aboutsummaryrefslogblamecommitdiffstats
path: root/erts/emulator/beam/erl_ao_firstfit_alloc.c
blob: 6ce209085c46bdb2960283f5c2932509467e7f88 (plain) (tree)
1
2
3
4
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589


                   
                                                        
























































































                                                                                  
                                             










                                                                             
                             


































































                                                                                     








                                                                          

                                        
                                                                          
 


















































































































































































































































































































































































































                                                                            
                                   






































































                                                                    
                                          

























































































































































































































































                                                                               

                                            


                                                                  
                                             







































                                                                 
                                                    
















                                                       
/*
 * %CopyrightBegin%
 * 
 * Copyright Ericsson AB 2003-2013. All Rights Reserved.
 * 
 * The contents of this file are subject to the Erlang Public License,
 * Version 1.1, (the "License"); you may not use this file except in
 * compliance with the License. You should have received a copy of the
 * Erlang Public License along with this software. If not, it can be
 * retrieved online at http://www.erlang.org/.
 * 
 * Software distributed under the License is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
 * the License for the specific language governing rights and limitations
 * under the License.
 * 
 * %CopyrightEnd%
 */


/*
 * Description:	An "address order first fit" allocator
 *              based on a Red-Black (binary search) Tree. The search,
 *              insert, and delete operations are all O(log n) operations
 *              on a Red-Black Tree.
 *              Red-Black Trees are described in "Introduction to Algorithms",
 *              by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Riverest.
 *
 *              This module is a callback-module for erl_alloc_util.c
 *
 * Algorithm:   The tree nodes are free-blocks ordered in address order.
 *              Every node also keeps the size of the largest block in its
 *              sub-tree ('max_size'). By that we can start from root and keep
 *              left (for low addresses) while dismissing entire sub-trees with
 *              too small blocks.
 *
 * Authors: 	Rickard Green/Sverker Eriksson
 */


#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif
#include "global.h"
#define GET_ERL_AOFF_ALLOC_IMPL
#include "erl_ao_firstfit_alloc.h"

#ifdef DEBUG
#if 0
#define HARD_DEBUG
#endif
#else
#undef HARD_DEBUG
#endif

#define MIN_MBC_SZ		(16*1024)
#define MIN_MBC_FIRST_FREE_SZ	(4*1024)

#define TREE_NODE_FLG		(((Uint) 1) << 0)
#define RED_FLG			(((Uint) 1) << 1)
#ifdef HARD_DEBUG
#  define LEFT_VISITED_FLG	(((Uint) 1) << 2)
#  define RIGHT_VISITED_FLG	(((Uint) 1) << 3)
#endif

#define IS_RED(N)		(((AOFF_RBTree_t *) (N)) \
				 && ((AOFF_RBTree_t *) (N))->flags & RED_FLG)
#define IS_BLACK(N)		(!IS_RED(((AOFF_RBTree_t *) (N))))

#define SET_RED(N)		(((AOFF_RBTree_t *) (N))->flags |= RED_FLG)
#define SET_BLACK(N)		(((AOFF_RBTree_t *) (N))->flags &= ~RED_FLG)

#undef ASSERT
#define ASSERT ASSERT_EXPR

#if 1
#define RBT_ASSERT	ASSERT
#else
#define RBT_ASSERT(x)
#endif


/* Types... */
typedef struct AOFF_RBTree_t_ AOFF_RBTree_t;

struct AOFF_RBTree_t_ {
    Block_t hdr;
    Uint flags;
    AOFF_RBTree_t *parent;
    AOFF_RBTree_t *left;
    AOFF_RBTree_t *right;
    Uint max_sz;  /* of all blocks in this sub-tree */
};
#define AOFF_BLK_SZ(B) MBC_FBLK_SZ(&(B)->hdr)

#ifdef HARD_DEBUG
static AOFF_RBTree_t * check_tree(AOFF_RBTree_t* root, Uint);
#endif


/* Calculate 'max_size' of tree node x by only looking at the direct children
 * of x and x itself.
 */
static ERTS_INLINE Uint node_max_size(AOFF_RBTree_t *x)
{
    Uint sz = AOFF_BLK_SZ(x);
    if (x->left && x->left->max_sz > sz) {
	sz = x->left->max_sz;
    }
    if (x->right && x->right->max_sz > sz) {
	sz = x->right->max_sz;
    }
    return sz;
}

/* Set new possibly lower 'max_size' of node and propagate change toward root
*/
static ERTS_INLINE void lower_max_size(AOFF_RBTree_t *node,
				       AOFF_RBTree_t* stop_at)
{
    AOFF_RBTree_t* x = node;    
    Uint old_max = x->max_sz;
    Uint new_max = node_max_size(x);

    if (new_max < old_max) {
	x->max_sz = new_max;
	while ((x=x->parent) != stop_at && x->max_sz == old_max) {		
	    x->max_sz = node_max_size(x);
	}
	ASSERT(x == stop_at || x->max_sz > old_max);
    }
    else ASSERT(new_max == old_max);
}


/* Prototypes of callback functions */
static Block_t*	aoff_get_free_block(Allctr_t *, Uint, Block_t *, Uint, Uint32 flags);
static void aoff_link_free_block(Allctr_t *, Block_t*, Uint32 flags);
static void aoff_unlink_free_block(Allctr_t *allctr, Block_t *del, Uint32 flags);

static Eterm info_options(Allctr_t *, char *, int *, void *, Uint **, Uint *);
static void init_atoms(void);



#ifdef DEBUG

/* Destroy all tree fields */
#define DESTROY_TREE_NODE(N)						\
  sys_memset((void *) (((Block_t *) (N)) + 1),				\
	     0xff,							\
	     (sizeof(AOFF_RBTree_t) - sizeof(Block_t)))

#else

#define DESTROY_TREE_NODE(N)

#endif


static int atoms_initialized = 0;

void
erts_aoffalc_init(void)
{
    atoms_initialized = 0;
}

Allctr_t *
erts_aoffalc_start(AOFFAllctr_t *alc,
		   AOFFAllctrInit_t* aoffinit,
		   AllctrInit_t *init)
{
    struct {
	int dummy;
	AOFFAllctr_t allctr;
    } zero = {0};
    /* The struct with a dummy element first is used in order to avoid (an
       incorrect) gcc warning. gcc warns if {0} is used as initializer of
       a struct when the first member is a struct (not if, for example,
       the third member is a struct). */

    Allctr_t *allctr = (Allctr_t *) alc;

    sys_memcpy((void *) alc, (void *) &zero.allctr, sizeof(AOFFAllctr_t));

    allctr->min_mbc_size		= MIN_MBC_SZ;
    allctr->min_mbc_first_free_size	= MIN_MBC_FIRST_FREE_SZ;
    allctr->min_block_size		= sizeof(AOFF_RBTree_t);

    allctr->vsn_str			= ERTS_ALC_AOFF_ALLOC_VSN_STR;


    /* Callback functions */

    allctr->get_free_block		= aoff_get_free_block;
    allctr->link_free_block		= aoff_link_free_block;
    allctr->unlink_free_block	        = aoff_unlink_free_block;
    allctr->info_options		= info_options;

    allctr->get_next_mbc_size		= NULL;
    allctr->creating_mbc		= NULL;
    allctr->destroying_mbc		= NULL;
    allctr->init_atoms			= init_atoms;

#ifdef ERTS_ALLOC_UTIL_HARD_DEBUG
    allctr->check_block			= NULL;
    allctr->check_mbc			= NULL;
#endif

    allctr->atoms_initialized		= 0;

    if (!erts_alcu_start(allctr, init))
	return NULL;

    return allctr;
}

/*
 * Red-Black Tree operations needed
 */

static ERTS_INLINE void
left_rotate(AOFF_RBTree_t **root, AOFF_RBTree_t *x)
{
    AOFF_RBTree_t *y = x->right;
    x->right = y->left;
    if (y->left)
	y->left->parent = x;
    y->parent = x->parent;
    if (!y->parent) {
	RBT_ASSERT(*root == x);
	*root = y;
    }
    else if (x == x->parent->left)
	x->parent->left = y;
    else {
	RBT_ASSERT(x == x->parent->right);
	x->parent->right = y;
    }
    y->left = x;
    x->parent = y;

    y->max_sz = x->max_sz;
    x->max_sz = node_max_size(x); 
    ASSERT(y->max_sz >= x->max_sz);
}

static ERTS_INLINE void
right_rotate(AOFF_RBTree_t **root, AOFF_RBTree_t *x)
{
    AOFF_RBTree_t *y = x->left;
    x->left = y->right;
    if (y->right)
	y->right->parent = x;
    y->parent = x->parent;
    if (!y->parent) {
	RBT_ASSERT(*root == x);
	*root = y;
    }
    else if (x == x->parent->right)
	x->parent->right = y;
    else {
	RBT_ASSERT(x == x->parent->left);
	x->parent->left = y;
    }
    y->right = x;
    x->parent = y;
    y->max_sz = x->max_sz;
    x->max_sz = node_max_size(x);    
    ASSERT(y->max_sz >= x->max_sz);
}


/*
 * Replace node x with node y
 * NOTE: block header of y is not changed
 */
static ERTS_INLINE void
replace(AOFF_RBTree_t **root, AOFF_RBTree_t *x, AOFF_RBTree_t *y)
{

    if (!x->parent) {
	RBT_ASSERT(*root == x);
	*root = y;
    }
    else if (x == x->parent->left)
	x->parent->left = y;
    else {
	RBT_ASSERT(x == x->parent->right);
	x->parent->right = y;
    }
    if (x->left) {
	RBT_ASSERT(x->left->parent == x);
	x->left->parent = y;
    }
    if (x->right) {
	RBT_ASSERT(x->right->parent == x);
	x->right->parent = y;
    }

    y->flags	= x->flags;
    y->parent	= x->parent;
    y->right	= x->right;
    y->left	= x->left;

    y->max_sz = x->max_sz;
    lower_max_size(y, NULL);
    DESTROY_TREE_NODE(x);
}

static void
tree_insert_fixup(AOFF_RBTree_t** root, AOFF_RBTree_t *blk)
{
    AOFF_RBTree_t *x = blk, *y;

    /*
     * Rearrange the tree so that it satisfies the Red-Black Tree properties
     */

    RBT_ASSERT(x != *root && IS_RED(x->parent));
    do {

	/*
	 * x and its parent are both red. Move the red pair up the tree
	 * until we get to the root or until we can separate them.
	 */

	RBT_ASSERT(IS_RED(x));
	RBT_ASSERT(IS_BLACK(x->parent->parent));
	RBT_ASSERT(x->parent->parent);

	if (x->parent == x->parent->parent->left) {
	    y = x->parent->parent->right;
	    if (IS_RED(y)) {
		SET_BLACK(y);
		x = x->parent;
		SET_BLACK(x);
		x = x->parent;
		SET_RED(x);
	    }
	    else {

		if (x == x->parent->right) {
		    x = x->parent;
		    left_rotate(root, x);
		}

		RBT_ASSERT(x == x->parent->parent->left->left);
		RBT_ASSERT(IS_RED(x));
		RBT_ASSERT(IS_RED(x->parent));
		RBT_ASSERT(IS_BLACK(x->parent->parent));
		RBT_ASSERT(IS_BLACK(y));

		SET_BLACK(x->parent);
		SET_RED(x->parent->parent);
		right_rotate(root, x->parent->parent);

		RBT_ASSERT(x == x->parent->left);
		RBT_ASSERT(IS_RED(x));
		RBT_ASSERT(IS_RED(x->parent->right));
		RBT_ASSERT(IS_BLACK(x->parent));
		break;
	    }
	}
	else {
	    RBT_ASSERT(x->parent == x->parent->parent->right);
	    y = x->parent->parent->left;
	    if (IS_RED(y)) {
		SET_BLACK(y);
		x = x->parent;
		SET_BLACK(x);
		x = x->parent;
		SET_RED(x);
	    }
	    else {

		if (x == x->parent->left) {
		    x = x->parent;
		    right_rotate(root, x);
		}

		RBT_ASSERT(x == x->parent->parent->right->right);
		RBT_ASSERT(IS_RED(x));
		RBT_ASSERT(IS_RED(x->parent));
		RBT_ASSERT(IS_BLACK(x->parent->parent));
		RBT_ASSERT(IS_BLACK(y));

		SET_BLACK(x->parent);
		SET_RED(x->parent->parent);
		left_rotate(root, x->parent->parent);

		RBT_ASSERT(x == x->parent->right);
		RBT_ASSERT(IS_RED(x));
		RBT_ASSERT(IS_RED(x->parent->left));
		RBT_ASSERT(IS_BLACK(x->parent));
		break;
	    }
	}
    } while (x != *root && IS_RED(x->parent));

    SET_BLACK(*root);
}

static void
aoff_unlink_free_block(Allctr_t *allctr, Block_t *del, Uint32 flags)
{
    AOFFAllctr_t *alc = (AOFFAllctr_t *) allctr;
    AOFF_RBTree_t **root = ((flags & ERTS_ALCU_FLG_SBMBC)
			    ? &alc->sbmbc_root : &alc->mbc_root);
    Uint spliced_is_black;
    AOFF_RBTree_t *x, *y, *z = (AOFF_RBTree_t *) del;
    AOFF_RBTree_t null_x; /* null_x is used to get the fixup started when we
			splice out a node without children. */

    null_x.parent = NULL;

#ifdef HARD_DEBUG
    check_tree(*root, 0);
#endif

    /* Remove node from tree... */

    /* Find node to splice out */
    if (!z->left || !z->right)
	y = z;
    else
	/* Set y to z:s successor */
	for(y = z->right; y->left; y = y->left);
    /* splice out y */
    x = y->left ? y->left : y->right;
    spliced_is_black = IS_BLACK(y);
    if (x) {
	x->parent = y->parent;
    }
    else if (spliced_is_black) {
	x = &null_x;
	x->flags = 0;
	SET_BLACK(x);
	x->right = x->left = NULL;
	x->max_sz = 0;
	x->parent = y->parent;
	y->left = x;
    }

    if (!y->parent) {
	RBT_ASSERT(*root == y);
	*root = x;
    }
    else {
	if (y == y->parent->left) {
	    y->parent->left = x;
	}
	else {
	    RBT_ASSERT(y == y->parent->right);
	    y->parent->right = x;
	}
	if (y->parent != z) {
	    lower_max_size(y->parent, (y==z ? NULL : z));
	}
    }
    if (y != z) {
	/* We spliced out the successor of z; replace z by the successor */
	replace(root, z, y);
    }

    if (spliced_is_black) {
	/* We removed a black node which makes the resulting tree
	   violate the Red-Black Tree properties. Fixup tree... */

	while (IS_BLACK(x) && x->parent) {

	    /*
	     * x has an "extra black" which we move up the tree
	     * until we reach the root or until we can get rid of it.
	     *
	     * y is the sibbling of x
	     */

	    if (x == x->parent->left) {
		y = x->parent->right;
		RBT_ASSERT(y);
		if (IS_RED(y)) {
		    RBT_ASSERT(y->right);
		    RBT_ASSERT(y->left);
		    SET_BLACK(y);
		    RBT_ASSERT(IS_BLACK(x->parent));
		    SET_RED(x->parent);
		    left_rotate(root, x->parent);
		    y = x->parent->right;
		}
		RBT_ASSERT(y);
		RBT_ASSERT(IS_BLACK(y));
		if (IS_BLACK(y->left) && IS_BLACK(y->right)) {
		    SET_RED(y);
		    x = x->parent;
		}
		else {
		    if (IS_BLACK(y->right)) {
			SET_BLACK(y->left);
			SET_RED(y);
			right_rotate(root, y);
			y = x->parent->right;
		    }
		    RBT_ASSERT(y);
		    if (IS_RED(x->parent)) {

			SET_BLACK(x->parent);
			SET_RED(y);
		    }
		    RBT_ASSERT(y->right);
		    SET_BLACK(y->right);
		    left_rotate(root, x->parent);
		    x = *root;
		    break;
		}
	    }
	    else {
		RBT_ASSERT(x == x->parent->right);
		y = x->parent->left;
		RBT_ASSERT(y);
		if (IS_RED(y)) {
		    RBT_ASSERT(y->right);
		    RBT_ASSERT(y->left);
		    SET_BLACK(y);
		    RBT_ASSERT(IS_BLACK(x->parent));
		    SET_RED(x->parent);
		    right_rotate(root, x->parent);
		    y = x->parent->left;
		}
		RBT_ASSERT(y);
		RBT_ASSERT(IS_BLACK(y));
		if (IS_BLACK(y->right) && IS_BLACK(y->left)) {
		    SET_RED(y);
		    x = x->parent;
		}
		else {
		    if (IS_BLACK(y->left)) {
			SET_BLACK(y->right);
			SET_RED(y);
			left_rotate(root, y);
			y = x->parent->left;
		    }
		    RBT_ASSERT(y);
		    if (IS_RED(x->parent)) {
			SET_BLACK(x->parent);
			SET_RED(y);
		    }
		    RBT_ASSERT(y->left);
		    SET_BLACK(y->left);
		    right_rotate(root, x->parent);
		    x = *root;
		    break;
		}
	    }
	}
	SET_BLACK(x);

	if (null_x.parent) {
	    if (null_x.parent->left == &null_x)
		null_x.parent->left = NULL;
	    else {
		RBT_ASSERT(null_x.parent->right == &null_x);
		null_x.parent->right = NULL;
	    }
	    RBT_ASSERT(!null_x.left);
	    RBT_ASSERT(!null_x.right);
	}
	else if (*root == &null_x) {
	    *root = NULL;
	    RBT_ASSERT(!null_x.left);
	    RBT_ASSERT(!null_x.right);
	}
    }

    DESTROY_TREE_NODE(del);

#ifdef HARD_DEBUG
    check_tree(*root, 0);
#endif
}

static void
aoff_link_free_block(Allctr_t *allctr, Block_t *block, Uint32 flags)
{
    AOFFAllctr_t *alc = (AOFFAllctr_t *) allctr;
    AOFF_RBTree_t *blk = (AOFF_RBTree_t *) block;
    AOFF_RBTree_t **root = ((flags & ERTS_ALCU_FLG_SBMBC)
			    ? &alc->sbmbc_root : &alc->mbc_root);
    Uint blk_sz = AOFF_BLK_SZ(blk);

#ifdef HARD_DEBUG
    check_tree(*root, 0);
#endif

    blk->flags	= 0;
    blk->left	= NULL;
    blk->right	= NULL;
    blk->max_sz = blk_sz;

    if (!*root) {
	blk->parent = NULL;
	SET_BLACK(blk);
	*root = blk;
    }
    else {
	AOFF_RBTree_t *x = *root;
	while (1) {
	    if (x->max_sz < blk_sz) {
		x->max_sz = blk_sz;
	    }
	    if (blk < x) {
		if (!x->left) {
		    blk->parent = x;
		    x->left = blk;
		    break;
		}
		x = x->left;
	    }
	    else {
		if (!x->right) {
		    blk->parent = x;
		    x->right = blk;
		    break;
		}
		x = x->right;
	    }

	}

	/* Insert block into size tree */
	RBT_ASSERT(blk->parent);

	SET_RED(blk);
	if (IS_RED(blk->parent))
	    tree_insert_fixup(root, blk);
    }

#ifdef HARD_DEBUG
    check_tree(*root, 0);
#endif
}

static Block_t *
aoff_get_free_block(Allctr_t *allctr, Uint size,
		    Block_t *cand_blk, Uint cand_size, Uint32 flags)
{
    AOFFAllctr_t *alc = (AOFFAllctr_t *) allctr;
    AOFF_RBTree_t *x = ((flags & ERTS_ALCU_FLG_SBMBC)
		       ? alc->sbmbc_root : alc->mbc_root);
    AOFF_RBTree_t *blk = NULL;
#ifdef HARD_DEBUG
    AOFF_RBTree_t* dbg_blk = check_tree(x, size);
#endif

    ASSERT(!cand_blk || cand_size >= size);

    while (x) {
	if (x->left && x->left->max_sz >= size) {
	    x = x->left;
	}
	else if (AOFF_BLK_SZ(x) >= size) {
	    blk = x;
	    break;
	}
	else {
	    x = x->right;
	}
    }

#ifdef HARD_DEBUG
    ASSERT(blk == dbg_blk);
#endif

    if (!blk)
	return NULL;

    if (cand_blk && cand_blk < &blk->hdr) {
	return NULL; /* cand_blk was better */
    }

    aoff_unlink_free_block(allctr, (Block_t *) blk, flags);

    return (Block_t *) blk;
}


/*
 * info_options()
 */

static struct {
    Eterm as;
    Eterm aoff;
#ifdef DEBUG
    Eterm end_of_atoms;
#endif
} am;

static void ERTS_INLINE atom_init(Eterm *atom, char *name)
{
    *atom = am_atom_put(name, strlen(name));
}
#define AM_INIT(AM) atom_init(&am.AM, #AM)

static void
init_atoms(void)
{
#ifdef DEBUG
    Eterm *atom;
#endif

    if (atoms_initialized)
	return;

#ifdef DEBUG
    for (atom = (Eterm *) &am; atom <= &am.end_of_atoms; atom++) {
	*atom = THE_NON_VALUE;
    }
#endif
    AM_INIT(as);
    AM_INIT(aoff);

#ifdef DEBUG
    for (atom = (Eterm *) &am; atom < &am.end_of_atoms; atom++) {
	ASSERT(*atom != THE_NON_VALUE);
    }
#endif

    atoms_initialized = 1;
}


#define bld_uint	erts_bld_uint
#define bld_cons	erts_bld_cons
#define bld_tuple	erts_bld_tuple

static ERTS_INLINE void
add_2tup(Uint **hpp, Uint *szp, Eterm *lp, Eterm el1, Eterm el2)
{
    *lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 2, el1, el2), *lp);
}

static Eterm
info_options(Allctr_t *allctr,
	     char *prefix,
	     int *print_to_p,
	     void *print_to_arg,
	     Uint **hpp,
	     Uint *szp)
{
    Eterm res = THE_NON_VALUE;

    if (print_to_p) {
	erts_print(*print_to_p,
		   print_to_arg,
		   "%sas: %s\n",
		   prefix,
		   "aoff");
    }

    if (hpp || szp) {
	
	if (!atoms_initialized)
	    erl_exit(1, "%s:%d: Internal error: Atoms not initialized",
		     __FILE__, __LINE__);;

	res = NIL;
	add_2tup(hpp, szp, &res, am.as, am.aoff);
    }

    return res;
}


/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
 * NOTE:  erts_aoffalc_test() is only supposed to be used for testing.       *
 *                                                                           *
 * Keep alloc_SUITE_data/allocator_test.h updated if changes are made        *
 * to erts_aoffalc_test()                                                    *
\*                                                                           */

unsigned long
erts_aoffalc_test(unsigned long op, unsigned long a1, unsigned long a2)
{
    switch (op) {
    case 0x500:	return (unsigned long) 0; /* IS_AOBF */
    case 0x501:	return (unsigned long) ((AOFFAllctr_t *) a1)->mbc_root;
    case 0x502:	return (unsigned long) ((AOFF_RBTree_t *) a1)->parent;
    case 0x503:	return (unsigned long) ((AOFF_RBTree_t *) a1)->left;
    case 0x504:	return (unsigned long) ((AOFF_RBTree_t *) a1)->right;
    case 0x506:	return (unsigned long) IS_BLACK((AOFF_RBTree_t *) a1);
    case 0x508: return (unsigned long) 1; /* IS_AOFF */
    case 0x509: return (unsigned long) ((AOFF_RBTree_t *) a1)->max_sz;
    default:	ASSERT(0); return ~((unsigned long) 0);
    }
}


/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
 * Debug functions                                                           *
\*                                                                           */


#ifdef HARD_DEBUG

#define IS_LEFT_VISITED(FB)	((FB)->flags & LEFT_VISITED_FLG)
#define IS_RIGHT_VISITED(FB)	((FB)->flags & RIGHT_VISITED_FLG)

#define SET_LEFT_VISITED(FB)	((FB)->flags |= LEFT_VISITED_FLG)
#define SET_RIGHT_VISITED(FB)	((FB)->flags |= RIGHT_VISITED_FLG)

#define UNSET_LEFT_VISITED(FB)	((FB)->flags &= ~LEFT_VISITED_FLG)
#define UNSET_RIGHT_VISITED(FB)	((FB)->flags &= ~RIGHT_VISITED_FLG)


#if 0
#  define PRINT_TREE
#else
#  undef PRINT_TREE
#endif

#ifdef PRINT_TREE
static void print_tree(AOFF_RBTree_t*);
#endif

/*
 * Checks that the order between parent and children are correct,
 * and that the Red-Black Tree properies are satisfied. if size > 0,
 * check_tree() returns the node that satisfies "address order first fit"
 *
 * The Red-Black Tree properies are:
 *   1. Every node is either red or black.
 *   2. Every leaf (NIL) is black.
 *   3. If a node is red, then both its children are black.
 *   4. Every simple path from a node to a descendant leaf
 *      contains the same number of black nodes.
 *
 *   + own.max_size == MAX(own.size, left.max_size, right.max_size)
 */

static AOFF_RBTree_t *
check_tree(AOFF_RBTree_t* root, Uint size)
{
    AOFF_RBTree_t *res = NULL;
    Sint blacks;
    Sint curr_blacks;
    AOFF_RBTree_t *x;

#ifdef PRINT_TREE
    print_tree(root);
#endif

    if (!root)
	return res;

    x = root;
    ASSERT(IS_BLACK(x));
    ASSERT(!x->parent);
    curr_blacks = 1;
    blacks = -1;

    while (x) {
	if (!IS_LEFT_VISITED(x)) {
	    SET_LEFT_VISITED(x);
	    if (x->left) {
		x = x->left;
		if (IS_BLACK(x))
		    curr_blacks++;
		continue;
	    }
	    else {
		if (blacks < 0)
		    blacks = curr_blacks;
		ASSERT(blacks == curr_blacks);
	    }
	}

	if (!IS_RIGHT_VISITED(x)) {
	    SET_RIGHT_VISITED(x);
	    if (x->right) {
		x = x->right;
		if (IS_BLACK(x))
		    curr_blacks++;
		continue;
	    }
	    else {
		if (blacks < 0)
		    blacks = curr_blacks;
		ASSERT(blacks == curr_blacks);
	    }
	}


	if (IS_RED(x)) {
	    ASSERT(IS_BLACK(x->right));
	    ASSERT(IS_BLACK(x->left));
	}

	ASSERT(x->parent || x == root);

	if (x->left) {
	    ASSERT(x->left->parent == x);
	    ASSERT(x->left < x);
	    ASSERT(x->left->max_sz <= x->max_sz);	    
	}

	if (x->right) {
	    ASSERT(x->right->parent == x);
	    ASSERT(x->right > x);
	    ASSERT(x->right->max_sz <= x->max_sz);	    
	}
	ASSERT(x->max_sz >= AOFF_BLK_SZ(x));
	ASSERT(x->max_sz == AOFF_BLK_SZ(x)
	       || x->max_sz == (x->left ? x->left->max_sz : 0)
	       || x->max_sz == (x->right ? x->right->max_sz : 0));

	if (size && AOFF_BLK_SZ(x) >= size) {
	    if (!res || x < res) {
		res = x;
	    }
	}

	UNSET_LEFT_VISITED(x);
	UNSET_RIGHT_VISITED(x);
	if (IS_BLACK(x))
	    curr_blacks--;
	x = x->parent;

    }

    ASSERT(curr_blacks == 0);

    UNSET_LEFT_VISITED(root);
    UNSET_RIGHT_VISITED(root);

    return res;

}


#ifdef PRINT_TREE
#define INDENT_STEP 2

#include <stdio.h>

static void
print_tree_aux(AOFF_RBTree_t *x, int indent)
{
    int i;

    if (x) {
	print_tree_aux(x->right, indent + INDENT_STEP);
	for (i = 0; i < indent; i++) {
	    putc(' ', stderr);
	}
	fprintf(stderr, "%s: sz=%lu addr=0x%lx max_size=%lu\r\n",
		IS_BLACK(x) ? "BLACK" : "RED",
		AOFF_BLK_SZ(x), (Uint)x, x->max_sz);
	print_tree_aux(x->left,  indent + INDENT_STEP);
    }
}


static void
print_tree(AOFF_RBTree_t* root)
{
    fprintf(stderr, " --- AOFF tree begin ---\r\n");
    print_tree_aux(root, 0);
    fprintf(stderr, " --- AOFF tree end ---\r\n");
}

#endif /* PRINT_TREE */

#endif /* HARD_DEBUG */