you do not postpone events.
But if you later decide to start postponing some events,
then the design flaw of not having separate states
when they should be, might become a hard to find bug.
</p>
<section>
<marker id="Fuzzy State Diagrams" />
<title>Fuzzy State Diagrams</title>
<p>
It is not uncommon that a state diagram does not specify
how to handle events that are not illustrated
in a particular state in the diagram.
Hopefully this is described in an associated text
or from the context.
</p>
<p>
Possible actions: ignore as in drop the event
(maybe log it) or deal with the event in some other state
as in postpone it.
</p>
</section>
<section>
<marker id="Selective Receive" />
<title>Selective Receive</title>
<p>
Erlang's selective receive statement is often used to
describe simple state machine examples in straightforward
Erlang code. The following is a possible implementation of
the first example:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-define(NAME, code_lock_1).
-export([start_link/1,button/1]).
start_link(Code) ->
spawn(
fun () ->
true = register(?NAME, self()),
do_lock(),
locked(Code, length(Code), [])
end).
button(Button) ->
?NAME ! {button,Button}.
]]></code>
<code type="erl"><![CDATA[
locked(Code, Length, Buttons) ->
receive
{button,Button} ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
do_unlock(),
open(Code, Length);
true -> % Incomplete | Incorrect
locked(Code, Length, NewButtons)
end
end.
]]></code>
<code type="erl"><![CDATA[
open(Code, Length) ->
receive
after 10000 -> % Time in milliseconds
do_lock(),
locked(Code, Length, [])
end.
do_lock() ->
io:format("Locked~n", []).
do_unlock() ->
io:format("Open~n", []).
]]></code>
<p>
The selective receive in this case causes implicitly <c>open</c>
to postpone any events to the <c>locked</c> state.
</p>
<p>
A selective receive cannot be used from a <c>gen_statem</c>
behavior as for any <c>gen_*</c> behavior,
as the receive statement is within the <c>gen_*</c> engine itself.
It must be there because all
<seealso marker="stdlib:sys"><c>sys</c></seealso>
compatible behaviors must respond to system messages and therefore
do that in their engine receive loop,
passing non-system messages to the callback module.
</p>
<p>
The
<seealso marker="#State Transition Actions">
State Transition Action
</seealso>
<c>postpone</c> is designed to model
selective receives. A selective receive implicitly postpones
any not received events, but the <c>postpone</c>
state transition action explicitly postpones one received event.
</p>
<p>
Both mechanisms have the same theoretical
time and memory complexity, while the selective receive
language construct has smaller constant factors.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<marker id="State Enter Actions" />
<title>State Enter Actions</title>
<p>
Say you have a state machine specification
that uses state enter actions.
Allthough you can code this using inserted events
(described in the next section), especially if just
one or a few states has got state enter actions,
this is a perfect use case for the built in
<seealso marker="#State Enter Calls">State Enter Calls</seealso>.
</p>
<p>
You return a list containing <c>state_enter</c> from your
<seealso marker="stdlib:gen_statem#Module:callback_mode/0"><c>callback_mode/0</c></seealso>
function and the <c>gen_statem</c> engine will call your
state callback once with the arguments
<c>(enter, OldState, ...)</c> whenever the state changes.
Then you just need to handle these event-like calls in all states.
</p>
<code type="erl"><![CDATA[
...
init(Code) ->
process_flag(trap_exit, true),
Data = #{code => Code, length = length(Code)},
{ok, locked, Data}.
callback_mode() ->
[state_functions,state_enter].
locked(enter, _OldState, Data) ->
do_lock(),
{keep_state,Data#{buttons => []}};
locked(
cast, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
...
if
NewButtons =:= Code -> % Correct
{next_state, open, Data};
...
open(enter, _OldState, _Data) ->
do_unlock(),
{keep_state_and_data,
[{state_timeout,10000,lock}]}; % Time in milliseconds
open(state_timeout, lock, Data) ->
{next_state, locked, Data};
...
]]></code>
<p>
You can repeat the state enter code by returning one of
<c>{repeat_state, ...}</c>, <c>{repeat_state_and_data,_}</c>
or <c>repeat_state_and_data</c> that otherwise behaves
exactly like their <c>keep_state</c> siblings.
See the type
<seealso marker="stdlib:gen_statem#type-state_callback_result">
<c>state_callback_result()</c>
</seealso>
in the reference manual.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Inserted Events" />
<title>Inserted Events</title>
<p>
It can sometimes be beneficial to be able to generate events
to your own state machine.
This can be done with the
<seealso marker="#State Transition Actions">
State Transition Action
</seealso>
<c>{next_event,EventType,EventContent}</c>.
</p>
<p>
You can generate events of any existing
<seealso marker="stdlib:gen_statem#type-action">type</seealso>,
but the <c>internal</c> type can only be generated through action
<c>next_event</c>. Hence, it cannot come from an external source,
so you can be certain that an <c>internal</c> event is an event
from your state machine to itself.
</p>
<p>
One example for this is to pre-process incoming data, for example
decrypting chunks or collecting characters up to a line break.
</p>
<p>
Purists may argue that this should be modelled with a separate
state machine that sends pre-processed events
to the main state machine,
but to decrease overhead the small pre-processing state machine
can be implemented in the common state event handling
of the main state machine using a few state data variables
that then sends the pre-processed events as internal events
to the main state machine.
Using internal events also can make it easier
to synchronize the state machines.
</p>
<p>
A variant of this is to use a
<seealso marker="#Complex State">
Complex State
</seealso>
with
<seealso marker="#One Event Handler">One Event Handler</seealso>.
The state is then modeled with for example a tuple
<c>{MainFSMState,SubFSMState}</c>.
</p>
<p>
To illustrate this we make up an example where the buttons
instead generate down and up (press and release) events,
and the lock responds to an up event only after
the corresponding down event.
</p>
<code type="erl"><![CDATA[
...
-export([down/1, up/1]).
...
down(Button) ->
gen_statem:cast(?NAME, {down,Button}).
up(Button) ->
gen_statem:cast(?NAME, {up,Button}).
...
locked(enter, _OldState, Data) ->
do_lock(),
{keep_state,Data#{buttons => []}};
locked(
internal, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
...
]]></code>
<code type="erl"><![CDATA[
handle_common(cast, {down,Button}, Data) ->
{keep_state, Data#{button => Button}};
handle_common(cast, {up,Button}, Data) ->
case Data of
#{button := Button} ->
{keep_state,maps:remove(button, Data),
[{next_event,internal,{button,Button}}]};
#{} ->
keep_state_and_data
end;
...
open(internal, {button,_}, Data) ->
{keep_state,Data,[postpone]};
...
]]></code>
<p>
If you start this program with <c>code_lock:start([17])</c>
you can unlock with <c>code_lock:down(17), code_lock:up(17).</c>
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Example Revisited" />
<title>Example Revisited</title>
<p>
This section includes the example after most of the mentioned
modifications and some more using state enter calls,
which deserves a new state diagram:
</p>
<!-- The image is edited with dia in a .dia file,
then exported to Scalable Vector Graphics. -->
<image file="../design_principles/code_lock_2.svg" width="80%">
<icaption>Code Lock State Diagram Revisited</icaption>
</image>
<p>
Notice that this state diagram does not specify how to handle
a button event in the state <c>open</c>. So, you need to
read in some side notes, that is, here: that unspecified events
shall be postponed (handled in some later state).
Also, the state diagram does not show that the <c>code_length/0</c>
call must be handled in every state.
</p>
<section>
<marker id="Callback Mode: state_functions" />
<title>Callback Mode: state_functions</title>
<p>
Using state functions:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_2).
-export([start_link/1,stop/0]).
-export([down/1,up/1,code_length/0]).
-export([init/1,callback_mode/0,terminate/3]).
-export([locked/3,open/3]).
start_link(Code) ->
gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
stop() ->
gen_statem:stop(?NAME).
down(Button) ->
gen_statem:cast(?NAME, {down,Button}).
up(Button) ->
gen_statem:cast(?NAME, {up,Button}).
code_length() ->
gen_statem:call(?NAME, code_length).
]]></code>
<code type="erl"><![CDATA[
init(Code) ->
process_flag(trap_exit, true),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, locked, Data}.
callback_mode() ->
[state_functions,state_enter].
-define(HANDLE_COMMON,
?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
%%
handle_common(cast, {down,Button}, Data) ->
{keep_state, Data#{button => Button}};
handle_common(cast, {up,Button}, Data) ->
case Data of
#{button := Button} ->
{keep_state, maps:remove(button, Data),
[{next_event,internal,{button,Button}}]};
#{} ->
keep_state_and_data
end;
handle_common({call,From}, code_length, #{code := Code}) ->
{keep_state_and_data,
[{reply,From,length(Code)}]}.
]]></code>
<code type="erl"><![CDATA[
locked(enter, _OldState, Data) ->
do_lock(),
{keep_state, Data#{buttons := []}};
locked(state_timeout, button, Data) ->
{keep_state, Data#{buttons := []}};
locked(
internal, {button,Button},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next_state, open, Data};
true -> % Incomplete | Incorrect
{keep_state, Data#{buttons := NewButtons},
[{state_timeout,30000,button}]} % Time in milliseconds
end;
?HANDLE_COMMON.
]]></code>
<code type="erl"><![CDATA[
open(enter, _OldState, _Data) ->
do_unlock(),
{keep_state_and_data,
[{state_timeout,10000,lock}]}; % Time in milliseconds
open(state_timeout, lock, Data) ->
{next_state, locked, Data};
open(internal, {button,_}, _) ->
{keep_state_and_data, [postpone]};
?HANDLE_COMMON.
do_lock() ->
io:format("Locked~n", []).
do_unlock() ->
io:format("Open~n", []).
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
]]></code>
</section>
<section>
<marker id="Callback Mode: handle_event_function" />
<title>Callback Mode: handle_event_function</title>
<p>
This section describes what to change in the example
to use one <c>handle_event/4</c> function.
The previously used approach to first branch depending on event
does not work that well here because of the state enter calls,
so this example first branches depending on state:
</p>
<code type="erl"><![CDATA[
-export([handle_event/4]).
]]></code>
<code type="erl"><![CDATA[
callback_mode() ->
[handle_event_function,state_enter].
]]></code>
<code type="erl"><![CDATA[
%%
%% State: locked
handle_event(enter, _OldState, locked, Data) ->
do_lock(),
{keep_state, Data#{buttons := []}};
handle_event(state_timeout, button, locked, Data) ->
{keep_state, Data#{buttons := []}};
handle_event(
internal, {button,Button}, locked,
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next_state, open, Data};
true -> % Incomplete | Incorrect
{keep_state, Data#{buttons := NewButtons},
[{state_timeout,30000,button}]} % Time in milliseconds
end;
]]></code>
<code type="erl"><![CDATA[
%%
%% State: open
handle_event(enter, _OldState, open, _Data) ->
do_unlock(),
{keep_state_and_data,
[{state_timeout,10000,lock}]}; % Time in milliseconds
handle_event(state_timeout, lock, open, Data) ->
{next_state, locked, Data};
handle_event(internal, {button,_}, open, _) ->
{keep_state_and_data,[postpone]};
]]></code>
<code type="erl"><![CDATA[
%% Common events
handle_event(cast, {down,Button}, _State, Data) ->
{keep_state, Data#{button => Button}};
handle_event(cast, {up,Button}, _State, Data) ->
case Data of
#{button := Button} ->
{keep_state, maps:remove(button, Data),
[{next_event,internal,{button,Button}},
{state_timeout,30000,button}]}; % Time in milliseconds
#{} ->
keep_state_and_data
end;
handle_event({call,From}, code_length, _State, #{length := Length}) ->
{keep_state_and_data,
[{reply,From,Length}]}.
]]></code>
</section>
<p>
Notice that postponing buttons from the <c>open</c> state
to the <c>locked</c> state feels like a strange thing to do
for a code lock, but it at least illustrates event postponing.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Filter the State" />
<title>Filter the State</title>
<p>
The example servers so far in this chapter
print the full internal state in the error log, for example,
when killed by an exit signal or because of an internal error.
This state contains both the code lock code
and which digits that remain to unlock.
</p>
<p>
This state data can be regarded as sensitive,
and maybe not what you want in the error log
because of some unpredictable event.
</p>
<p>
Another reason to filter the state can be
that the state is too large to print, as it fills
the error log with uninteresting details.
</p>
<p>
To avoid this, you can format the internal state
that gets in the error log and gets returned from
<seealso marker="stdlib:sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
by implementing function
<seealso marker="stdlib:gen_statem#Module:format_status/2"><c>Module:format_status/2</c></seealso>,
for example like this:
</p>
<code type="erl"><![CDATA[
...
-export([init/1,terminate/3,format_status/2]).
...
format_status(Opt, [_PDict,State,Data]) ->
StateData =
{State,
maps:filter(
fun (code, _) -> false;
(_, _) -> true
end,
Data)},
case Opt of
terminate ->
StateData;
normal ->
[{data,[{"State",StateData}]}]
end.
]]></code>
<p>
It is not mandatory to implement a
<seealso marker="stdlib:gen_statem#Module:format_status/2"><c>Module:format_status/2</c></seealso>
function. If you do not, a default implementation is used that
does the same as this example function without filtering
the <c>Data</c> term, that is, <c>StateData = {State,Data}</c>,
in this example containing sensitive information.
</p>
</section>
<!-- =================================================================== -->
<section>
<marker id="Complex State" />
<title>Complex State</title>
<p>
The callback mode
<seealso marker="stdlib:gen_statem#type-callback_mode"><c>handle_event_function</c></seealso>
enables using a non-atom state as described in section
<seealso marker="#Callback Modes">Callback Modes</seealso>,
for example, a complex state term like a tuple.
</p>
<p>
One reason to use this is when you have a state item
that when changed should cancel the
<seealso marker="#State Time-Outs">State Time-Out</seealso>,
or one that affects the event handling
in combination with postponing events.
We will go for the latter and complicate the previous example
by introducing a configurable lock button
(this is the state item in question),
which in the <c>open</c> state immediately locks the door,
and an API function <c>set_lock_button/1</c> to set the lock button.
</p>
<p>
Suppose now that we call <c>set_lock_button</c>
while the door is open,
and we have already postponed a button event
that was the new lock button:
</p>
<code type="erl"><![CDATA[
1> code_lock:start_link([a,b,c], x).
{ok,<0.666.0>}
2> code_lock:button(a).
ok
3> code_lock:button(b).
ok
4> code_lock:button(c).
ok
Open
5> code_lock:button(y).
ok
6> code_lock:set_lock_button(y).
x
% What should happen here? Immediate lock or nothing?
]]></code>
<p>
We could say that the button was pressed too early
so it is not to be recognized as the lock button.
Or we can make the lock button part of the state so
when we then change the lock button in the locked state,
the change becomes a state change
and all postponed events are retried,
therefore the lock is immediately locked!
</p>
<p>
We define the state as <c>{StateName,LockButton}</c>,
where <c>StateName</c> is as before
and <c>LockButton</c> is the current lock button:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-define(NAME, code_lock_3).
-export([start_link/2,stop/0]).
-export([button/1,set_lock_button/1]).
-export([init/1,callback_mode/0,terminate/3]).
-export([handle_event/4]).
start_link(Code, LockButton) ->
gen_statem:start_link(
{local,?NAME}, ?MODULE, {Code,LockButton}, []).
stop() ->
gen_statem:stop(?NAME).
button(Button) ->
gen_statem:cast(?NAME, {button,Button}).
set_lock_button(LockButton) ->
gen_statem:call(?NAME, {set_lock_button,LockButton}).
]]></code>
<code type="erl"><![CDATA[
init({Code,LockButton}) ->
process_flag(trap_exit, true),
Data = #{code => Code, length => length(Code), buttons => []},
{ok, {locked,LockButton}, Data}.
callback_mode() ->
[handle_event_function,state_enter].
%% State: locked
handle_event(enter, _OldState, {locked,_}, Data) ->
do_lock(),
{keep_state, Data#{buttons := []}};
handle_event(state_timeout, button, {locked,_}, Data) ->
{keep_state, Data#{buttons := []}};
handle_event(
cast, {button,Button}, {locked,LockButton},
#{code := Code, length := Length, buttons := Buttons} = Data) ->
NewButtons =
if
length(Buttons) < Length ->
Buttons;
true ->
tl(Buttons)
end ++ [Button],
if
NewButtons =:= Code -> % Correct
{next_state, {open,LockButton}, Data};
true -> % Incomplete | Incorrect
{keep_state, Data#{buttons := NewButtons},
[{state_timeout,30000,button}]} % Time in milliseconds
end;
]]></code>
<code type="erl"><![CDATA[
%%
%% State: open
handle_event(enter, _OldState, {open,_}, _Data) ->
do_unlock(),
{keep_state_and_data,
[{state_timeout,10000,lock}]}; % Time in milliseconds
handle_event(state_timeout, lock, {open,LockButton}, Data) ->
{next_state, {locked,LockButton}, Data};
handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
{next_state, {locked,LockButton}, Data};
handle_event(cast, {button,_}, {open,_}, _Data) ->
{keep_state_and_data,[postpone]};
]]></code>
<code type="erl"><![CDATA[
%%
%% Common events
handle_event(
{call,From}, {set_lock_button,NewLockButton},
{StateName,OldLockButton}, Data) ->
{next_state, {StateName,NewLockButton}, Data,
[{reply,From,OldLockButton}]}.
]]></code>
<code type="erl"><![CDATA[
do_lock() ->
io:format("Locked~n", []).
do_unlock() ->
io:format("Open~n", []).
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
]]></code>
</section>
<!-- =================================================================== -->
<section>
<marker id="Hibernation" />
<title>Hibernation</title>
<p>
If you have many servers in one node
and they have some state(s) in their lifetime in which
the servers can be expected to idle for a while,
and the amount of heap memory all these servers need
is a problem, then the memory footprint of a server
can be mimimized by hibernating it through
<seealso marker="stdlib:proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>.
</p>
<note>
<p>
It is rather costly to hibernate a process; see
<seealso marker="erts:erlang#hibernate/3"><c>erlang:hibernate/3</c></seealso>.
It is not something you want to do after every event.
</p>
</note>
<p>
We can in this example hibernate in the <c>{open,_}</c> state,
because what normally occurs in that state is that
the state time-out after a while
triggers a transition to <c>{locked,_}</c>:
</p>
<code type="erl"><![CDATA[
...
%%
%% State: open
handle_event(enter, _OldState, {open,_}, _Data) ->
do_unlock(),
{keep_state_and_data,
[{state_timeout,10000,lock}, % Time in milliseconds
hibernate]};
...
]]></code>
<p>
The atom
<seealso marker="stdlib:gen_statem#type-hibernate"><c>hibernate</c></seealso>
in the action list on the last line
when entering the <c>{open,_}</c> state is the only change.
If any event arrives in the <c>{open,_},</c> state, we
do not bother to rehibernate, so the server stays
awake after any event.
</p>
<p>
To change that we would need to insert
action <c>hibernate</c> in more places.
For example, the state-independent <c>set_lock_button</c>
operation would have to use <c>hibernate</c> but only in the
<c>{open,_}</c> state, which would clutter the code.
</p>
<p>
Another not uncommon scenario is to use the
<seealso marker="#Event Time-Outs">Event Time-Out</seealso>
to trigger hibernation after a certain time of inactivity.
There is also a server start option
<seealso marker="stdlib:gen_statem#type-hibernate_after_opt">
<c>{hibernate_after, Timeout}</c>
</seealso>
for
<seealso marker="stdlib:gen_statem#start/3">
<c>start/3,4</c>
</seealso>
or
<seealso marker="stdlib:gen_statem#start_link/3">
<c>start_link/3,4</c>
</seealso>
that may be used to automatically hibernate the server.
</p>
<p>
This particular server probably does not use
heap memory worth hibernating for.
To gain anything from hibernation, your server would
have to produce non-insignificant garbage
during callback execution,
for which this example server can serve as a bad example.
</p>
</section>
</chapter>
|