aboutsummaryrefslogtreecommitdiffstats
path: root/src/rcl_topo.erl
blob: f6389a54227908038b5e31ab773bc5809b4780ce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
%% -*- mode: Erlang; fill-column: 80; comment-column: 75; -*-
%%%-------------------------------------------------------------------
%%% @author Joe Armstrong
%%% @author Eric Merritt
%%% @doc
%%%  This is a pretty simple topological sort for erlang. It was
%%%  originally written for ermake by Joe Armstrong back in '98. It
%%%  has been pretty heavily modified by Eric Merritt since '06 and modified again for Relcool.
%%%
%%%  A partial order on the set S is a set of pairs {Xi,Xj} such that
%%%  some relation between Xi and Xj is obeyed.
%%%
%%%  A topological sort of a partial order is a sequence of elements
%%%  [X1, X2, X3 ...] such that if whenever {Xi, Xj} is in the partial
%%%  order i < j
%%% @end
%%%-------------------------------------------------------------------
-module(rcl_topo).

-export([sort_apps/1,
         format_error/1]).

%%====================================================================
%% Types
%%====================================================================
-type pair() :: {DependentApp::atom(), PrimaryApp::atom()}.
-type name() :: AppName::atom().
-type element() :: name() | pair().

%%====================================================================
%% API
%%====================================================================

%% @doc This only does a topo sort on the list of applications and
%% assumes that there is only *one* version of each app in the list of
%% applications. This implies that you have already done the
%% constraint solve before you pass the list of apps here to be
%% sorted.
-spec sort_apps([rcl_app_info:t()]) ->
                       {ok, [rcl_app_info:t()]} |
                       {error, Reason::term()}.
sort_apps(Apps) ->
    Pairs = apps_to_pairs(Apps),
    case sort(Pairs) of
        {ok, Names} ->
            {ok, names_to_apps(Names, Apps)};
        E ->
            E
    end.
%% @doc nicely format the error from the sort.
-spec format_error({error, Reason::term()}) -> iolist().
format_error({error, {cycle, Pairs}}) ->
    ["Cycle detected in dependency graph, this must be resolved "
     "before we can continue:\n",
    case Pairs of
        [{P1, P2}] ->
            [rcl_util:indent(1), erlang:atom_to_list(P2), "->", erlang:atom_to_list(P1)];
        [{P1, P2} | Rest] ->
            [rcl_util:indent(1), erlang:atom_to_list(P2), "->", erlang:atom_to_list(P1),
             [["-> ", erlang:atom_to_list(PP2), " -> ", erlang:atom_to_list(PP1)] || {PP1, PP2} <- Rest]];
        [] ->
            []
    end].


%%====================================================================
%% Internal Functions
%%====================================================================
%% @doc Do a topological sort on the list of pairs.
-spec sort([pair()]) -> {ok, [atom()]} | {error, {cycle, [pair()]}}.
sort(Pairs) ->
    iterate(Pairs, [], all(Pairs)).

-spec names_to_apps([atom()], [rcl_app_info:t()]) -> [rcl_app_info:t()].
names_to_apps(Names, Apps) ->
 [find_app_by_name(Name, Apps) || Name <- Names].

-spec find_app_by_name(atom(), [rcl_app_info:t()]) -> rcl_app_info:t().
find_app_by_name(Name, Apps) ->
    {ok, App1} =
        ec_lists:find(fun(App) ->
                              rcl_app_info:name(App) =:= Name
                      end, Apps),
    App1.

-spec apps_to_pairs([rcl_app_info:t()]) -> [pair()].
apps_to_pairs(Apps) ->
    lists:flatten([app_to_pairs(App) || App <- Apps]).

-spec app_to_pairs(rcl_app_info:t()) -> [pair()].
app_to_pairs(App) ->
    [{DepApp, rcl_app_info:name(App)} ||
        DepApp <-
            rcl_app_info:active_deps(App) ++
            rcl_app_info:library_deps(App)].


%% @doc Iterate over the system.  @private
-spec iterate([pair()], [name()], [name()]) ->
    {ok, [name()]} | {error, {cycle, [pair()]}}.
iterate([], L, All) ->
    {ok, remove_duplicates(L ++ subtract(All, L))};
iterate(Pairs, L, All) ->
    case subtract(lhs(Pairs), rhs(Pairs)) of
        []  ->
            {error, {cycle, Pairs}};
        Lhs ->
            iterate(remove_pairs(Lhs, Pairs), L ++ Lhs, All)
    end.

-spec all([pair()]) -> [atom()].
all(L) ->
    lhs(L) ++ rhs(L).

-spec lhs([pair()]) -> [atom()].
lhs(L) ->
    [X || {X, _} <- L].

-spec rhs([pair()]) -> [atom()].
rhs(L) ->
    [Y || {_, Y} <- L].

%% @doc all the elements in L1 which are not in L2
%% @private
-spec subtract([element()], [element()]) -> [element()].
subtract(L1, L2) ->
    [X || X <- L1, not lists:member(X, L2)].

%% @doc remove dups from the list.  @private
-spec remove_duplicates([element()]) -> [element()].
remove_duplicates([H|T]) ->
  case lists:member(H, T) of
      true  ->
          remove_duplicates(T);
      false ->
          [H|remove_duplicates(T)]
  end;
remove_duplicates([]) ->
    [].

%% @doc
%%   removes all pairs from L2 where the first element
%%   of each pair is a member of L1
%%
%%   L2' L1 = [X] L2 = [{X,Y}].
%% @private
-spec remove_pairs([atom()], [pair()]) -> [pair()].
remove_pairs(L1, L2) ->
    [All || All={X, _Y} <- L2, not lists:member(X, L1)].

%%====================================================================
%% Tests
%%====================================================================
-ifndef(NOTEST).
-include_lib("eunit/include/eunit.hrl").

topo_1_test() ->
    Pairs = [{one,two},{two,four},{four,six},
             {two,ten},{four,eight},
             {six,three},{one,three},
             {three,five},{five,eight},
             {seven,five},{seven,nine},
             {nine,four},{nine,ten}],
    ?assertMatch({ok, [one,seven,two,nine,four,six,three,five,eight,ten]},
                 sort(Pairs)).
topo_2_test() ->
    Pairs = [{app2, app1}, {zapp1, app1}, {stdlib, app1},
             {app3, app2}, {kernel, app1}, {kernel, app3},
             {app2, zapp1}, {app3, zapp1}, {zapp2, zapp1}],
    ?assertMatch({ok, [stdlib, kernel, zapp2,
                       app3, app2, zapp1, app1]},
                 sort(Pairs)).

topo_pairs_cycle_test() ->
    Pairs = [{app2, app1}, {app1, app2}, {stdlib, app1}],
    ?assertMatch({error, {cycle, [{app2, app1}, {app1, app2}]}},
                 sort(Pairs)).

topo_apps_cycle_test() ->
    {ok, App1} = rcl_app_info:new(app1, "0.1", "/no-dir", [app2], [stdlib]),
    {ok, App2} = rcl_app_info:new(app2, "0.1", "/no-dir", [app1], []),
    Apps = [App1, App2],
    ?assertMatch({error, {cycle, [{app2,app1},{app1,app2}]}},
                 sort_apps(Apps)).

topo_apps_good_test() ->
    Apps = [App ||
               {ok, App} <-
                   [rcl_app_info:new(app1, "0.1", "/no-dir", [app2, zapp1], [stdlib, kernel]),
                    rcl_app_info:new(app2, "0.1", "/no-dir", [app3], []),
                    rcl_app_info:new(app3, "0.1", "/no-dir", [kernel], []),
                    rcl_app_info:new(zapp1, "0.1", "/no-dir", [app2,app3,zapp2], []),
                    rcl_app_info:new(stdlib, "0.1", "/no-dir", [], []),
                    rcl_app_info:new(kernel, "0.1", "/no-dir", [], []),
                    rcl_app_info:new(zapp2, "0.1", "/no-dir", [], [])]],
    {ok, Sorted} = sort_apps(Apps),
    ?assertMatch([stdlib, kernel, zapp2,
                  app3, app2, zapp1, app1],
                 [rcl_app_info:name(App) || App <- Sorted]).

-endif.