Age | Commit message (Collapse) | Author |
|
Over cleartext TCP the `protocols` option lists the enabled
protocols. The default is to allow both HTTP/1.1 and HTTP/2.
Over TLS the default protocol to use when ALPN is not used
can now be configured via the `alpn_default_protocol` option.
Performing an HTTP/1.1 upgrade to HTTP/2 over TLS is now
rejected with an error as connecting to HTTP/2 over TLS
requires the use of ALPN (or that HTTP/2 be the default
when connecting over TLS).
|
|
When idle_timeout is configured we do not need a separate
timer to detect inactivity. Disabling idle_timeout is not
recommended and should not be necessary.
|
|
When enabled the connection process will automatically hibernate.
Because hibernation triggers GC, this can be used as a way to
keep memory usage lower, at the cost of performance.
|
|
There's not a big performance difference between 8192 and 1024
so let's use less memory at the start of the connection.
|
|
Cowboy will set the socket's buffer size dynamically to
better fit the current workload. When the incoming data
is small, a low buffer size reduces the memory footprint
and improves responsiveness and therefore performance.
When the incoming data is large, such as large HTTP
request bodies, a larger buffer size helps us avoid
doing too many binary appends and related allocations.
Setting a large buffer size for all use cases is
sub-optimal because allocating more than needed
necessarily results in a performance hit (not just
increased memory usage).
By default Cowboy starts with a buffer size of 8192 bytes.
It then doubles or halves the buffer size depending on
the size of the data it receives from the socket. It
stops decreasing at 8192 and increasing at 131072 by
default.
To keep track of the size of the incoming data Cowboy
maintains a moving average. It allows Cowboy to avoid
changing the buffer too often but still react quickly
when necessary. Cowboy will increase the buffer size
when the moving average is above 90% of the current
buffer size, and decrease when the moving average is
below 40% of the current buffer size.
The current buffer size and moving average are
propagated when switching protocols. The dynamic buffer
is implemented in HTTP/1, HTTP/2 and HTTP/1 Websocket.
HTTP/2 Websocket has it disabled because it doesn't
interact directly with the socket; in that case it
is HTTP/2 that has a dynamic buffer.
The dynamic buffer provides a very large performance improvement
in many scenarios, at minimal cost for others. Because it largely
depend on the underlying protocol the improvements are no all equal.
TLS and compression also impact the results.
The improvement when reading a large request body, with the
requests repeated in a fast loop are:
* HTTP: 6x to 20x faster
* HTTPS: 2x to 6x faster
* H2: 4x to 5x faster
* H2C: 20x to 40x faster
I am not sure why H2C's performance was so bad, especially compared
to H2, when using default buffer sizes. Dynamic buffers make H2C a
lot more viable with default settings.
The performance impact on "hello world" type requests is minimal,
it goes from -5% to +5% roughly.
Websocket improvements vary again depending on the protocol, but
also depending on whether compression is enabled:
* HTTP echo: roughly 2x faster
* HTTP send: roughly 4x faster
* H2C echo: roughly 2x faster
* H2C send: 3x to 4x faster
In the echo test we reply back, and Gun doesn't have the dynamic
buffer optimisation, so that probably explains the x2 difference.
With compression however there isn't much improvement. The results
are roughly within -10% to +10% of each other. Zlib compression
seems to be a bottleneck, or at least to modify the performance
profile to such an extent that the size of the buffer does not
matter. This happens to randomly generated binary data as well
so it is probably not caused by the test data.
|
|
|
|
|
|
|
|
|
|
Co-authored-by: Björn Svensson <[email protected]>
|
|
|
|
Note: This commit makes cowboy depend on cowlib master.
Graceful shutdown for HTTP/2:
1. A GOAWAY frame with the last stream id set to 2^31-1 is sent and a
timer is started (goaway_initial_timeout, default 1000ms), to wait
for any in-flight requests sent by the client, and the status is set
to 'closing_initiated'. If the client responds with GOAWAY and closes
the connection, we're done.
2. A second GOAWAY frame is sent with the actual last stream id and the
status is set to 'closing'. If no streams exist, the connection
terminates. Otherwise a second timer (goaway_complete_timeout,
default 3000ms) is started, to wait for the streams to complete. New
streams are not accepted when status is 'closing'.
3. If all streams haven't completed after the second timeout, the
connection is forcefully terminated.
Graceful shutdown for HTTP/1.x:
1. If a request is currently being handled, it is waited for and the
response is sent back to the client with the header "Connection:
close". Then, the connection is closed.
2. If the current request handler is not finished within the time
configured in transport option 'shutdown' (default 5000ms), the
connection process is killed by its supervisor (ranch).
Implemented for HTTP/1.x and HTTP/2 in the following scenarios:
* When receiving exit signal 'shutdown' from the supervisor (e.g. when
cowboy:stop_listener/3 is called).
* When a connection process is requested to terminate using
sys:terminate/2,3.
LH: Edited tests a bit and added todos for useful tests to add.
|
|
|
|
Allow 10000 frames every 10 seconds instead of just 1000,
as the limit was too quickly reached in some deployments.
|
|
This reduces the number of times we need to ask for more packets,
and as a result we get a fairly large boost in performance,
especially with HTTP/1.1.
Unfortunately this makes Cowboy require at least Erlang/OTP 21.3+
because the ssl application did not have active,N. For simplicity
the version required will be Erlang/OTP 22+.
In addition this change improves hibernate handling in
cowboy_websocket. Hibernate will now work for HTTP/2 transport
as well, and stray or unrelated messages will no longer cancel
hibernate (the process will handle the message and go back into
hibernation).
Thanks go to Stressgrid for benchmarking an early version of this
commit: https://stressgrid.com/blog/cowboy_performance_part_2/
|
|
|
|
A number of HTTP/2 CVEs were documented recently:
https://www.kb.cert.org/vuls/id/605641/
This commit, along with a few changes and additions in Cowlib,
fix or improve protection against all of them.
For CVE-2019-9511, also known as Data Dribble, the new option
stream_window_data_threshold can be used to control how little
the DATA frames that Cowboy sends can get.
For CVE-2019-9516, also known as 0-Length Headers Leak, Cowboy
will now simply reject streams containing 0-length header names.
For CVE-2019-9517, also known as Internal Data Buffering, the
backpressure changes were already pretty good at preventing this
issue, but a new option max_connection_buffer_size was added for
even better control over how much memory we are willing to allocate.
For CVE-2019-9512, also known as Ping Flood; CVE-2019-9515, also
known as Settings Flood; CVE-2019-9518, also known as Empty Frame
Flooding; and similar undocumented scenarios, a frame rate limiting
mechanism was added. By default Cowboy will now allow 1000 frames
every 10 seconds. This can be configured via max_received_frame_rate.
For CVE-2019-9514, also known as Reset Flood, another rate limiting
mechanism was added and can be configured via max_reset_stream_rate.
By default Cowboy will do up to 10 stream resets every 10 seconds.
Finally, nothing was done for CVE-2019-9513, also known as Resource
Loop, because Cowboy does not currently implement the HTTP/2
priority mechanism (in parts because these issues were well known
from the start).
Tests were added for all cases except Internal Data Buffering,
which I'm not sure how to test, and Resource Loop, which is not
currently relevant.
|
|
This should limit the amount of memory that Cowboy is using
when a handler is sending data much faster than the network.
The new max_stream_buffer_size is a soft limit and only has
an effect when the cowboy_stream_h handler is used.
|
|
|
|
For long-running connections it was possible for the connection
window to become larger than allowed by the protocol because the
window increases claimed by stream handlers were never reclaimed
even if no data was consumed.
The new code applies heuristics to fix this and reduce the number
of WINDOW_UPDATE frames that are sent. It includes six new options
to control that behavior: margin, max and threshold for both the
connection and stream windows. The margin is some extra space
added on top of the requested read size. The max is the maximum
window size at any given time. The threshold is a minimum window
size that must be reached before we even consider sending more
WINDOW_UPDATE frames. We also avoid sending WINDOW_UPDATE frames
when there is already enough space in the window, or when the
read size is 0.
Cowlib is set to master until a new tag is done.
|
|
|
|
|
|
|
|
|
|
|
|
[ci skip]
|
|
|
|
|
|
|
|
|
|
|
|
Using the current draft:
https://tools.ietf.org/html/draft-ietf-httpbis-h2-websockets-01
|
|
They are now cowboy:start_clear/3 and cowboy:start_tls/3.
The NumAcceptors argument can be specified via the
num_acceptor transport option. Ranch has been updated
to 1.4.0 to that effect.
|
|
|
|
|
|
|