aboutsummaryrefslogtreecommitdiffstats
path: root/system/doc/reference_manual/typespec.xml
blob: c3620f83f644369a5ef2e7308482269bb83fadf2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2003</year><year>2011</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      The contents of this file are subject to the Erlang Public License,
      Version 1.1, (the "License"); you may not use this file except in
      compliance with the License. You should have received a copy of the
      Erlang Public License along with this software. If not, it can be
      retrieved online at http://www.erlang.org/.
    
      Software distributed under the License is distributed on an "AS IS"
      basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
      the License for the specific language governing rights and limitations
      under the License.
    
    </legalnotice>

    <title>Types and Function Specifications</title>
    <prepared>Kostis Sagonas, Tobias Lindahl, Kenneth Lundin</prepared>
    <docno></docno>
    <date></date>
    <rev></rev>
    <file>typespec.xml</file>
  </header>

  <section>
  <title>Introduction of Types</title>
  <p>
    Erlang is a dynamically typed language. Still, it comes with a
    language extension for declaring sets of Erlang terms to form a
    particular type, effectively forming a specific sub-type of the set
    of all Erlang terms.
  </p>
  <p> 
    Subsequently, these types can be used to specify types of record fields 
    and the argument and return types of functions.
  </p>
  <p>
    Type information can be used to document function interfaces, 
    provide more information for bug detection tools such as <c>Dialyzer</c>, 
    and can be exploited by documentation tools such as <c>Edoc</c> for 
    generating program documentation of various forms. 
    It is expected that the type language described in this document will 
    supersede and replace the purely comment-based <c>@type</c> and 
  <c>@spec</c> declarations used by <c>Edoc</c>.
  </p>
  </section>
  <section>
    <marker id="syntax"></marker>
    <title>Types and their Syntax</title>
    <p>
    Types describe sets of Erlang terms. 
    Types consist and are built from a set of predefined types (e.g. <c>integer()</c>, 
    <c>atom()</c>, <c>pid()</c>, ...) described below. 
    Predefined types represent a typically infinite set of Erlang terms which 
    belong to this type. 
    For example, the type <c>atom()</c> stands for the set of all Erlang atoms.
	</p>
	<p>
    For integers and atoms, we allow for singleton types (e.g. the integers <c>-1</c> 
    and <c>42</c> or the atoms <c>'foo'</c> and <c>'bar'</c>).

    All other types are built using unions of either predefined types or singleton 
    types. In a type union between a type and one of its sub-types the sub-type is 
    absorbed by the super-type and the union is subsequently treated as if the 
    sub-type was not a constituent of the union. For example, the type union:
    </p>
    <pre>
 atom() | 'bar' | integer() | 42</pre>
    <p>
    describes the same set of terms as the type union:
    </p>
	<pre>
atom() | integer()</pre>
	<p>
	Because of sub-type relations that exist between types, types form a lattice 
	where the topmost element, any(), denotes the set of all Erlang terms and 
	the bottom-most element, none(), denotes the empty set of terms.
	</p>
	<p>
	The set of predefined types and the syntax for types is given below:
	</p>
	<pre><![CDATA[
Type :: any()            %% The top type, the set of all Erlang terms.
      | none()           %% The bottom type, contains no terms.
      | pid()
      | port()
      | reference()
      | []               %% nil
      | Atom
      | Binary
      | float()
      | Fun
      | Integer
      | List
      | Tuple
      | Union
      | UserDefined      %% described in Section 2

Union :: Type1 | Type2

Atom :: atom()
      | Erlang_Atom      %% 'foo', 'bar', ...

Binary :: binary()                        %% <<_:_ * 8>>
        | <<>>
        | <<_:Erlang_Integer>>            %% Base size
        | <<_:_*Erlang_Integer>>          %% Unit size
        | <<_:Erlang_Integer, _:_*Erlang_Integer>>

Fun :: fun()                              %% any function
     | fun((...) -> Type)                 %% any arity, returning Type
     | fun(() -> Type)
     | fun((TList) -> Type)

Integer :: integer()
         | Erlang_Integer                 %% ..., -1, 0, 1, ... 42 ...
         | Erlang_Integer..Erlang_Integer %% specifies an integer range

List :: list(Type)                        %% Proper list ([]-terminated)
      | improper_list(Type1, Type2)       %% Type1=contents, Type2=termination
      | maybe_improper_list(Type1, Type2) %% Type1 and Type2 as above

Tuple :: tuple()                          %% stands for a tuple of any size
       | {}
       | {TList}

TList :: Type
       | Type, TList
]]></pre>
  <p>
    Because lists are commonly used, they have shorthand type notations. 
    The type <c>list(T)</c> has the shorthand <c>[T]</c>.
    The shorthand <c>[T,...]</c> stands for 
    the set of non-empty proper lists whose elements are of type <c>T</c>. 
    The only difference between the two shorthands is that <c>[T]</c> may be an 
    empty list but <c>[T,...]</c> may not.
  </p>
  <p>
    Notice that the shorthand for <c>list()</c>, i.e. the list of
    elements of unknown type, is <c>[_]</c> (or <c>[any()]</c>), not <c>[]</c>. 
    The notation <c>[]</c> specifies the singleton type for the empty list.
  </p>
  <p>
    For convenience, the following types are also built-in. 
    They can be thought as predefined aliases for the type unions also shown in 
    the table. (Some type unions below slightly abuse the syntax of types.)
  </p>
  <table>
    <row>
      <cell><b>Built-in type</b></cell><cell><b>Stands for</b></cell>
    </row>
    <row>
      <cell><c>term()</c></cell><cell><c>any()</c></cell>
    </row>
    <row> 
      <cell><c>boolean()</c></cell><cell><c>'false' | 'true'</c></cell>
    </row>
    <row> 
      <cell><c>byte()</c></cell><cell><c>0..255</c></cell>
    </row>
    <row>
      <cell><c>char()</c></cell><cell><c>0..16#10ffff</c></cell>
    </row>
    <row> 
      <cell><c>non_neg_integer()</c></cell><cell><c>0..</c></cell>
    </row>
    <row> 
      <cell><c>pos_integer()</c></cell><cell><c>1..</c></cell>
    </row>
    <row> 
      <cell><c>neg_integer()</c></cell><cell><c>..-1</c></cell>
    </row>
    <row> 
      <cell><c>number()</c></cell><cell><c>integer() | float()</c></cell>
    </row>
    <row> 
      <cell><c>list()</c></cell><cell><c>[any()]</c></cell>
    </row>
    <row> 
      <cell><c>maybe_improper_list()</c></cell><cell><c>maybe_improper_list(any(), any())</c></cell>
    </row>
    <row> 
      <cell><c>maybe_improper_list(T)</c></cell><cell><c>maybe_improper_list(T, any())</c></cell> 
    </row>
    <row>
      <cell><c>string()</c></cell><cell><c>[char()]</c></cell>
    </row>
    <row> 
      <cell><c>nonempty_string()</c></cell><cell><c>[char(),...]</c></cell>
    </row>
    <row> 
      <cell><c>iolist()</c></cell><cell><c>maybe_improper_list(char() | binary() | iolist(), binary() | [])</c></cell>
    </row>
    <row>
      <cell><c>module()</c></cell><cell><c>atom()</c></cell>
    </row>
    <row> 
      <cell><c>mfa()</c></cell><cell><c>{atom(),atom(),byte()}</c></cell>
    </row>
    <row>
      <cell><c>node()</c></cell><cell><c>atom()</c></cell>
    </row>
    <row>
      <cell><c>timeout()</c></cell><cell><c>'infinity' | non_neg_integer()</c></cell>
    </row>
    <row>
      <cell><c>no_return()</c></cell><cell><c>none()</c></cell> 
    </row>
  </table>
  
  <p>
    Users are not allowed to define types with the same names as the
    predefined or built-in ones. This is checked by the compiler and
    its violation results in a compilation error. 
    (For bootstrapping purposes, it can also result to just a warning if this 
    involves a built-in type which has just been introduced.)
  </p>
  <note>
    The following built-in list types also exist, 
    but they are expected to be rarely used. Hence, they have long names:
  </note>
  <pre>
nonempty_maybe_improper_list(Type) :: nonempty_maybe_improper_list(Type, any())
nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any())</pre>
  <p>
    where the following two types
    define the set of Erlang terms one would expect:
  </p>
  <pre>
nonempty_improper_list(Type1, Type2)
nonempty_maybe_improper_list(Type1, Type2)</pre>
  <p>
    Also for convenience, we allow for record notation to be used. 
    Records are just shorthands for the corresponding tuples.
  </p>
  <pre>
Record :: #Erlang_Atom{}
        | #Erlang_Atom{Fields}</pre>
  <p>
    Records have been extended to possibly contain type information. 
    This is described in the sub-section <seealso marker="#typeinrecords">"Type information in record declarations"</seealso> below.
  </p>
  </section>
  
  <section>
    <title>Type declarations of user-defined types</title>
    <p>
      As seen, the basic syntax of a type is an atom followed by closed
      parentheses. New types are declared using '-type' and '-opaque'
      compiler attributes as in the following:
    </p>
    <pre>
-type my_struct_type() :: Type.
-opaque my_opaq_type() :: Type.</pre>
    <p>
      where the type name is an atom (<c>'my_struct_type'</c> in the above)
      followed by parentheses. Type is a type as defined in the
      previous section.
      A current restriction is that Type can contain only predefined types,
      or user-defined types which are either module-local (i.e., with a
      definition that is present in the code of the module) or are remote
      types (i.e., types defined in and exported by other modules; see below).
      For module-local types, the restriction that their definition
      exists in the module is enforced by the compiler and results in a
      compilation error. (A similar restriction currently exists for records.)
    </p>
    <p>
      Type declarations can also be parameterized by including type variables
      between the parentheses. The syntax of type variables is the same as
      Erlang variables (starts with an upper case letter).
      Naturally, these variables can - and should - appear on the RHS of the
      definition. A concrete example appears below:
    </p>
    <pre>
-type orddict(Key, Val) :: [{Key, Val}].</pre>
    <p>
      A module can export some types in order to declare that other modules
      are allowed to refer to them as <em>remote types</em>.
      This declaration has the following form:
      <pre>
-export_type([T1/A1, ..., Tk/Ak]).</pre>
      where the Ti's are atoms (the name of the type) and the Ai's are their
      arguments.  An example is given below:
      <pre>
-export_type([my_struct_type/0, orddict/2]).</pre>
      Assuming that these types are exported from module <c>'mod'</c> then
      one can refer to them from other modules using remote type expressions
      like those below:
      <pre>
mod:my_struct_type()
mod:orddict(atom(), term())</pre>
      One is not allowed to refer to types which are not declared as exported.
    </p>
    <p>
      Types declared as <c>opaque</c> represent sets of terms whose
      structure is not supposed to be visible in any way outside of
      their defining module (i.e., only the module defining them is
      allowed to depend on their term structure). Consequently, such
      types do not make much sense as module local - module local
      types are not accessible by other modules anyway - and should
      always be exported.
    </p>
  </section>
  
  <marker id="typeinrecords"/>
  <section>
    <title>Type information in record declarations</title>
    <p>
      The types of record fields can be specified in the declaration of the 
      record. The syntax for this is:
    </p>
    <pre>
-record(rec, {field1 :: Type1, field2, field3 :: Type3}).</pre>
    <p>
      For fields without type annotations, their type defaults to any(). 
      I.e., the above is a shorthand for:
    </p>
    <pre>
-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).</pre>
    <p>
      In the presence of initial values for fields, 
      the type must be declared after the initialization as in the following:
    </p>
    <pre>
-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).</pre>
    <p>
      Naturally, the initial values for fields should be compatible 
      with (i.e. a member of) the corresponding types. 
      This is checked by the compiler and results in a compilation error 
      if a violation is detected. For fields without initial values, 
      the singleton type <c>'undefined'</c> is added to all declared types. 
      In other words, the following two record declarations have identical 
      effects:
    </p>
    <pre>
-record(rec, {f1 = 42 :: integer(),
              f2      :: float(),
              f3      :: 'a' | 'b'}).

-record(rec, {f1 = 42 :: integer(),
              f2      :: 'undefined' | float(),
              f3      :: 'undefined' | 'a' | 'b'}).</pre>
    <p>
      For this reason, it is recommended that records contain initializers, 
      whenever possible.
    </p>
    <p>
      Any record, containing type information or not, once defined, 
      can be used as a type using the syntax:
    </p>
    <pre>
#rec{}</pre>
    <p>
      In addition, the record fields can be further specified when using 
      a record type by adding type information about the field in
      the following manner:
    </p>
    <pre>
#rec{some_field :: Type}</pre>
    <p>
      Any unspecified fields are assumed to have the type in the original 
      record declaration.
    </p>
  </section>
	
  <section>
    <title>Specifications for functions</title>
    <p>
      A specification (or contract) for a function is given using the new 
      compiler attribute <c>'-spec'</c>. The general format is as follows:
    </p>
    <pre>
-spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.</pre>
    <p>
      The arity of the function has to match the number of arguments, 
      or else a compilation error occurs.
    </p>
    <p>
      This form can also be used in header files (.hrl) to declare type 
      information for exported functions. 
      Then these header files can be included in files that (implicitly or 
      explicitly) import these functions.
    </p>
    <p>
      For most uses within a given module, the following shorthand suffices:
    </p>
    <pre>
-spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.</pre>
    <p>
      Also, for documentation purposes, argument names can be given:
    </p>
    <pre>
-spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.</pre>
    <p>
      A function specification can be overloaded. 
      That is, it can have several types, separated by a semicolon (<c>;</c>):
    </p>
    <pre>
-spec foo(T1, T2) -> T3
       ; (T4, T5) -> T6.</pre>
    <p>
      A current restriction, which currently results in a warning 
      (OBS: not an error) by the compiler, is that the domains of
      the argument types cannot be overlapping.
      For example, the following specification results in a warning:
    </p>
    <pre>
-spec foo(pos_integer()) -> pos_integer()
       ; (integer()) -> integer().</pre>
    <p>
      Type variables can be used in specifications to specify relations for 
      the input and output arguments of a function. 
      For example, the following specification defines the type of a 
      polymorphic identity function:
    </p>
    <pre>
-spec id(X) -> X.</pre>
    <p>
      However, note that the above specification does not restrict the input 
      and output type in any way. 
      We can constrain these types by guard-like subtype constraints:
    </p>
    <pre>
-spec id(X) -> X when is_subtype(X, tuple()).</pre>
    <p>
    or equivalently by the more succinct and more modern form of the above:
    </p>
    <pre>
-spec id(X) -> X when X :: tuple().</pre>
    <p>
      and provide bounded quantification. Currently, the <c>::</c> constraint
      (the <c>is_subtype/2</c> guard) is the only guard constraint which can 
      be used in the <c>'when'</c> part of a <c>'-spec'</c> attribute.
    </p>
    <p>
      The scope of an <c>::</c> constraint is the 
      <c>(...) -> RetType</c> 
      specification after which it appears. To avoid confusion, 
      we suggest that different variables are used in different
      constituents of	an overloaded contract as in the example below:
    </p>
    <pre>
-spec foo({X, integer()}) -> X when X :: atom()
       ; ([Y]) -> Y when Y :: number().</pre>
    <p>
      Some functions in Erlang are not meant to return; 
      either because they define servers or because they are used to 
      throw exceptions as the function below:
    </p>
    <pre>
my_error(Err) -> erlang:throw({error, Err}).</pre>
    <p>
      For such functions we recommend the use of the special no_return() 
      type for their "return", via a contract of the form:
    </p>
    <pre>
-spec my_error(term()) -> no_return().</pre>
  </section>
</chapter>